Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Details
2.2. Experimental Design
2.2.1. Root-Splitting Device
2.2.2. Experimental Treatments
2.2.3. Plant Type and Agronomic Practices
2.3. Measurements
- (1)
- Soil water content
- (2)
- The magnitude of hydraulic lift
- (3)
- NH4+-N and NO3−-N in the soil
- (4)
- Dry matter
- (5)
- Nitrogen in the plant
- (6)
- Nitrogen use efficiency (NUE)
- (7)
- Total evapotranspiration (ET)
- (8)
- Water use efficiency (WUE)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Concentrations of NO3−-N and NH4+-N
3.2. Nitrogen Concentration in the Cotton Organs, Cotton Dry Matter and Nitrogen Accumulation
3.3. Nitrogen Use Efficiency, Total Evapotranspiration and Water Use Efficiency
3.4. Cotton Quality
3.5. The Correlation Between Nitrogen Distribution and Cotton Quality Under Hydraulic Lift
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, Y.L.; Li, Y.; He, J.Q.; Biswas, A.; Siddique, K.H.M.; Hou, Z.N.; Luo, H.H.; Wang, C.X.; Xie, X.W. Enhancing precision nitrogen management for cotton cultivation in arid environments using remote sensing techniques. Field Crops Res. 2025, 321, 109689. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Esmaeili, N.; O’Connell, M.; Zhang, J.F. Progress and perspective on drought and salt stress tolerance in cotton. Ind. Crop Prod. 2019, 130, 118–129. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agricultural Organization of United Nations, Rome. 2025. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 June 2025).
- National Bureau of Statistics of China. China Statistical Yearbook 2024, 2024th ed.; China Statistics Press: Beijing, China, 2024.
- Wang, Z.M.; Jin, M.G.; Šimůnek, J.; van Genuchten, M.T. Evaluation of mulched drip irrigation for cotton in arid Northwest China. Irrig. Sci. 2014, 32, 15–27. [Google Scholar] [CrossRef]
- Lesk, C.; Coffel, E.; Winter, J.; Ray, D.; Zscheischler, J.; Seneviratne, S.I.; Horton, R. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2021, 2, 683–691. [Google Scholar] [CrossRef]
- McMichael, B.L.; Lascano, R.J. Evaluation of hydraulic lift in cotton (Gossypium hirsutum L.) germplasm. Environ. Exp. Bot. 2010, 68, 26–30. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Dawson, T.E.; Burgess, S.S.O.; Nepstad, D.C. Hydraulic redistribution in three Amazonian trees. Oecologia 2005, 145, 354–363. [Google Scholar] [CrossRef]
- Caldwell, M.M.; Dawson, T.E.; Richards, J.H. Hydraulic lift: Consequences of water efflux from the roots of plants. Oecologia 1998, 113, 151–161. [Google Scholar] [CrossRef]
- Alagele, S.M.; Jose, S.; Anderson, S.H.; Udawatta, R.P. Hydraulic lift: Processes, methods, and practical implications for society. Agroforest. Syst. 2021, 95, 641–657. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.C.; Wang, W.G.; Gao, Y.; Wang, Z.Y.; Zhang, Y.; Wang, J.; Song, E.Z. The role of hydraulic lift in tomato yield and fruit quality under different water and salt stresses. Agric. Water Manag. 2024, 299, 108899. [Google Scholar] [CrossRef]
- Sekiya, N.; Araki, H.; Yano, K. Applying hydraulic lift in an agroecosystem: Forage plants with shoots removed supply water to neighboring vegetable crops. Plant Soil 2011, 341, 39–50. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Zwiazek, J.J. Hydraulic redistribution in slender wheatgrass (Elymus trachycaulus Link Malte) and yellow sweet clover (Melilotus officinalis L.): Potential benefits for land reclamation. Agronomy 2018, 8, 308. [Google Scholar] [CrossRef]
- Dawson, T.E. Water loss from tree roots influences soil water and nutrient status and plant performances. In Radical Biology: Advances and Perspectives in the Function of Plant Roots (Current Topics in Plant Physiology No. 18); Flores, H.E., Lynch, J.P., Eissenstat, D.M., Eds.; American Society of Plant Physiologists: Rockville, MD, USA, 1998; pp. 235–250. [Google Scholar]
- Querejeta, J.I.; Egerton-Warburton, L.M.; Allen, M.F. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 2003, 134, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Brooks, J.R.; Meinzer, F.C.; Eberhart, J.L. Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: Evidence for an ectomycorrhizal pathway. N. Phytol. 2008, 178, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Schröder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Pask, A.J.D.; Sylvester-Bradley, R.; Jamieson, P.D.; Foulkes, M.J. Quantifying how winter wheat crops accumulate and use nitrogen reserves during growth. Field Crop Res. 2012, 126, 104–118. [Google Scholar] [CrossRef]
- Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef]
- Blum, A. Drought resistance, water-use efficiency, and yield potential–are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Luo, H.H.; Zhang, H.Z.; Han, H.Y.; Hu, Y.Y.; Zhang, Y.L.; Zhang, W.F. Effects ofwater storage in deeper soil layers on growth, yield, and water productivity of cotton (Gossypium hirsutum L.) in arid areas of northwestern China. Irrig. Drain. 2014, 63, 59–70. [Google Scholar] [CrossRef]
- Chen, Z.K.; Tao, X.P.; Khan, A.; Tan, D.K.Y.; Luo, H.H. Biomass accumulation, photosynthetic traits and root development of cotton as affected by irrigation and nitrogen-fertilization. Front. Plant Sci. 2018, 9, 173. [Google Scholar] [CrossRef]
- Hodges, S.C. Fertilization. In Cotton Information; Edmisten, K.L., Ed.; North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2002; pp. 40–54. [Google Scholar]
- Rochester, I.J.; O′Halloran, J.; Maas, S.; Sands, D.; Brotherton, E. Monitoring nitrogen use efficiency in your region. Aust. Cottongrower 2007, 28, 24–27. [Google Scholar]
- Geng, J.B.; Ma, Q.; Chen, J.Q.; Zhang, M.; Li, C.L.; Yang, Y.C.; Yang, X.Y.; Zhang, W.T.; Liu, Z.G. Effects of polymer coated urea and sulfur fertilization on yield, nitrogen use efficiency and leaf senescence of cotton. Field Crops Res. 2016, 187, 87–95. [Google Scholar] [CrossRef]
- Dai, J.L.; Li, W.J.; Zhang, D.M.; Tang, W.; Li, Z.H.; Lu, H.Q.; Kong, X.Q.; Luo, Z.; Xu, S.Z.; Xin, C.S.; et al. Competitive yield and economic benefits of cotton achieved through a combination of extensive pruning and a reduced nitrogen rate at high plant density. Field Crops Res. 2017, 209, 65–72. [Google Scholar] [CrossRef]
- Hou, Z.N.; Li, P.F.; Li, B.G.; Gong, J.; Wang, Y.N. Effects of fertigation scheme on N uptake and N use efficiency in cotton. Plant Soil 2007, 290, 115–126. [Google Scholar] [CrossRef]
- Dhakal, G.; Fujino, T.; Magar, S.T.; Araki, Y. Optimizing Nitrogen and Water Use Efficiency in Wheat Cropping Systems Through Integrated Application of Biochar and Bokashi Under Different Irrigation Regimes. Nitrogen 2025, 6, 21. [Google Scholar] [CrossRef]
- Shafreen, M.; Vishwakarma, K.; Shrivastava, N.; Kumar, N. Physiology and Distribution of Nitrogen in Soils. In Soil Nitrogen Ecology, 1st ed.; Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A., Eds.; Springer International Publishing: Cham, Germany, 2021; Volume 62, pp. 3–31. [Google Scholar] [CrossRef]
- Armas, C.; Kim, J.H.; Bleby, T.M.; Jackson, R.B. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species. Oecologia 2012, 168, 11–22. [Google Scholar] [CrossRef]
- Domec, J.C.; King, J.S.; Noormets, A.; Treasure, E.; Gavazzi, M.J.; Sun, G.; McNulty, S.G. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange. New Phytol. 2010, 187, 171–183. [Google Scholar] [CrossRef]
- Ferreira, M.I.; Green, S.; Conceição, N.; Fernández, J.-E. Assessing hydraulic redistribution with the compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018, 425, 21–41. [Google Scholar] [CrossRef]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Water release through plant roots: New insights into its consequences at the plant and ecosystem level. New Phytol. 2012, 193, 830–841. [Google Scholar] [CrossRef]
- Prieto, I.; Armas, C.; Pugnaire, F.I. Hydraulic lift promotes selective root foraging in nutrient-rich soil patches. Funct. Plant Biol. 2012, 39, 804–812. [Google Scholar] [CrossRef]
- Shen, Y.F.; Zhang, Y.; Li, S.Q. Nutrient effects on diurnal variation and magnitude of hydraulic lift in winter wheat. Agric. Water Manag. 2021, 98, 1589–1594. [Google Scholar] [CrossRef]
- Quijano, J.C.; Kumar, P.; Drewry, D.T. Passive regulation of soil biogeochemical cycling by root water transport. Water Resour. Res. 2013, 49, 3729–3746. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Guppy, C.N.; Sale, P.W.G. The role of hydraulic lift and subsoil P placement in P uptake of cotton (Gossypium hirsutum L.). Plant Soil 2009, 325, 263–275. [Google Scholar] [CrossRef]
- Cardon, Z.G.; Stark, J.M.; Herron, P.M.; Rasmussen, J.A. Sagebrush carrying out hydraulic lift enhances surface soil nitrogen cycling and nitrogen uptake into inflorescences. Proc. Natl. Acad. Sci. 2013, 110, 18988–18993. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Meinzer, F.C.; Brooks, J.R.; Domec, J.-C.; Coulombe, R. Hydraulic redistribution of soil water in two old-growth coniferous forests: Quantifying patterns and controls. N. Phytol. 2007, 173, 753–765. [Google Scholar] [CrossRef]
- Guo, J.J.; Fan, J.L.; Xiang, Y.Z.; Zhang, F.C.; Yan, S.C.; Zhang, X.Y.; Zheng, J.; Li, Y.P.; Tang, Z.J.; Li, Z.J. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize. Agric. Water Manag. 2022, 261, 107389. [Google Scholar] [CrossRef]
- Hou, X.H.; Xiang, Y.Z.; Fan, J.L.; Zhang, F.C.; Hu, W.H.; Yan, F.L.; Guo, J.J.; Xiao, C.; Li, Y.P.; Cheng, H.L.; et al. Evaluation of cotton N nutrition status based on critical N dilution curve, N uptake and residual under different drip fertigation regimes in Southern Xinjiang of China. Agric. Water Manag. 2021, 256, 107134. [Google Scholar] [CrossRef]
- Hillel, D. Applications of Soil Physics; Academic Press, Inc.: New York, NY, USA, 1980; p. 385. [Google Scholar]
- Asibi, A.E.; Yin, W.; Hu, F.L.; Fan, Z.L.; Gou, Z.W.; Yang, H.W.; Guo, Y.; Chai, Q. Optimized nitrogen rate, plant density, and irrigation level reduced ammonia emission and nitrate leaching on maize farmland in the oasis area of China. PeerJ 2022, 10, e12762. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gao, X.P.; Tenuta, M.; Gui, D.W.; Li, X.Y.; Xue, W.; Zeng, F.J. Enhanced efficiency nitrogen fertilizers were not effective in reducing N2O emissions from a drip-irrigated cotton field in arid region of Northwestern China. Sci. Total Environ. 2020, 748, 141543. [Google Scholar] [CrossRef]
- Liu, T.Q.; Fan, D.J.; Zhang, X.X.; Chen, J.; Li, C.F.; Cao, C.G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res. 2015, 184, 80–90. [Google Scholar] [CrossRef]
- Alves, I.M.D.; Soares, J.R.; Montezano, Z.F.; DelGrosso, S.; Vitti, A.C.; Rossetto, R.; Cantarella, H. Nitrogen sources and application rates affect emissions of N2O and NH3 in sugarcane. Nutr. Cycl. Agroecosyst. 2020, 116, 329–344. [Google Scholar]
- Guntiñas, M.E.; Leirós, M.C.; Trasar-Cepeda, C.; Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 2012, 48, 73–80. [Google Scholar] [CrossRef]
- Gloser, V.; Dvorackova, M.; Mota, D.H.; Petrovic, B.; Gonzalez, P.; Geilfus, C.M. Early changes in nitrate uptake and assimilation under drought in relation to transpiration. Front. Plant Sci. 2020, 11, 602065. [Google Scholar] [CrossRef] [PubMed]
- Orieux, C.; Demarest, G.; Decau, M.-L.; Beauclair, P.; Bataillé, M.-P.; Le Deunff, E. Changes in 15NO3- availability and transpiration rate are associated with a rapid diurnal adjustment of anion contents as well as 15N and water fluxes between the roots and shoots. Front. Plant Sci. 2018, 9, 1751. [Google Scholar] [CrossRef] [PubMed]
- He, J.Q.; Hu, W.; Li, Y.X.; Zhu, H.H.; Zou, J.; Wang, Y.H.; Meng, Y.L.; Chen, B.L.; Zhao, W.Q.; Wang, S.S.; et al. Prolonged drought affects the interaction of carbon and nitrogen metabolism in root and shoot of cotton. Environ. Exp. Bot. 2022, 197, 104839. [Google Scholar] [CrossRef]
- Greenwood, D.J.; Lemaire, G.; Gosse, G.; Cruz, P.; Draycott, A.; Neeteson, J.J. Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann. Bot. 1990, 66, 425–436. [Google Scholar] [CrossRef]
- ShangGuan, Z.P.; Shao, M.A.; Dyckmans, J. Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat. Environ. Exp. Bot. 2000, 44, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Boquet, D.J.; Breitenbeck, G.A. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Sci. 2000, 40, 1685–1693. [Google Scholar] [CrossRef]
- Liu, R.X.; Guo, W.Q.; Chen, B.L.; Wang, Y.H.; Zhou, Z.G. Effects of nitrogen on the dry matter, nitrogen accumulation and distribution of cotton under short-term soil drought during the flowering and boll-forming stage. Acta Bot. Boreali-Occident. Sin. 2008, 6, 1179–1187, (In Chinese with English abstract). [Google Scholar]
- Chen, X.P.; Qi, Z.M.; Gui, D.W.; Sima, M.W.; Zeng, F.J.; Li, L.H.; Li, X.Y.; Feng, S.Y. Responses of cotton photosynthesis and growth to a new irrigation control method under deficit irrigation. Field Crops Res. 2022, 275, 108373. [Google Scholar] [CrossRef]
- Zhu, L.X.; Li, A.C.; Sun, H.C.; Li, P.; Liu, X.Q.; Guo, C.C.; Zhang, Y.J.; Zhang, K.; Bai, Z.Y.; Dong, H.Z.; et al. The effect of exogenous melatonin on root growth and lifespan and seed cotton yield under drought stress. Ind. Crop Prod. 2023, 204, 117344. [Google Scholar] [CrossRef]
- Wu, F.Q.; Tang, Q.X.; Cui, J.P.; Tian, L.W.; Guo, R.S.; Wang, L.; Zheng, Z.P.; Zhang, N.; Zhang, Y.J.; Lin, T. Deficit irrigation combined with a high planting density optimizes root and soil water-nitrogen distribution to enhance cotton productivity in arid regions. Field Crop Res. 2024, 317, 109524. [Google Scholar] [CrossRef]
- Zhang, H.; Khan, A.; Tan, D.K.Y.; Luo, H. Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Front. Plant Sci. 2017, 8, 912. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, J.S.; Wei, X.; Xu, X.X. Effects of mepiquat chloride on physiological indicators of leaf function and characteristics of yield of hybrid cotton in South Xinjiang. Cott. Sci. 2014, 26, 122–129, (In Chinese with English abstract). [Google Scholar]
- Cramer, M.D.; Hawkins, H.-J.; Verboom, G.A. The importance of nutritional regulation of plant water flux. Oecologia 2009, 161, 15–24. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Durand, J.L.; Gastal, F. Water deficit and nitrogen nutrition of crops. A review. Agron. Sustain. Dev. 2010, 30, 529–544. [Google Scholar] [CrossRef]
- Kumar, R.; Pareek, N.K.; Kumar, U.; Javed, T.; Al-Huqail, A.A.; Rathore, V.S.; Nangia, V.; Choudhary, A.; Nanda, G.; Ali, H.M.; et al. Coupling Effects of Nitrogen and Irrigation Levels on Growth Attributes, Nitrogen Use Efficiency, and Economics of Cotton. Front. Plant Sci. 2022, 13, 890181. [Google Scholar] [CrossRef]
- Latiri-Souki, L.; Nortcliff, S.; Lawlor, D.W. Nitrogen fertilizer can increase dry matter, grain production and radiation and water use efficiencies for durum wheat under semi-arid conditions. Eur. J. Agron. 1998, 9, 21–34. [Google Scholar] [CrossRef]
- Shah, A.N.; Wu, Y.Y.; Tanveer, M.; Hafeez, A.; Tung, S.A.; Ali, S.; Khalofah, A.; Alsubeie, M.S.; Al-Qthanin, R.N.; Yang, G.Z. Interactive effect of nitrogen fertilizer and plant density on photosynthetic and agronomical traits of cotton at different growth stages. Saudi Saudi J. Biol. Sci. 2021, 28, 3578–3584. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Liu, M.; Qi, Z.J. Effects of different water and nitrogen managements on soil nitrogen and fertilizer nitrogen in maize field. Trans. Chin. Soc. Agric. Mach. 2020, 51, 284–291, (In Chinese with English abstract). [Google Scholar]
- Yang, T.R.; Zhao, J.H.; Hong, M.; Ma, M.J. Appropriate water and nitrogen supply regulates the dynamics of nitrogen translocation and thereby enhancing the accumulation of nitrogen in maize grains. Agric. Water Manag. 2024, 306, 109610. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Zhang, K.; Shao, G.C.; Lu, J.; Gao, Y. Effects of water and nitrogen regulation on cotton growth and hydraulic lift under dry topsoil conditions. Agronomy 2023, 13, 2022. [Google Scholar] [CrossRef]
- Coelho, A.P.; de Faria, R.T.D.; Leal, F.T.; Barbosa, J.D.A.; Lemos, L.B. Biomass and nitrogen accumulation in white oat (Avena sativa L.) under water deficit. Rev. Ceres 2020, 67, 1–8. [Google Scholar] [CrossRef]
- Ge, G.F.; Li, Z.J.; Fan, F.L.; Chu, G.X.; Hou, Z.N.; Liang, Y.C. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant Soil 2010, 326, 31–44. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.P.; Zhao, Q.; Dai, J.L.; Tian, L.W.; Dong, H.Z. Effects of reduced nitrogen rate on cotton yield and nitrogen use effiiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Li, W.T.; Wang, S.W.; Deng, X.P.; Li, H.B. Effects of different water and nitrogen levels on tuber yield, water and nitrogen use efficiency of potato. Agric. Res. Arid Areas 2016, 34, 191–196, (In Chinese with English abstract). [Google Scholar]
- Bai, Z.T.; Xie, C.; Yu, J.; Bai, W.Q.; Pei, S.Z.; Li, Y.X.; Li, Z.J.; Zhang, F.C.; Fan, J.L.; Yin, F.H. Effects of irrigation and nitrogen levels on yield and water-nitrogen-radiation use efficiency of drip-fertigated cotton in south Xinjiang of China. Field Crops Res. 2024, 308, 109280. [Google Scholar] [CrossRef]
- Radin, J.W.; Ackerson, R.C. Water relation of cotton plants under nitrogen deficiency: III. Stomatal conductance, photosynthesis and ABA accumulation during drought. Plant Physiol. 1984, 67, 115–119. [Google Scholar] [CrossRef]
- Quemada, M.; Gabriel, J.L. Approaches for increasing nitrogen and water use efficiency simultaneously. Glob. Food Secur. 2016, 9, 29–35. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesström, I.; Brito, R.; Messing, I. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agric. Water Manag. 2018, 199, 120–137. [Google Scholar] [CrossRef]
- Lee, E.; Kumar, P.; Barron-Gafford, G.A.; Hendryx, S.M.; Sanchez-Cañete, E.P.; Minor, R.L.; Colella, T.; Scott, R.L. Impact of hydraulic redistribution on multispecies vegetation water use in a semiarid savanna ecosystem: An experimental and modeling synthesis. Water Resour. Res. 2018, 54, 4009–4027. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Jia, B.H.; Xie, Z.H. Impacts of hydraulic redistribution on eco-hydrological cycles: A case study over the Amazon basin. Sci China Earth Sci. 2018, 61, 1330–1340. [Google Scholar] [CrossRef]
- Hou, X.H.; Fan, J.L.; Hu, W.H.; Zhang, F.C.; Yan, F.L.; Xiao, C.; Li, Y.P.; Cheng, H.L. Optimal irrigation amount and nitrogen rate improved seed cotton yield while maintaining fibre quality of drip-fertigated cotton in northwest China. Ind. Crop Prod. 2021, 170, 113710. [Google Scholar] [CrossRef]
- Chalise, D.P.; Snider, J.L.; Hand, L.C.; Roberts, P.; Vellidis, G.; Ermanis, A.; Collins, G.D.; Lacerda, L.N.; Cohen, Y.; Pokhrel, A.; et al. Cultivar, irrigation management, and mepiquat chloride strategy: Effects on cotton growth, maturity, yield, and fibre quality. Field Crops Res. 2022, 286, 108633. [Google Scholar] [CrossRef]
- Meng, Z.J.; Bian, X.M.; Liu, A.N.; Pang, H.B.; Wang, H.Z. Effect of regulated deficit irrigation on growth and development characteristics in cotton and its yield and fibre quality. J. Cotton Sci. 2008, 20, 39–44, (In Chinese with English abstract). [Google Scholar]
- Liste, H.-H.; White, J.C. Plant hydraulic lift of soil water–implications for crop production and land restoration. Plant Soil 2008, 313, 1–17. [Google Scholar] [CrossRef]
- Hafner, B.D.; Tomasella, M.; Häberle, K.-H.; Goebel, M.; Matyssek, R.; Grams, T.E.E. Hydraulic redistribution under moderate drought among English oak, European beech and Norway spruce determined by deuterium isotope labeling in a split-root experiment. Tree Physiol. 2017, 37, 950–960. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.H.; Li, H.Q.; Wang, T.Y.; Chen, R. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton. Agric. Water Manag. 2022, 264, 107512. [Google Scholar] [CrossRef]
- May, O.L.; Taylor, R.A. Breeding cottons with higher yarn tenacity. Text. Res. J. 1998, 68, 302–307. [Google Scholar] [CrossRef]
- Booker, J.D.; Bordovsky, J.R.; Lascano, J.; Segarra, E. Variable rate irrigatıon on cotton lint yield and fibre quality. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 3–6 January 2006; pp. 1768–1776. [Google Scholar]
- Johnson, R.M.; Downer, R.G.; Bradow, J.M.; Bauer, P.J.; Sadler, E.J. Variability in cotton fibre yield, fibre quality, and soil properties in a southeastern coastal plain. Agron. J. 2002, 94, 1305–1316. [Google Scholar] [CrossRef]
- Dağdelen, N.; Başal, H.; Yilmaz, E.; Gürbüz, T.; Akçay, S. Different drip irrigation regimes affect cotton yield, water use efficiency and fibre quality in western Turkey. Agric. Water Manag. 2009, 96, 111–120. [Google Scholar] [CrossRef]
- Abdelraheem, A.; Adams, N.; Zhang, J. Effects of drought on agronomic and fibre quality in an introgressed backcross inbred line population of Upland cotton under field conditions. Field Crops Res. 2020, 254, 107850. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron. J. 2004, 96, 377–383. [Google Scholar] [CrossRef]
- Bai, Z.T.; Bai, W.Q.; Xie, C.; Yu, J.; Dai, Y.L.; Pei, S.Z.; Zhang, F.C.; Li, Y.X.; Fan, J.L.; Yin, F.H. Irrigation depth and nitrogen rate effects on seed cotton yield, fibre quality and water-nitrogen utilization efficiency in southern Xinjiang, China. Agric. Water Manag. 2023, 290, 108583. [Google Scholar] [CrossRef]
- da Silva Ribeiro, J.E.; de Lima Tartaglia, F.; Caetano, L.P.; dos Santos Coêlho, E.; dos Santos, G.L.; de Oliveira, A.K.S.; da Silva, E.F.; de Almeida Oliveira, P.H.; da Silva, A.G.C.; da Silveira, L.M.; et al. Effect of nitrogen fertilization on the quality of colored cotton fibers in the Brazilian Semi-Arid Region. J. Nat. Fibers 2024, 21, 2391010. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Sohrab Hossain, M.; Rosamah, E.; Azli, N.A.; Saddon, N.; Davoudpoura, Y.; Nazrul Islam, M.d.; Dungani, R. The role of soil properties and it’s interaction towards quality plant fiber: A review. Renew. Sust. Energ. Rev. 2015, 43, 1006–1015. [Google Scholar] [CrossRef]
- Ulloa, M.; De Santiago, L.M.; Hulse-Kemp, A.M.; Stelly, D.M.; Burke, J.J. Enhancing upland cotton for drought resilience, productivity, and fibre quality: Comparative evaluation and genetic dissection. Mol. Genet. Genom. 2019, 295, 155–176. [Google Scholar] [CrossRef]
- Bradow, J.M.; Davidonis, G.H. Quantitation of fibre quality and the cotton production-processing interface: A physiologist’s perspective. J. Cotton Sci. 2000, 4, 34–64. [Google Scholar]
- McWilliams, D. Drought Strategies for Cotton. Cooperative Extension Service, Circular 582 College of Agriculture and Home Economics; New Mexico State University: Las Cruces, NM, USA, 2003. [Google Scholar]
- Guan, H.J.; Li, J.S.; Li, Y.F. Effects of drip system uniformity and irrigation amount on cotton yield and quality under arid conditions. Agric. Water Manag. 2013, 124, 37–51. [Google Scholar] [CrossRef]
- GB 1103-2007; Chinese National Standard, Cotton-Upland cotton. Standards Press of China: Beijing, China, 2007.
- Meredith, W., Jr. Improving fiber strength through genetics and breeding. In Proceedings of the Cotton Fiber Cellulose: Structures, Functions, and Utilization Conference, Savannah, GA, USA, 28–31 October 1992. [Google Scholar]
- Basal, H.; Dagdelen, N.; Unay, A.; Yilmaz, E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsuum L.) yield and fibre quality. J. Agron. Crop Sci. 2009, 195, 19–29. [Google Scholar] [CrossRef]
- Lokhande, S.; Reddy, K.R. Quantifying temperature effects on cotton reproductive efficiency and fiberquality. Agron. J. 2014, 106, 1275–1282. [Google Scholar] [CrossRef]
- Mert, M. Irrigation of cotton cultivars improves seed cotton yield, yield components and fibre properties in the Hatay region, Turkey. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2005, 55, 44–50. [Google Scholar] [CrossRef]
- Wen, Y.J.; Rowland, D.L.; Piccinni, G.J.; Cothren, T.; Leskovar, D.I.; Kemanian, A.R.; Woodard, J.D. Lint yield, lint quality, and economic returns of cotton production under traditional and regulated deficit irrigation schemes in Southwest Texas. J. Cotton Sci. 2013, 17, 10–22. [Google Scholar]
- Li, X.X.; Liu, H.G.; He, X.L.; Gong, P.; Lin, E. Water-nitrogen coupling and multi-objective optimization of cotton under mulched drip irrigation in arid Northwest China. Agronomy 2019, 9, 894. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The uplift of soil nutrients by plants: Biogeochemical consequences across scales. Ecology 2004, 85, 2380–2389. [Google Scholar] [CrossRef]
- Xu, G.W.; Wang, H.Z.; Zhai, Z.H.; Sun, M.; Li, Y.J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans. Chin. Soc. Agric. Eng. 2015, 31, 132–141, (In Chinese with English abstract). [Google Scholar]
- Bilalis, D.; Patsiali, S.; Karkanis, A.; Konstantas, A.; Makris, M.; Efthimiadou, A. Effects of cultural system (organic and conventional) on growth and fier quality of two cotton (Gossypium hirsutum L.) varieties. Renew. Agric. Food Syst. 2010, 25, 228–235. [Google Scholar] [CrossRef]
- Girma, K.; Teal, R.K.; Freeman, K.W.; Boman, R.K.; Raun, W.R. Cotton lint yield and quality as affected by applications of N, P, and K Fertilizers. J. Cotton Sci. 2007, 11, 12–19. [Google Scholar]
- Su, W.; Shi, Y.Z.; Song, W.W.; Li, S.Q.; Kong, L.L.; Gong, J.W.; Liu, A.Y.; Li, J.W.; Ge, Q.; Gong, W.K.; et al. Fibre yield and quality traits and their correlation analysis of cotton chromosome segment substitution lines population (BC7F2) from Gossypium hirsutum L. × Gossypium barbadense L. Chin. Agric. Sci. Bull. 2017, 33, 21–27, (In Chinese with English abstract). [Google Scholar]
Soil Texture | Particle Mass Fraction (%) | Bulk Density (g cm−3) | Field Capacity (%) | Point of Permanent Wilting (%) | pH | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
Clay loam | 29.4 | 41.7 | 28.9 | 1.30 | 27.37 | 7.38 | 7.2 |
Treatment | Nitrogen Fertiliser | Soil Water Moisture of Upper Pot | Soil Water Moisture of Lower Pot | |||
---|---|---|---|---|---|---|
Application Rate (kg ha−1) | Implementation Stage | Soil Water Moisture Level | Implementation Stage | Soil Water Moisture Level | Implementation Stage | |
CK | 0 | Before transplanting | 60–70% of θf | At the end of the seedling stage | 70–80% of θf | Throughout the growth stage |
W1N1 | 120 | 60–70% of θf | ||||
W1N2 | 240 | 60–70% of θf | ||||
W1N3 | 360 | 60–70% of θf | ||||
W2N1 | 120 | 50–60% of θf | ||||
W2N2 | 240 | 50–60% of θf | ||||
W2N3 | 360 | 50–60% of θf | ||||
W3N1 | 120 | 40–50% of θf | ||||
W3N2 | 240 | 40–50% of θf | ||||
W3N3 | 360 | 40–50% of θf |
2020 | 2021 | |
---|---|---|
Seedling transplanting | 20 June | 29 May |
Buds appeared in 50% of the plants | 20 July | 25 June |
50% plants flowering | 9 August | 12 July |
Boll blowing in 50% plants | 19 September | 30 August |
End of picking | 16 December | 20 November |
Treatment | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|
0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | 0–10 cm | 10–20 cm | |
NH4+-N (mg kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | NO3−-N (mg kg−1) | NH4+-N (mg kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | NO3−-N (mg kg−1) | |
CK | 3.62 ± 0.29 d | 4.34 ± 0.21 de | 4.99 ± 0.32 c | 4.97 ± 0.29 g | 2.18 ± 0.23 c | 1.98 ± 0.19 d | 1.27 ± 0.08 e | 1.06 ± 0.09 e |
W1N1 | 4.31 ± 0.28 cd | 5.19 ± 0.35 cd | 6.22 ± 0.77 c | 9.62 ± 1.03 e | 2.74 ± 0.25 abc | 2.38 ± 0.22 abcd | 3.56 ± 0.47 d | 4.77 ± 0.58 d |
W1N2 | 5.34 ± 0.32 b | 5.33 ± 0.36 bc | 9.86 ± 0.7 ab | 15.25 ± 1.15 bc | 2.59 ± 0.25 bc | 2.72 ± 0.25 abcd | 7.11 ± 0.33 c | 9.77 ± 0.41 b |
W1N3 | 5.27 ± 0.4 bc | 6.12 ± 0.35 ab | 10.22 ± 0.54 ab | 16.5 ± 1.42 b | 3.49 ± 0.34 a | 2.99 ± 0.26 ab | 10.93 ± 0.71 a | 12.92 ± 0.58 a |
W2N1 | 4.31 ± 0.31 cd | 4.37 ± 0.21 de | 5.49 ± 0.46 c | 5.74 ± 0.52 fg | 2.47 ± 0.24 c | 2.02 ± 0.17 cd | 4.02 ± 0.46 d | 4.77 ± 0.48 d |
W2N2 | 5.44 ± 0.25 b | 5.5 ± 0.31 abc | 11.75 ± 0.69 a | 16.88 ± 0.84 b | 2.91 ± 0.27 abc | 2.78 ± 0.27 abc | 8.8 ± 0.4 b | 10 ± 0.35 b |
W2N3 | 6.73 ± 0.3 a | 6.38 ± 0.35 a | 11.76 ± 0.87 a | 22.03 ± 1.12 a | 3.38 ± 0.32 ab | 3.11 ± 0.3 a | 11.14 ± 0.33 a | 12.53 ± 0.28 a |
W3N1 | 4.25 ± 0.32 cd | 4.13 ± 0.21 e | 4.83 ± 0.26 c | 8.37 ± 1.04 ef | 2.31 ± 0.27 c | 2.25 ± 0.21 bcd | 6.66 ± 0.16 c | 7.28 ± 0.34 c |
W3N2 | 4.89 ± 0.4 bc | 4.1 ± 0.26 e | 8.44 ± 0.73 b | 11.07 ± 0.94 de | 2.62 ± 0.28 bc | 2.47 ± 0.24 abcd | 9.01 ± 0.32 b | 9.93 ± 0.35 b |
W33N3 | 5.05 ± 0.34 bc | 4.83 ± 0.34 cde | 11.34 ± 0.86 a | 13.3 ± 1.06 cd | 3.61 ± 0.36 a | 3.08 ± 0.28 a | 11.38 ± 0.33 a | 12.7 ± 0.31 a |
p-value | ||||||||
D | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
W | 0.000 | 0.000 | 0.000 | 0.000 | 0.162 | 0.122 | 0.000 | 0.000 |
N | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
D × W | 0.000 | 0.009 | 0.016 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
D × N | 0.054 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 |
W × N | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
D × W × N | 0.001 | 0.012 | 0.000 | 0.000 | 0.008 | 0.000 | 0.317 | 0.046 |
Treatments | Dry Matter Weight (g) | Plant Nitrogen Accumulation (kg·km−2) | ||
---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | |
CK | 137.62 ± 2.9 f | 175.8 ± 8.45 f | 30 ± 1.88 f | 28.64 ± 0.59 g |
W1N1 | 180.12 ± 7.43 bc | 230.59 ± 7.23 bc | 41.95 ± 5.23 cde | 41.9 ± 0.67 cde |
W1N2 | 193.06 ± 3.11 b | 230.18 ± 2.08 bcd | 50.54 ± 2.97 bc | 49.53 ± 2.21 b |
W1N3 | 222.89 ± 2.35 a | 291.81 ± 6.76 a | 60.7 ± 3.06 a | 57.81 ± 0.97 a |
W2N1 | 169.32 ± 6.17 cde | 225.86 ± 15.9 bcd | 40.79 ± 2.15 de | 39.81 ± 2.94 def |
W2N2 | 180.59 ± 6.11 bc | 209.07 ± 5.78 cde | 56.81 ± 2.89 ab | 39.69 ± 2.07 def |
W2N3 | 188.2 ± 7.22 bc | 247.1 ± 7.89 b | 53.77 ± 3.76 ab | 47.33 ± 2.41 bc |
W3N1 | 151.29 ± 3.25 def | 197.97 ± 7.76 ef | 39.01 ± 1.26 e | 35.28 ± 0.8 def |
W3N2 | 149.92 ± 6.87 ef | 206.28 ± 3.55 de | 53.89 ± 1.07 ab | 38.64 ± 0.45 ef |
W1N3 | 171.46 ± 14.54 cd | 236.47 ± 8.36 b | 48.91 ± 3.41 bcd | 44.82 ± 3.4 bcd |
p-value | ||||
W | 0.000 | 0.000 | ||
N | 0.000 | 0.000 | ||
Y | 0.000 | 0.000 | ||
W × N | 0.050 | 0.107 | ||
W × Y | 0.657 | 0.042 | ||
N × Y | 0.047 | 0.019 | ||
W × D × Y | 0.473 | 0.197 |
Treatment | Internal Nitrogen-Fertilizer Use Efficiency (kg kg−1) | Physiological Nitrogen-Fertilizer Use Efficiency (kg kg−1) | Nitrogen-Fertilizer Recovery Efficiency (%) | |||
---|---|---|---|---|---|---|
2020 | 2021 | 2020 | 2021 | 2020 | 2021 | |
CK | 31.64 ± 3.21 a | 39.95 ± 1.29 a | ||||
W1N1 | 25.76 ± 2.10 abc | 29.47 ± 0.38 bc | 31.33 ± 4.23 ab | 19.48 ± 1.50 cd | 9.95 ± 2.95 ab | 11.05 ± 1.06 a |
W1N2 | 27.27 ± 2.08 ab | 27.22 ± 2.96 c | 48.50 ± 11.55 a | 31.34 ± 15.54 bc | 8.56 ± 1.13 abc | 8.71 ± 0.67 ab |
W1N3 | 25.33 ± 0.80 bc | 28.67 ± 0.61 bc | 46.13 ± 5.44 a | 57.52 ± 3.03 ab | 8.53 ± 0.35 abc | 8.10 ± 0.10 b |
W2N1 | 26.06 ± 3.19 abc | 30.71 ± 1.24 bc | 20.11 ± 13.16 ab | 30.47 ± 3.57 bc | 8.99 ± 0.80 abc | 9.31 ± 1.95 ab |
W2N2 | 20.26 ± 1.76 cd | 33.77 ± 1.18 b | 24.25 ± 11.44 ab | 43.05 ± 6.4 abc | 11.17 ± 0.45 a | 4.6 ± 0.61 c |
W2N3 | 23.58 ± 1.99 bcd | 31.78 ± 0.35 bc | 26.31 ± 8.89 ab | 59.94 ± 3.95 ab | 6.60 ± 0.66 bc | 5.19 ± 0.83 c |
W3N1 | 25.87 ± 1.38 abc | 31.04 ± 0.2 bc | 27.05 ± 31.59 ab | −3.69 ± 11.4 d | 7.50 ± 1.28 abc | 5.53 ± 0.17 c |
W3N2 | 17.90 ± 0.58 d | 34.05 ± 3.63 a | −2.37 ± 5.43 b | 69.92 ± 14.4 a | 9.95 ± 1.16 ab | 4.17 ± 0.06 c |
W3N3 | 22.54 ± 1.30 bcd | 33.91 ± 3.77 b | 28.05 ± 10.62 ab | 65.93 ± 17.86 a | 5.25 ± 1.45 c | 4.49 ± 0.78 c |
W | ns | * | ns | ns | ns | ** |
N | * | ** | ns | ** | * | ** |
W × N | Ns | ns | ns | * | ns | Ns |
Treatment | ET | WUE |
---|---|---|
Topsoil drought intensity | ** | ns |
Nitrogen rate | * | ** |
Year | ** | ** |
Topsoil drought intensity × Nitrogen rate | ns | * |
Topsoil drought intensity × Year | ns | ** |
Nitrogen rate × Year | ns | ns |
Topsoil drought intensity × Nitrogen rate× Year | ns | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Tian, L.; Xu, D.; Shao, G. Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought. Agronomy 2025, 15, 2094. https://doi.org/10.3390/agronomy15092094
Lu J, Tian L, Xu D, Shao G. Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought. Agronomy. 2025; 15(9):2094. https://doi.org/10.3390/agronomy15092094
Chicago/Turabian StyleLu, Jia, Longjia Tian, Dan Xu, and Guangcheng Shao. 2025. "Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought" Agronomy 15, no. 9: 2094. https://doi.org/10.3390/agronomy15092094
APA StyleLu, J., Tian, L., Xu, D., & Shao, G. (2025). Insights into the Significance of Nitrogen Fertiliser and Hydraulic Lift with Moisture Depletions in Cotton Quality and Nitrogen Distribution Under Topsoil Drought. Agronomy, 15(9), 2094. https://doi.org/10.3390/agronomy15092094