Spatiotemporally Matched Nitrogen Release from a Double Core-Shell Urea Improves Rice Growth
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Experimental Design
2.4. Sampling and Measurements
2.4.1. Yield and Yield Components
2.4.2. Chlorophyll Content
2.4.3. Photosynthetic Efficiency
2.4.4. Leaf Area Index and Dry Matter Accumulation
2.4.5. Enzyme Activities of Nitrogen Metabolism
2.4.6. Nutrient Release Rate
2.5. Statistical Analysis
3. Results
3.1. Nitrogen Release Characteristics of Double-Core–Shell Controlled-Release Urea
3.2. Productive Tiller Percentage
3.3. Photosynthetic Traits
3.4. Grain Yield and Yield Components
3.5. Effects on Rice Dry Matter Accumulation
3.6. Enzyme Activities Related to Nitrogen Metabolism
3.7. Correlation Analysis of Physiological and Agronomic Traits
3.8. Pathway Analysis of Yield Determinants
4. Discussion
4.1. Effects of the Double Core–Shell Controlled-Release Urea on Rice Photosynthesis and Dry Matter Accumulation
4.2. Effects of Double Core–Shell Controlled-Release Urea on Yield and Yield-Related Physiological Traits
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DCSCRU | Double Core–Shell Controlled-Release Urea |
N | Nitrogen |
NUE | Nitrogen Use Efficiency |
SCRFs | Slow- and Controlled-Release Nitrogen Fertilizers |
PCU | Polymer-Coated Urea |
LAI | Leaf Area Index |
CRU | Controlled-Release Urea |
NR | Nitrate Reductase |
GS | Glutamine Synthetase |
GOGAT | Glutamate Synthase |
LSD | Least Significant Difference |
TS | Tillering Stage |
JS | Jointing Stage |
HS | Heading Stage |
MS | Maturity Stage |
TGW | 1000-grain Weight |
EPD | Effective Panicle Density |
GFP | Grain Filling Percentage |
GPP | Grains Per Panicle |
ANR | the Activity of NR |
AGS | the Activity of GS |
AGOGAT | the Activity of GOGAT |
DWM | Dry Weight at Maturity Stage |
LAIH | Leaf Area Index at Heading Stage |
SP | Spike as a Proportion of Dry Matter Weight |
References
- Zhou, Y.; Lei, F.; Wang, Q.; He, W.C.; Yuan, B.; Yuan, W.Y. Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining. Rice 2020, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.I.; Soukoutou, R.; Conroy, D.M. Sustainability framing of controlled environment agriculture and consumer perceptions: A review. Sustainability 2023, 15, 304. [Google Scholar] [CrossRef]
- Shao, Y.E.; Dai, J.T. Integrated feature selection of ARIMA with computational intelligence approaches for food crop price prediction. Complexity 2018, 2018, 1910520. [Google Scholar] [CrossRef]
- Chen, X.P.; Cui, Z.L.; Fan, M.S.; Vitousek, P.; Zhao, M.; Ma, W.Q.; Wang, Z.L.; Zhang, W.J.; Yan, X.Y.; Yang, J.C.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Peng, S.B.; Buresh, R.J.; Huang, J.L.; Yang, J.C.; Zou, Y.B.; Zhong, X.H.; Wang, G.H.; Zhang, F.S. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res. 2006, 96, 37–47. [Google Scholar] [CrossRef]
- Islam, S.M.M.; Gaihre, Y.K.; Biswas, J.C.; Jahan, M.S.; Singh, U.; Adhikary, S.K.; Satter, M.A.; Saleque, M.A. Different nitrogen rates and methods of application for dry season rice cultivation with alternate wetting and drying irrigation: Fate of nitrogen and grain yield. Agric. Water Manag. 2018, 196, 144–153. [Google Scholar] [CrossRef]
- Shi, X.R.; Li, X.K.; Guo, C.; Feng, P.Y.; Hu, K.L. Modeling ammonia volatilization following urea and controlled-release urea application to paddy fields. Comput. Electron. Agric. 2022, 196, 106888. [Google Scholar] [CrossRef]
- He, Z.X.; Cao, C.S.; Feng, C. Media attention, environmental information disclosure and corporate green technology innovations in China’s heavily polluting industries. Emerg. Mark. Financ. Trade. 2022, 58, 3939–3952. [Google Scholar] [CrossRef]
- Ji, P.T.; Li, X.L.; Peng, Y.J.; Zhang, Y.C.; Tao, P.J. Effect of polyaspartic acid and different dosages of controlled-release fertilizers on nitrogen uptake, utilization, and yield of maize cultivars. Bioengineered 2021, 12, 527–539. [Google Scholar] [CrossRef]
- Cai, J.W.; Cheng, W.X.; Liang, Z.H.; Li, C.Z.; Deng, Y.; Yin, T.; Li, C.J. Organic and slow-release fertilizer substitution strategies improved the sustainability of pineapple production systems in the tropics. Sustainability 2023, 15, 10353. [Google Scholar] [CrossRef]
- Xiong, Q.Q.; Tang, G.P.; Zhong, L.; He, H.H.; Chen, X.R. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Front. Plant Sci. 2018, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, S.F.; Wu, L.H.; Chen, J.Q.; Zhu, Y.H. Optimizing weight method to evaluate nitrogen release characters of polymer-coated urea in paddy soil under field conditions. Commun. Soil Sci. Plant Anal. 2017, 48, 608–614. [Google Scholar] [CrossRef]
- Wang, B.C.; Shen, Y.Z.; Xie, W.; Zhu, S.X.; Zhao, X.; Wang, S.Q. FeIII-tannic acid-modified waterborne polymer-coated urea has agronomic, environmental and economic benefits in flooded rice paddy. J. Clean. Prod. 2021, 321, 129013. [Google Scholar] [CrossRef]
- Peng, M.S.; Hudson, D.; Schofield, A.; Tsao, R.; Yang, R.; Gu, H.L.; Bi, Y.M.; Rothstein, S.J. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene. J. Exp. Bot. 2008, 59, 2933–2944. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, K.X.; Ma, Q.Y.; Jiang, X.; Zhou, Y.Q.; Kong, D.L.; Wang, Z.Y.; Parales, R.E.; Li, L.; Zhao, X.; et al. Rhizosphere microbial community diversity and function analysis of cut chrysanthemum during continuous monocropping. Front. Microbiol. 2022, 13, 801546. [Google Scholar] [CrossRef]
- Patil, M.D.; Das, B.S.; Barak, E.; Bhadoria, P.B.S.; Polak, A. Performance of polymer-coated urea in transplanted rice: Effect of mixing ratio and water input on nitrogen use efficiency. Paddy Water Environ. 2010, 8, 189–198. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Z.P.; Wang, T.; Fu, Y.; Chen, Y.; Hu, B.H.; Yamagishi, J.; Ren, W.J. Environmental compensation effect and synergistic mechanism of optimized nitrogen management increasing nitrogen use efficiency in indica hybrid rice. Front. Plant Sci. 2019, 10, 245. [Google Scholar] [CrossRef]
- Mi, W.H.; Gao, Q.; Xia, S.Q.; Zhao, H.T.; Wu, L.H.; Mao, W.; Hu, Z.P.; Liu, Y.L. Medium-term effects of different types of N fertilizer on yield, apparent N recovery, and soil chemical properties of a double rice cropping system. Field Crops Res. 2019, 234, 87–94. [Google Scholar] [CrossRef]
- Wahid, M.A.; Irshad, M.; Irshad, S.; Khan, S.; Hasnain, Z.; Ibrar, D.; Khan, A.R.; Saleem, M.F.; Bashir, S.; Alotaibi, S.S.; et al. Nitrogenous fertilizer coated with zinc improves the productivity and grain quality of rice grown under anaerobic conditions. Front. Plant Sci. 2022, 13, 914653. [Google Scholar] [CrossRef]
- Deng, F.; Li, W.; Wang, L.; Hu, H.; Liao, S.; Pu, S.L.; Tao, Y.F.; Li, G.H.; Ren, W.J. Effect of controlled-release fertilizers on leaf characteristics, grain yield, and nitrogen use efficiency of machine-transplanted rice in southwest China. Arch. Agron. Soil Sci. 2021, 67, 1739–1753. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.H.; Ding, Y.F.; Tao, W.K.; Gao, S.; Li, Q.X.; Li, W.W.; Liu, Z.H.; Li, G.H. Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 2021, 20, 1503–1514. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Shuang, S.P.; Zhang, L.; Xie, S.Q.; Chen, J.W. Photosynthetic and photoprotective responses to steady-state and fluctuating light in the shade-demanding crop amorphophallus xiei grown in intercropping and monoculture systems. Front. Plant Sci. 2021, 12, 663473. [Google Scholar] [CrossRef] [PubMed]
- Han, R.C.; He, X.F.; Pan, X.H.; Shi, Q.H.; Wu, Z.M. Enhancing xanthine dehydrogenase activity is an effective way to delay leaf senescence and increase rice yield. Rice 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.W.; Guo, X.D.; Pan, X.F.; Li, Z.W. Chlorophyll composition, chlorophyll fluorescence, and grain yield change in esl mutant rice. Int. J. Mol. Sci. 2018, 19, 2945. [Google Scholar] [CrossRef]
- Zhai, L.Y.; Wang, F.; Yan, A.; Liang, C.W.; Wang, S.; Wang, Y.; Xu, J.L. Pleiotropic effect of GNP1 underlying grain number per panicle on sink, source and flow in rice. Front. Plant Sci. 2020, 11, 933. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.W.; Zhang, R.C.; Cao, F.B.; Liu, L.S.; Chen, J.N.; Huang, M. Effects of Decreasing Hill Number per Unit Area Combined with Increasing Seedling Number per Hill on Grain Quality in Hybrid Rice. Agronomy 2024, 14, 1172. [Google Scholar] [CrossRef]
- Savidov, N.A.; Tokarev, B.I.; Lips, S.H. Regulation of Mo-cofactor, NADH- and NAD(P)H-specific nitrate reductase activities in the wild type and two nar-mutant lines of barley (Hordeum vulgare L.). J. Exp. Bot. 1997, 48, 847–855. [Google Scholar] [CrossRef]
- Han, Y.L.; Liao, J.Y.; Yun, Y.; Song, H.X.; Rong, N.; Guan, C.Y.; Lepo, J.E.; Ismail, A.M.; Zhang, Z.H. Exogenous abscisic acid promotes the nitrogen use efficiency of Brassica napus by increasing nitrogen remobilization in the leaves. J. Plant Nutr. 2017, 40, 2540–2549. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R.; Yang, C.; Li, L.; Gao, D.S. Effect of sodium molybdate foliar sprays on key enzymes activities of nitrogen metabolism and 15N absorption, distribution and utilization of strawberry seedling. Plant Physiol. 2016, 52, 1035–1044. [Google Scholar]
- Han, X.Z.; Chen, S.S.; Hu, X.G. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination 2009, 240, 21–26. [Google Scholar] [CrossRef]
- Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Anal. Bioanal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Guan, X.Y.; Han, Z.Y.; Zhou, L.J.; Zhang, Y.; Asad, M.A.U.; Wang, Z.W.; Jin, R.; Pan, G.; Cheng, F.M. Combined effect of nitrogen fertilizer application and high temperature on grain quality properties of cooked rice. Front. Plant Sci. 2022, 13, 874033. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Yan, H.F.; Liu, H.W.; Yang, L.; Mi, G.H.; Wang, P. Enhancing crop nitrogen efficiency: The role of mixed nitrate and ammonium supply in plant growth and development. Biology 2025, 14, 546. [Google Scholar] [CrossRef]
- Wei, H.Y.; Chen, Z.F.; Xing, Z.P.; Zhou, L.; Liu, Q.Y.; Zhang, Z.Z.; Jiang, Y.; Hu, Y.J.; Zhu, J.Y.; Cui, P.Y.; et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018, 17, 2222–2234. [Google Scholar] [CrossRef]
- Ji, S.; Gu, C.; Xi, X.B.; Zhang, Z.H.; Hong, Q.Q.; Huo, Z.Y.; Zhao, H.T.; Zhang, R.H.; Li, B.; Tan, C.W. Quantitative monitoring of leaf area index in rice based on hyperspectral feature bands and ridge regression algorithm. Remote Sens. 2022, 14, 2777. [Google Scholar] [CrossRef]
- Yuan, W.S.; Meng, Y.; Li, Y.; Ji, Z.G.; Kong, Q.M.; Gao, R.; Su, Z.B. Research on rice leaf area index estimation based on fusion of texture and spectral information. Comput. Electron. Agric. 2023, 211, 108016. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Yuan, X.J.; Chen, K.R.; Wang, H.Y.; Luo, Y.H.; Guo, C.C.; Wang, Z.L.; Shu, C.H.; Yang, Y.G.; Weng, Y.F.; et al. Improving the yield and nitrogen use efficiency of hybrid rice through rational use of controlled-release nitrogen fertilizer and urea topdressing. Front. Plant Sci. 2023, 14, 1240238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.G.; Shen, T.L.; Yang, Y.C.; Ma, X.X.; Gao, B.; Li, Y.C.; Wang, P.F. Novel environment-friendly superhydrophobic bio-based polymer derived from liquefied corncob for controlled-released fertilizer. Prog. Org. Coat. 2021, 151, 106018. [Google Scholar] [CrossRef]
- Hu, M.M.; Li, Z.X.; Chen, K.R.; Xiong, Y.; Luo, Y.H.; Wang, A.L.; Li, L.L.; Shu, C.H.; Chen, Z.K.; Yang, Z.Y.; et al. Side deep placement of slow-release N as base fertilizer combined with urea as panicle fertilizer increases rice yield by optimizing dry matter and N accumulation and translocation. Front. Plant Sci. 2025, 16, 1600215. [Google Scholar] [CrossRef]
- Ma, S.T.; Meng, Y.; Han, Q.S.; Ma, S.C. Drip fertilization improve water and nitrogen use efficiency by optimizing root and shoot traits of winter wheat. Front. Plant Sci. 2023, 14, 1201966. [Google Scholar] [CrossRef]
- Yang, W.L.; Que, H.L.; Wang, S.W.; Zhu, A.N.; Zhang, Y.J.; He, Y.; Xin, X.L.; Zhang, X.F.; Ding, S.J. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China. Environ. Pollut. 2020, 257, 113489. [Google Scholar] [CrossRef] [PubMed]
Year | Cultivar | Treatment | The First Day of Heading | The 7th Day of Heading | The 14th Day of Heading | The 21st Day of Heading | The 28th Day of Heading | The 35th Day of Heading |
---|---|---|---|---|---|---|---|---|
2023 | ‘Nanjing 9108’ | CK1 | 38.18 c | 37.14 b | 34.41 b | 35.61 c | 29.37 b | 23.53 b |
CK2 | 39.68 bc | 40.02 ab | 36.62 b | 37.95 bc | 35.97 a | 30.29 a | ||
T1 | 40.39 bc | 38.07 ab | 40.90 a | 42.65 a | 41.11 a | 34.30 a | ||
T2 | 43.50 ab | 39.77 ab | 36.87 b | 36.92 c | 36.37 a | 29.04 ab | ||
T3 | 43.92 ab | 39.80 ab | 40.73 a | 40.38 ab | 37.13 a | 35.13 a | ||
T4 | 45.99 a | 40.77 a | 40.33 a | 40.33 ab | 41.22 a | 35.36 a | ||
‘Nanjing 9308’ | CK1 | 33.46 d | 38.62 a | 32.71 d | 31.11 b | 25.86 b | 17.96 c | |
CK2 | 38.41 c | 37.98 a | 37.60 c | 37.11 a | 34.35 a | 26.34 b | ||
T1 | 38.88 c | 38.48 a | 37.42 c | 39.02 a | 37.95 a | 30.82 ab | ||
T2 | 42.43 b | 38.34 a | 38.49 bc | 37.49 a | 35.56 a | 29.79 ab | ||
T3 | 43.87 ab | 40.01 a | 39.33 ab | 40.53 a | 38.27 a | 33.23 a | ||
T4 | 45.36 a | 41.13 a | 40.05 a | 38.69 a | 39.45 a | 34.41 a | ||
2024 | ‘Nanjing 9108’ | CK1 | 37.96 b | 36.73 c | 34.39 c | 35.62 d | 30.03 c | 22.98 c |
CK2 | 39.70 b | 39.43 b | 36.44 b | 38.38 c | 37.05 b | 29.83 b | ||
T1 | 39.92 b | 37.50 c | 41.02 a | 42.66 a | 41.12 a | 34.63 a | ||
T2 | 44.09 a | 39.04 b | 37.41 b | 36.43 d | 36.71 b | 28.89 b | ||
T3 | 43.06 a | 39.26 b | 40.96 a | 40.10 b | 36.85 b | 35.72 a | ||
T4 | 44.22 a | 40.99 a | 40.25 a | 40.23 b | 40.86 a | 35.42 a | ||
‘Nanjing 9308’ | CK1 | 33.23 d | 38.27 b | 32.15 d | 30.79 c | 25.41 d | 17.60 e | |
CK2 | 38.85 c | 37.61 b | 38.12 bc | 37.55 b | 34.41 c | 26.62 d | ||
T1 | 38.49 c | 38.45 b | 37.53 c | 38.80 b | 37.18 b | 31.40 b | ||
T2 | 42.53 b | 37.76 b | 38.53 bc | 37.77 b | 35.61 c | 29.17 c | ||
T3 | 43.58 b | 38.93 b | 39.53 ab | 40.32 a | 38.32 ab | 32.84 b | ||
T4 | 45.00 a | 40.82 a | 40.50 a | 38.38 b | 39.23 a | 34.84 a | ||
Year (Y) | NS | NS | NS | NS | NS | NS | ||
Analysis | Cultivar (C) | ** | NS | ** | ** | ** | ** | |
Treatment (T) | ** | ** | ** | ** | ** | ** | ||
of | Y × C | NS | NS | NS | NS | NS | NS | |
Y × T | NS | NS | NS | NS | NS | NS | ||
variance | C × T | ** | * | ** | ** | NS | * | |
Y × C × T | NS | NS | NS | NS | NS | NS |
Year | Cultivar | Treatment | TS | JS | HS | MS |
---|---|---|---|---|---|---|
2023 | ‘Nanjing 9108’ | CK1 | 0.53 b | 1.31 b | 3.87 c | 3.75 c |
CK2 | 1.11 a | 4.92 a | 7.08 ab | 3.85 c | ||
T1 | 0.81 ab | 4.70 a | 6.40 b | 4.58 bc | ||
T2 | 0.74 ab | 4.49 a | 7.23 ab | 5.09 abc | ||
T3 | 0.84 ab | 4.84 a | 7.06 ab | 5.30 ab | ||
T4 | 0.81 ab | 5.10 a | 8.87 a | 6.01 a | ||
‘Nanjing 9308’ | CK1 | 0.35 c | 1.65 c | 3.43 c | 3.34 c | |
CK2 | 1.15 a | 3.95 b | 5.68 b | 4.53 b | ||
T1 | 0.76 b | 3.94 b | 7.48 ab | 5.17 ab | ||
T2 | 0.80 ab | 4.15 ab | 7.35 ab | 4.88 b | ||
T3 | 0.53 bc | 4.45 ab | 7.53 ab | 5.00 b | ||
T4 | 0.75 b | 4.99 a | 8.39 a | 6.19 a | ||
2024 | ‘Nanjing 9108’ | CK1 | 0.53 b | 1.29 b | 3.87 d | 3.74 b |
CK2 | 1.33 a | 5.72 a | 7.58 b | 4.87 ab | ||
T1 | 0.86 ab | 5.19 a | 6.90 c | 5.13 ab | ||
T2 | 0.72 b | 4.32 a | 7.23 bc | 5.04 ab | ||
T3 | 0.86 ab | 4.41 a | 7.56 b | 5.36 ab | ||
T4 | 0.75 ab | 4.61 a | 8.72 a | 6.41 a | ||
‘Nanjing 9308’ | CK1 | 0.38 c | 1.67 d | 3.45 b | 3.31 d | |
CK2 | 1.11 a | 3.71 c | 5.61 ab | 4.41 c | ||
T1 | 0.79 ab | 3.97 bc | 7.59 a | 5.15 bc | ||
T2 | 0.68 bc | 4.37 bc | 7.44 a | 5.26 b | ||
T3 | 0.58 bc | 4.61 ab | 7.69 a | 5.30 b | ||
T4 | 0.76 abc | 5.29 a | 7.80 a | 6.08 a | ||
Year (Y) | NS | NS | NS | NS | ||
Analysis | Cultivar (C) | NS | * | NS | NS | |
Treatment (T) | ** | ** | ** | ** | ||
of | Y × C | NS | NS | NS | NS | |
Y × T | NS | NS | NS | NS | ||
variance | C × T | NS | ** | * | NS | |
Y × C × T | NS | NS | NS | NS |
Year | Cultivar | Treatment | Yield | Effective Panicle Density | Grains Per Panicle | 1000-Grain Weight | Grain Filling Percentage |
---|---|---|---|---|---|---|---|
(×103 kg ha−1) | (×104 ha−1) | (g) | (%) | ||||
2023 | ‘Nanjing 9108’ | CK1 | 7.51 c | 233.08 e | 107.07 c | 27.90 a | 90.59 a |
CK2 | 10.85 ab | 271.15 d | 151.34 b | 25.49 c | 91.61 a | ||
T1 | 10.78 ab | 285.72 c | 161.24 a | 25.71 c | 89.01 a | ||
T2 | 10.39 b | 268.54 d | 146.13 b | 27.20 ab | 89.65 a | ||
T3 | 10.90 ab | 298.79 b | 163.76 a | 26.45 bc | 90.53 a | ||
T4 | 11.50 a | 326.46 a | 168.36 a | 25.96 bc | 92.30 a | ||
‘Nanjing 9308’ | CK1 | 7.47 b | 236.14 f | 103.95 d | 29.94 a | 90.63 a | |
CK2 | 10.91 a | 279.98 e | 158.10 bc | 27.00 b | 92.01 a | ||
T1 | 11.01 a | 317.71 c | 162.31 ab | 28.07 b | 92.14 a | ||
T2 | 10.51 a | 296.63 d | 150.21 c | 28.43 ab | 91.85 a | ||
T3 | 11.07 a | 330.08 b | 166.10 ab | 28.32 ab | 91.79 a | ||
T4 | 11.65 a | 346.67 a | 169.98 a | 27.83 b | 92.51 a | ||
2024 | ‘Nanjing 9108’ | CK1 | 7.39 d | 212.47 d | 104.96 e | 27.81 a | 90.49 a |
CK2 | 10.79 bc | 266.13 c | 151.25 c | 25.41 b | 91.13 a | ||
T1 | 10.87 bc | 295.99 b | 161.03 b | 25.66 b | 90.42 a | ||
T2 | 10.41 c | 268.74 c | 144.83 d | 25.99 b | 90.96 a | ||
T3 | 11.14 ab | 305.03 a | 161.23 b | 26.39 ab | 91.98 a | ||
T4 | 11.61 a | 312.96 a | 165.87 a | 25.85 b | 92.57 a | ||
‘Nanjing 9308’ | CK1 | 7.43 d | 219.61 d | 101.96 e | 29.76 a | 90.29 b | |
CK2 | 10.78 bc | 305.85 c | 156.94 c | 26.92 e | 90.39 b | ||
T1 | 11.15 abc | 311.29 bc | 163.43 b | 27.77 cd | 90.78 b | ||
T2 | 10.54 c | 298.77 c | 149.18 d | 28.39 b | 90.68 b | ||
T3 | 11.37 ab | 325.11 b | 165.13 b | 27.94 bc | 91.38 ab | ||
T4 | 11.70 a | 349.52 a | 170.27 a | 27.27 de | 92.67 a | ||
Year (Y) | NS | NS | NS | NS | NS | ||
Analysis | Cultivar (C) | NS | ** | NS | ** | NS | |
Treatment (T) | ** | ** | ** | ** | * | ||
of | Y × C | NS | NS | NS | NS | NS | |
Y × T | NS | ** | NS | NS | NS | ||
variance | C × T | NS | ** | * | NS | NS | |
Y × C × T | NS | ** | NS | NS | NS |
Year | Cultivar | Treatment | Stem (%) | Leaf (%) | Grain (%) | Difference in Yield from CK2 (×103 kg ha−1) |
---|---|---|---|---|---|---|
2023 | ‘Nanjing 9108’ | CK1 | 28.75 b | 13.13 a | 58.12 a | - |
CK2 | 30.94 ab | 14.40 a | 54.67 abc | - | ||
T1 | 36.23 a | 14.77 a | 49.00 c | −0.07 c | ||
T2 | 33.23 ab | 15.76 a | 51.02 bc | −0.46 d | ||
T3 | 30.68 ab | 13.25 a | 56.07 ab | 0.05 b | ||
T4 | 29.69 b | 15.48 a | 54.83 abc | 0.65 a | ||
‘Nanjing 9308’ | CK1 | 30.04 a | 10.83 b | 59.13 a | - | |
CK2 | 29.43 ab | 13.95 a | 56.62 a | - | ||
T1 | 29.10 ab | 14.91 a | 55.99 a | 0.1 b | ||
T2 | 28.30 ab | 12.44 ab | 59.27 a | −0.4 c | ||
T3 | 27.26 ab | 12.63 ab | 60.11 a | 0.16 b | ||
T4 | 26.00 b | 13.25 ab | 60.75 a | 0.74 a | ||
2024 | ‘Nanjing 9108’ | CK1 | 30.87 ab | 12.95 b | 56.18 a | - |
CK2 | 26.95 b | 23.36 a | 49.69 b | - | ||
T1 | 35.36 a | 15.60 b | 49.04 b | 0.08 c | ||
T2 | 32.40 ab | 15.25 b | 52.35 ab | −0.38 d | ||
T3 | 30.78 ab | 14.30 b | 54.92 ab | 0.35 b | ||
T4 | 30.92 ab | 14.94 b | 54.14 ab | 0.82 a | ||
‘Nanjing 9308’ | CK1 | 30.51 a | 11.14 a | 58.36 a | - | |
CK2 | 29.66 a | 13.61 a | 56.73 a | - | ||
T1 | 29.38 a | 12.97 a | 57.65 a | 0.37 c | ||
T2 | 28.26 ab | 12.85 a | 58.89 a | −0.24 d | ||
T3 | 28.55 ab | 12.94 a | 58.51 a | 0.59 b | ||
T4 | 25.60 b | 13.49 a | 60.91 a | 0.92 a | ||
Year (Y) | NS | NS | NS | NS | ||
Analysis | Cultivar (C) | ** | ** | ** | ** | |
Treatment (T) | ** | ** | ** | ** | ||
of | Y × C | NS | NS | NS | NS | |
Y × T | NS | NS | NS | NS | ||
variance | C × T | ** | NS | NS | NS | |
Y × C × T | NS | * | NS | NS |
Year | Cultivar | Treatment | NR μmol g−1 FW h−1 | GS U g−1 | GOGAT U g−1 |
---|---|---|---|---|---|
2023 | ‘Nanjing 9108’ | CK1 | 0.43 d | 0.47 c | 0.24 d |
CK2 | 0.57 b | 0.60 b | 0.31 b | ||
T1 | 0.53 c | 0.60 b | 0.29 c | ||
T2 | 0.58 b | 0.62 b | 0.28 c | ||
T3 | 0.62 a | 0.69 a | 0.29 c | ||
T4 | 0.63 a | 0.67 a | 0.35 a | ||
‘Nanjing 9308’ | CK1 | 0.45 d | 0.47 e | 0.25 e | |
CK2 | 0.57 b | 0.62 c | 0.33 ab | ||
T1 | 0.54 c | 0.60 d | 0.30 cd | ||
T2 | 0.59 b | 0.67 b | 0.29 d | ||
T3 | 0.64 a | 0.70 a | 0.31 bc | ||
T4 | 0.64 a | 0.69 a | 0.35 a | ||
2024 | ‘Nanjing 9108’ | CK1 | 0.42 d | 0.46 b | 0.24 d |
CK2 | 0.56 b | 0.60 a | 0.32 bc | ||
T1 | 0.52 c | 0.59 a | 0.30 c | ||
T2 | 0.57 b | 0.62 a | 0.29 c | ||
T3 | 0.62 a | 0.70 a | 0.34 ab | ||
T4 | 0.61 a | 0.66 a | 0.36 a | ||
‘Nanjing 9308’ | CK1 | 0.46 d | 0.46 e | 0.25 d | |
CK2 | 0.57 b | 0.62 cd | 0.32 bc | ||
T1 | 0.55 c | 0.59 d | 0.30 c | ||
T2 | 0.58 b | 0.65 bc | 0.30 c | ||
T3 | 0.63 a | 0.70 a | 0.34 ab | ||
T4 | 0.64 a | 0.69 ab | 0.36 a | ||
Year (Y) | NS | NS | ** | ||
Analysis | Cultivar (C) | ** | ** | ** | |
Treatment (T) | ** | ** | ** | ||
of | Y × C | * | NS | NS | |
Y × T | NS | NS | ** | ||
variance | C × T | NS | * | NS | |
Y × C × T | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, R.; Dun, C.; Chen, T.; Lu, H.; Cui, P.; Zhou, N.; Yang, Y.; Zhang, H. Spatiotemporally Matched Nitrogen Release from a Double Core-Shell Urea Improves Rice Growth. Agronomy 2025, 15, 2143. https://doi.org/10.3390/agronomy15092143
Fang R, Dun C, Chen T, Lu H, Cui P, Zhou N, Yang Y, Zhang H. Spatiotemporally Matched Nitrogen Release from a Double Core-Shell Urea Improves Rice Growth. Agronomy. 2025; 15(9):2143. https://doi.org/10.3390/agronomy15092143
Chicago/Turabian StyleFang, Ruotong, Canping Dun, Ting Chen, Hao Lu, Peiyuan Cui, Nianbing Zhou, Yanju Yang, and Hongcheng Zhang. 2025. "Spatiotemporally Matched Nitrogen Release from a Double Core-Shell Urea Improves Rice Growth" Agronomy 15, no. 9: 2143. https://doi.org/10.3390/agronomy15092143
APA StyleFang, R., Dun, C., Chen, T., Lu, H., Cui, P., Zhou, N., Yang, Y., & Zhang, H. (2025). Spatiotemporally Matched Nitrogen Release from a Double Core-Shell Urea Improves Rice Growth. Agronomy, 15(9), 2143. https://doi.org/10.3390/agronomy15092143