The Influence of Environmental Heterogeneity on Fertilization-Driven Patterns of Distribution and Yield in Medicinal Plants
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Calculation of the Individual Response Ratio
2.3. Calculation of the Overall Response Ratios
2.4. MaxEnt Model on Global Potential Location Distribution of Medicine Material
2.5. XGBoost and Deep Learning Models on Global Response of Medicine Yield to Fertilization Prediction
2.6. Statistical Analysis
3. Results
3.1. Distribution of Collected Data
3.2. Effect of Spatiotemporal Heterogeneity on Medicine Yield Under Fertilization Management
3.3. Correlation Between Medicine Yield and Environmental Factors
3.4. Potentially Suitable Medicinal Plant Habitats
3.5. Global Prediction of Medicine Yield to Fertilization Management According to Environmental Heterogeneity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thacharodi, A.; Singh, P.; Meenatchi, R.; Tawfeeq Ahmed, Z.H.; Kumar, R.R.S.; Neha, V.; Kavish, S.; Maqbool, M.; Hassan, S. Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future—A comprehensive review. Health Care Sci. 2024, 3, 329–349. [Google Scholar] [CrossRef]
- Gupta, N.S. Therapeutic Efficacy of the Plant Bioactive Phytochemicals with Special Reference to Alkaloids, Terpenoids, Phenolics and Cardiac Glycosides. Int. J. Plant Environ. 2024, 10, 22–30. [Google Scholar] [CrossRef]
- Li, W.F.; Jiang, J.G.; Chen, J. Chinese Medicine and Its Modernization Demands. Arch. Med. Res. 2008, 39, 246–251. [Google Scholar] [CrossRef]
- Mofokeng, M.M.; du Plooy, C.P.; Araya, H.T.; Amoo, S.O.; Mokgehle, S.N.; Pofu, K.M.; Mashela, P.W. Medicinal plant cultivation for sustainable use and commercialisation of high-value crops. S. Afr. J. Sci. 2022, 118, 1–7. [Google Scholar] [CrossRef]
- Liao, J.; Xia, P. Continuous cropping obstacles of medicinal plants: Focus on the plant-soil-microbe interaction system in the rhizosphere. Sci. Hortic. 2024, 328, 112927. [Google Scholar] [CrossRef]
- Patil, P.; R., A.R.; Sivakumar, B.; Ranjan, N.; Vasanth, V.; D., S.S.; A., M.V.; Rajaram, R.; Prathyusha, K.; Datta, P.L.; et al. A Comprehensive Review on Sustainable Cultivation Practices of Medicinal Plants. Int. J. Plant Soil Sci. 2024, 36, 536–544. [Google Scholar] [CrossRef]
- Thakur, R.; Verma, S.; Gupta, S.; Negi, G.; Bhardwaj, P. Role of Soil Health in Plant Disease Management: A Review. Agric. Rev. 2021, 43, 70–76. [Google Scholar] [CrossRef]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Xu, X.; Wang, F.; Ma, J.; Liao, M.; Shi, Y.; Fang, Q.; Cao, H. Analysis of exposure to pesticide residues from Traditional Chinese Medicine. J. Hazard. Mater. 2019, 365, 857–867. [Google Scholar] [CrossRef] [PubMed]
- Boveiri Dehsheikh, A.; Mahmoodi Sourestani, M.; Zolfaghari, M.; Enayatizamir, N. Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. J. Clean. Prod. 2020, 256, 120439. [Google Scholar] [CrossRef]
- Liu, J.; Shu, A.; Song, W.; Shi, W.; Li, M.; Zhang, W.; Li, Z.; Liu, G.; Yuan, F.; Zhang, S.; et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria. Geoderma 2021, 404, 115287. [Google Scholar] [CrossRef]
- Namoi, N.; Jang, C.; Behnke, G.D.; Lee, J.W.; Yang, W.; Lee, D. Nitrogen Fertilization Effects on Aged Miscanthus × giganteus Stands: Exploring Biomass Yield, Yield Components, and Biomass Prediction Using In-Season Morphological Traits. GCB Bioenergy 2024, 16, e13139. [Google Scholar] [CrossRef]
- Wu, M.; Xie, S.; Zang, J.; Sun, Y.; Xu, S.; Li, S.; Wang, J. Multiple anthropogenic environmental stressors structure soil bacterial diversity and community network. Soil Biol. Biochem. 2024, 198, 109560. [Google Scholar] [CrossRef]
- Yuan, D.; Hu, Y.; Jia, S.; Li, W.; Zamanian, K.; Han, J.; Huang, F.; Zhao, X. Microbial Properties Depending on Fertilization Regime in Agricultural Soils with Different Texture and Climate Conditions: A Meta-Analysis. Agronomy 2023, 13, 764. [Google Scholar] [CrossRef]
- Applequist, W.L.; Brinckmann, J.A.; Cunningham, A.B.; Hart, R.E.; Heinrich, M.; Katerere, D.R.; Van Andel, T. Scientists warning on climate change and medicinal plants. Planta Med. 2020, 86, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Patni, B.; Bhattacharyya, M.; kumari, A.; purohit, V.K. Alarming influence of climate change and compromising quality of medicinal plants. Plant Physiol. Rep. 2022, 27, 1–10. [Google Scholar] [CrossRef]
- Zaman, W.; Ayaz, A.; Park, S.J. Climate change and medicinal plant biodiversity: Conservation strategies for sustainable use and genetic resource preservation. Genet. Resour. Crop Evol. 2025, 72, 6275–6308. [Google Scholar] [CrossRef]
- Alum, E.U. Sustainable harvesting of medicinal plants: Balancing therapeutic benefits with environmental conservation. Agroecol. Sustain. Food Syst. 2024, 49, 380–385. [Google Scholar] [CrossRef]
- Lawlor, J.A.; Comte, L.; Grenouillet, G.; Lenoir, J.; Baecher, J.A.; Bandara, R.M.W.J.; Bertrand, R.; Chen, I.C.; Diamond, S.E.; Lancaster, L.T.; et al. Mechanisms, detection and impacts of species redistributions under climate change. Nat. Rev. Earth Environ. 2024, 5, 351–368. [Google Scholar] [CrossRef]
- Briat, J.F.; Gojon, A.; Plassard, C.; Rouached, H.; Lemaire, G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur. J. Agron. 2020, 116, 126069. [Google Scholar] [CrossRef]
- Polwaththa, K.P.G.D.M.; Amarasinghe, A.Y.; Nandasena, G.P.M.S. A review of innovative fertilization strategies in precision agriculture. Open Access Res. J. Sci. Technol. 2024, 12, 49–57. [Google Scholar] [CrossRef]
- Lajeunesse, M.J. On the meta-analysis of response ratios for studies with correlated and multi-group designs. Ecology 2011, 92, 2049–2055. [Google Scholar] [CrossRef]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef] [PubMed]
- Marzban, C. The ROC curve and the area under it as performance measures. Weather Forecast. 2004, 19, 1106–1114. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Reich, P.B.; Oleksyn, J. Global Patterns of Plant Leaf N and P in Relation to Temperature and Latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Jia, A.; Liang, S.; Wang, D.; Mallick, K.; Zhou, S.; Hu, T.; Xu, S. Advances in Methodology and Generation of All-Weather Land Surface Temperature Products From Polar-Orbiting and Geostationary Satellites: A comprehensive review. IEEE Geosci. Remote Sens. Mag. 2024, 12, 218–260. [Google Scholar] [CrossRef]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.N.; Wang, K.; Wang, Y.; Hartung, J.; Nkebiwe, P.M.; Zhang, W.; Chen, X.; Müller, T.; Yang, H. A comprehensive network meta-analysis to assess the benefit of starter fertilization on yield, nutrient uptake and nutrient use efficiency. Eur. J. Agron. 2024, 159, 127259. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 1995, 27, 753–760. [Google Scholar] [CrossRef]
- Maurya, J.; Singh, R.K.; Prasad, M. Improving nutrient use efficiency (NtUE) in crops: An overview. Plant Physiol. Rep. 2024, 29, 786–792. [Google Scholar] [CrossRef]
- Emami Bistgani, Z.; Barker, A.V.; Hashemi, M. Physiology of medicinal and aromatic plants under drought stress. Crop J. 2024, 12, 330–339. [Google Scholar] [CrossRef]
- Yang, L.; Li, N.; Liu, Y.; Miao, P.; Liu, J.; Wang, Z. Updates and Prospects: Morphological, Physiological, and Molecular Regulation in Crop Response to Waterlogging Stress. Agronomy 2023, 13, 2599. [Google Scholar] [CrossRef]
- Dou, X.; Wang, R.; Zhou, X.; Gao, F.; Yu, Y.; Li, C.; Zheng, C. Soil water, nutrient distribution and use efficiencies under different water and fertilizer coupling in an apple–maize alley cropping system in the Loess Plateau, China. Soil Tillage Res. 2022, 218, 105308. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Geng, S.; Zhang, X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. Front. Plant Sci. 2025, 16, 1545912. [Google Scholar] [CrossRef] [PubMed]
- Sudhakaran, G. Impact of climate change on the yield of medicinal plants in recent years. Nat. Prod. Res. 2025, 39, 3614–3615. [Google Scholar] [CrossRef]
- Hua, L.; Ma, Z.; Zhong, L. A comparative analysis of primary and extreme characteristics of dry or wet status between Asia and North America. Adv. Atmos. Sci. 2011, 28, 352–362. [Google Scholar] [CrossRef]
- Kunwar, R.M.; Thapa-Magar, K.B.; Subedi, S.C.; Kutal, D.H.; Baral, B.; Joshi, N.R.; Adhikari, B.; Upadhyaya, K.S.; Thapa-Magar, S.; Ansari, A.S.; et al. Distribution of important medicinal plant species in Nepal under past, present, and future climatic conditions. Ecol. Indic. 2023, 146, 109879. [Google Scholar] [CrossRef]
- Mykhailenko, O.; Jalil, B.; McGaw, L.J.; Echeverría, J.; Takubessi, M.; Heinrich, M. Climate change and the sustainable use of medicinal plants: A call for “new” research strategies. Front. Pharmacol. 2024, 15, 1496792. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Wang, R.; Liu, J.; Xu, X.; Xu, Q.; Liu, S.; Dong, M.; Shen, Q.; Shen, Z.; Li, R. The Influence of Environmental Heterogeneity on Fertilization-Driven Patterns of Distribution and Yield in Medicinal Plants. Agronomy 2025, 15, 2142. https://doi.org/10.3390/agronomy15092142
Yang P, Wang R, Liu J, Xu X, Xu Q, Liu S, Dong M, Shen Q, Shen Z, Li R. The Influence of Environmental Heterogeneity on Fertilization-Driven Patterns of Distribution and Yield in Medicinal Plants. Agronomy. 2025; 15(9):2142. https://doi.org/10.3390/agronomy15092142
Chicago/Turabian StyleYang, Peiyao, Ruixue Wang, Jie Liu, Xu Xu, Qingfeng Xu, Shanshan Liu, Menghui Dong, Qirong Shen, Zongzhuan Shen, and Rong Li. 2025. "The Influence of Environmental Heterogeneity on Fertilization-Driven Patterns of Distribution and Yield in Medicinal Plants" Agronomy 15, no. 9: 2142. https://doi.org/10.3390/agronomy15092142
APA StyleYang, P., Wang, R., Liu, J., Xu, X., Xu, Q., Liu, S., Dong, M., Shen, Q., Shen, Z., & Li, R. (2025). The Influence of Environmental Heterogeneity on Fertilization-Driven Patterns of Distribution and Yield in Medicinal Plants. Agronomy, 15(9), 2142. https://doi.org/10.3390/agronomy15092142