Potassium and Magnesium Balance the Effect of Nitrogen on the Yield and Quality of Sugar Beet
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Weather Conditions
2.3. Experimental Design
2.4. Harvest and Analysis of Crop Quality
2.5. Nitrogen Use Efficiency Indices
2.6. Statistical Analysis
3. Results
3.1. BEET Yield
3.2. Leaf Yield
3.3. Beet Quality and White Sugar Yield
3.4. Relationships Between Yield and Quality Parameters
3.5. Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org/site/567/default.aspx#ancor (accessed on 5 July 2025).
- Kenter, C.; Hoffmann, C.M.; Märländer, B. Effects of weather variables on sugar beet yield development (Beta vulgaris L.). Eur. J. Agron. 2006, 24, 62–69. [Google Scholar] [CrossRef]
- Freckleton, R.P.; Watkinson, A.R.; Webb, D.J.; Thomas, T.H. Yield of sugar beet in relation to weather and nutrients. Agric. For. Meteorol. 1999, 93, 39–51. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Kenter, C. Yield Potential of Sugar Beet—Have We Hit the Ceiling? Front. Plant Sci. 2018, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Supit, I.; van Diepen, C.A.; de Wit, A.J.W.; Kabat, P.; Baruth, B.; Ludwig, F. Recent changes in the climatic yield potential of various crops in Europe. Agric. Syst. 2010, 103, 683–694. [Google Scholar] [CrossRef]
- Ziernicka-Wojtaszek, A. Weryfikacja rolniczo-klimatycznych regionalizacji Polski w świetle współczesnych zmian klimatu [verification of agro-climatic regionalization types in Poland in the light of contemporary climate change]. Acta Agrophys. 2009, 13, 803–812. (In Polish) [Google Scholar]
- Xie, X.; Zhu, Q.; Xu, Y.; Ma, X.; Ding, F.; Li, G. Potassium determines sugar beets’ yield and sugar content under drip irrigation condition. Sustainability 2022, 14, 12520. [Google Scholar] [CrossRef]
- Varga, I.; Jović, J.; Rastija, M.; Kulundžić, A.M.; Zebec, V.; Lončarić, Z.; Iljkić, D.; Antunović, M. Efficiency and management of nitrogen fertilization in sugar beet as spring crop: A review. Nitrogen 2022, 3, 170–185. [Google Scholar] [CrossRef]
- Malnou, C.S.; Jaggard, K.W.; Sparkes, D.L. A canopy approach to nitrogen fertilizer recommendations fort the sugar beet crop. Eur. J. Agron. 2006, 25, 254–263. [Google Scholar] [CrossRef]
- Fei, C.; Fan, H.; Fan, X.X.; Xu, G. Estimation of total nitrogen content in sugar beet leaves based on chlorophyll fluorescence parameters. Photosynthetica 2020, 58, 869–872. [Google Scholar] [CrossRef]
- Grzebisz, W.; Szczepaniak, W.; Potarzycki, J.; Łukowiak, R. Sustainable management of soil potassium—A crop rotation oriented concept. In Soil Fertility; Issaka, R.N., Ed.; InTech: London, UK, 2012; 38p. [Google Scholar]
- Wyniki Porejestrowych Doświadczeń Odmianowych. Burak Cukrowy; COBORU—Research Centre for Cultivar Testing: Słupia Wielka, Poland, 2024; 25p. (In Polish)
- Statistics Poland, Agriculture and Environment Department. Yields and Production of Main Corps in 2023; Warszawa, Poland. Available online: https://stat.gov.pl (accessed on 13 July 2025).
- Draycott, A.P.; Christenson, D.R. Nutrients for Sugar Beet Production: Soil-Plant Relationships; CABI Publishing: Wallingford, UK, 2003; 242p. [Google Scholar]
- Damm, S.; Hofmann, B.; Gransee, A.; Christen, O. Zur Wirkung von Kalium auf ausgewählte bodenphysikalische Eigenschaften und den Wurzeltiefgang landwirtschaftlicher Kulturpflanzen. Arch. Agron. Soil Sci. 2013, 59, 1–19. [Google Scholar] [CrossRef]
- Marschner, H.; Kirkby, E.A.; Cakmak, J. Effect of mineral nutrition on shoot-root partitioning of photo-assimilates and cycling of mineral nutrients. J. Exp. Bot. 1996, 47, 1255–1263. [Google Scholar] [CrossRef]
- Ragel, P.; Raddatz, N.; Leidi, E.O.; Quintero, F.J.; Pardo, J.M. Regulation of K+ nutrition in plants. Front. Plant Sci. 2019, 10, 281. [Google Scholar] [CrossRef]
- Raynaud, X.; Leadley, P. Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology 2004, 85, 2200–2214. [Google Scholar] [CrossRef]
- Füllgrabe, H.; Claassen, N.; Hilmer, R.; Koch, H.-J.; Dittert, K.; Kreszies, T. Potassium deficiency reduces sugar yield in sugar beet through decreased growth of young plants. J. Plant Nutr. Soil Sci. 2022, 185, 545–553. [Google Scholar] [CrossRef]
- Hinsinger, P.; Bell, M.J.; Kovar, J.L.; White, P.J. Rhizosphere processes and root traits determining the acquisition of soil potassium. In Improving Potassium Recommendations for Agricultural Crops; Murrel, T.S., Mikkelsen, R.L., Sulewski, G., Norton, R., Thompson, M.L., Eds.; Springer: Cham, Switzerland, 2021; 455p. [Google Scholar]
- Tan, Z.X.; Lal, R.; Wiebe, K.D. Global soil nutrient depletion and yield reduction. J. Sustain. Dev. 2015, 26, 123–146. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Diatta, J. Constrains and solutions to maintain soil productivity, a case study from Central Europe. In Soil Fertility Improvement and Integrated Nutrient Management—A Global Perspective; Whalen, J., Ed.; InTech: London, UK, 2012; pp. 159–183. [Google Scholar]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture—Status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jaknkowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification, 6th edition—Principles, classification scheme and correlations. Soil Sci. An. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Chaudhry, A.H.; Nayab, S.; Hussainn, S.B.; Ali, M.; Pan, Z. Current understanding on magnesium deficiency and future outlooks for sustainable agriculture. Int. J. Mol. Sci. 2021, 22, 1819. [Google Scholar] [CrossRef] [PubMed]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Hermans, C.; Bourgis, F.; Faucher, M.; Strasser, R.J.; Delrot, S.; Verbruggen, N. Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 2005, 220, 541–549. [Google Scholar] [CrossRef]
- Hoffmann, C.M.; Stockfisch, N.; Koch, H.-J. Influence of sulphur supply on yield and quality of sugar beet (Beta vulgaris L.)—Determination of a threshold value. Eur. J. Agron. 2004, 21, 69–80. [Google Scholar] [CrossRef]
- Bell, C.; Milford, G.F.J.; Leigh, R.-A. Sugar beet. In Photoassimilate Distribution in Plants and Crops; Zamski, E., Schaffer, A.A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1996; pp. 691–707. [Google Scholar]
- Thomas, S.G.; Hocking, T.J.; Bilsborrow, P.E. Effect of Sulphur fertilization on the growth and metabolism of sugar beet grown on soils of different Sulphur status. Field Crops Res. 2003, 83, 223–235. [Google Scholar] [CrossRef]
- Goyal, D.; Franzen, D.W.; Chatterjee, A. Do crops’ responses to sulfur vary with its forms? Agrosyst. Geosci. Environ. 2021, 4, e20201. [Google Scholar] [CrossRef]
- Kabała, C. Luvisols and related clay-illuvial soil (gleby płowe)—Soil of the year 2023. Current view on their origin, classification and services in Poland. Soil Sci. Ann. 2023, 74, 177014. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Com. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Kęsik, K. Application of the Mehlich 3 method in the fertilizer advisory system. Stud. I Rap. IUNG-PIB 2016, 48, 95–104. (In Polish) [Google Scholar]
- Trávník, K.; Zbíral, J.; Nemec, P. Agrochemical Soil Testing—Mehlich III; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 1999. [Google Scholar]
- Buchholz, K.; Märländer, B.; Puke, H.; Glattkowski, H.; Thielecke, K. Neubewertung des technischen Wertes von Zuckerrüben. Zuckerindustrie 1995, 120, 113–121. (In Germany) [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Fitters, T.F.J.; Bussell, J.S.; Mooney, S.J.; Sparkes, D.L. Assessing water uptake in sugar beet (Beta vulgaris) under different watering regimes. Environ. Exp. Bot. 2017, 144, 61–67. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping topsoil properties at European scale using the LUCAS database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Szczepaniak, W.; Pepliński, K. Sugar beet response to balanced nitrogen fertilization with phosphorus and potassium. Part III. Dynamics of white sugar yield development. Bulg. J. Agric. Sci. 2016, 22, 197–204. [Google Scholar]
- Safar, F.; Whalen, J.K. mechanical stability of newly-formed soil macroaggregates influenced by calcium concentration and the calcium counter-anion. Geoderma 2023, 430, 111333. [Google Scholar] [CrossRef]
- Wallace, A.; Mueller, R.T. Calcium uptake and distribution in plants. J. Plant Nutr. 1980, 2, 247–256. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Gao, J.; Zhang, C.; Liu, H.; Liu, P.; Sun, X. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance. Front. Plant Sci. 2023, 14, 1143963. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Réthoré, E.; Pluchon, S.; Ali, N.; Billiot, B.; Yvin, J.C. Calcium Application Enhances Drought Stress Tolerance in Sugar Beet and Promotes Plant Biomass and Beetroot Sucrose Concentration. Int. J. Mol. Sci. 2019, 20, 3777. [Google Scholar] [CrossRef]
- Milford, G.F.J.; Armstrong, M.J.; Jarvis, P.J.; Houghton, B.J.; Bellett-Travers, D.M.; Jones, J.; Leigh, R.A. Effect of potassium fertilizer on the yield, quality and potassium offtake of sugar beet crops grown on soils of different potassium status. J. Agric. Sci. 2000, 135, 1–10. [Google Scholar] [CrossRef]
- Kuhlmann, H. Importance of the subsoil for the K nutrition of crops. Plant Soil 1990, 127, 129–136. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The Critical Role of Potassium in Plant Stress Response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef]
- Schilling, G.; Eißner, H.; Schmidt, L.; Peiter, E. Yield formation of five crop species under water shortage and differential potassium supply. J. Plant Nutr. Soil Sci. 2016, 179, 234–243. [Google Scholar] [CrossRef]
- Mubarak, M.U.; Zahir, M.; Ahmad, S.; Wakeel, A. Sugar beet yield and industrial sugar contents improved by potassium fertilization under scarce and adequate moisture conditions. J. Integr. Agric. 2016, 15, 2620–2626. [Google Scholar] [CrossRef]
- Altay, H.; Aksu, G. The effects of potassium applications on drought stress in sugar beet: Part I. Sugar beet quality componenets. J. Sci. Perspect. 2020, 4, 157–168. [Google Scholar] [CrossRef]
- Senbayram, M.; Gransee, A.; Wahle, V.; Thiel, H. Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop Pasture Sci. 2015, 66, 1219–1229. [Google Scholar] [CrossRef]
- Allison, M.F.; Jaggard, K.W.; Armstrong, M.J. Time of application and chemical form of potassium, phosphorus, magnesium and sodium fertilizers and effects on growth, yield and quality of sugar beet (Beta vulgaris). J. Agric. Sci. 1994, 123, 61–70. [Google Scholar] [CrossRef]
- Pogłodziński, R.; Barłóg, P.; Grzebisz, W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ. 2021, 67, 507–513. [Google Scholar] [CrossRef]
- Orlovius, K.; McHoul, J. Effect of two magnesium fertilizers on leaf magnesium concentration, yield, and quality of potato and sugar beet. J. Plant Nutr. 2015, 38, 2044–2054. [Google Scholar] [CrossRef]
- Pilon-Smits, E.A.H.; Quinn, C.F.; Tapken, W.; Malagoli, M.; Schiavon, M. Physiological functions of beneficial elements. Curr. Opin. Plant Biol. 2009, 12, 267–274. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium—A functional plant nutrient. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar] [CrossRef]
- Wakeel, A.; Farooq, M.; Qadir, M.; Schubert, S. Potassium substitution by sodium in plants. Crit. Rev. Plant Sci. 2011, 30, 401–413. [Google Scholar] [CrossRef]
- Silva, J.V.; van Ittersum, M.K.; ten Berge, H.F.M.; Spätjens, L.; Tenreiro, T.R.; Anten, N.P.R.; Reidsma, P. Agronomic analysis of nitrogen performance indicators in intensive arable cropping systems: An appraisal of big data from commercial farms. Field Crops Res. 2021, 269, 108176. [Google Scholar] [CrossRef]
- Ebmeyer, H.; Hoffmann, C.M. Efficiency of nitrogen uptake and utilization in sugar beet genotypes. Field Crops Res. 2021, 274, 108334. [Google Scholar] [CrossRef]
- Xing, X.; Dong, S.; Guo, M.; Wei, L.; Shi, S. Optimizing Nitrogen Application Enhances Sugar Beet (Beta vulgaris L.) Productivity by Modulating Carbon and Nitrogen Metabolism. Agronomy 2025, 15, 1142. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Feć, M.; Łukowiak, R.; Szczepaniak, W. Row method of sugar beet (Beta vulgaris L.) fertilization with multicomponent fertilizer based on urea-ammonium nitrate solution as a way to increase nitrogen efficiency. J. Cent. Eur. Agric. 2010, 2, 225–234. [Google Scholar]
- Hadir, S.; Gaiser, T.; Hüging, H.; Athmann, M.; Pfarr, D.; Kemper, R.; Ewert, F.; Seidel, S. Sugar Beet Shoot and Root Phenotypic Plasticity to Nitrogen, Phosphorus, Potassium and Lime Omission. Agriculture 2021, 11, 21. [Google Scholar] [CrossRef]
Year | Soil Depth, cm | pH 1 | P 2 | K 2 | Mg 2 | Ca 2 | NH4-N 3 | NO3-N 3 | NH4-N + NO3-N |
---|---|---|---|---|---|---|---|---|---|
mg kg−1 | kg ha−1 | ||||||||
2016 | 0–30 | 7.2 | 73.1 M | 82.5 L | 109 VH | 1230 L | 5.0 | 12.0 | 17.0 |
30–60 | 7.1 | 5.4 VL | 82.2 L | 213 VH | 7676 VH | 5.2 | 21.5 | 26.7 | |
60–90 | 7.0 | 5.3 VL | 83.2 L | 234 VH | 10,778 VH | 5.0 | 51.4 | 56.4 | |
Total | 15.2 | 84. 9 | 100.1 | ||||||
2017 | 0–30 | 6.6 | 127 M | 127 L | 195 VH | 2290 M | 8.1 | 21.0 | 29.1 |
30–60 | 6.9 | 17 VL | 117 L | 294 VH | 2300 M | 9.1 | 20.4 | 29.5 | |
60–90 | 7.1 | 7 VL | 92 VL | 310 VH | 2240 M | 12.0 | 42.9 | 54.9 | |
Total | 29.2 | 84.3 | 113.5 | ||||||
2018 | 0–30 | 6.0 | 105 M | 183 M | 177 VH | 1151 L | 2.9 | 23.5 | 26.4 |
30–60 | 6.4 | 21.1 VL | 145 M | 254 VH | 6534 H | 4.6 | 30.0 | 34.6 | |
60–90 | 6.7 | 8.3 VL | 149 M | 326 VH | 7674 VH | 4.1 | 47.9 | 52.0 | |
Total | 11.6 | 101.4 | 113.0 |
Treatment (Acronym) | Macronutrients and Sodium | |||||
---|---|---|---|---|---|---|
N | P | K | Mg | S | Na | |
K0 | 110 | 26 | 0 | 0 | 0 | 0 |
K1 (PS) | 110 | 26 | 83 | 0 | 0 | 0 |
K2 (PS) | 110 | 26 | 166 | 0 | 0 | 0 |
K2 (PS) + Mg | 110 | 26 | 166 | 48 | 67 | 0 |
K1 (KK) | 110 | 26 | 83 | 9 | 12.5 | 7.4 |
K2 (KK) | 110 | 26 | 166 | 18 | 25 | 14.8 |
K2 (KK) + Mg | 110 | 26 | 166 | 18 + 30 | 25 + 42 | 14.8 |
K2 (KK) + Mg + FF | 110 | 26 | 166 | 18 + 30 + 4.1 | 25 + 42 + 5.6 | 14.8 |
Application Timing | Maximum Concentration | Rate kg ha−1 | BBCH Code | Description |
---|---|---|---|---|
1st | 5% (20 kg in 400 dm3 of water per ha) | 15 | 15 | Five-leaf stage |
2nd | 15 | 38 | Before closing of rows | |
3rd | 15 | 45 | End of July |
Year | Beet Yield (BY) t ha−1 | Leaf Yield (LY) t ha−1 | BY/LY Ratio |
---|---|---|---|
2016 | 71.0 ± 0.81 c | 41.0 ± 0.81 a | 0.59 ± 0.01 a |
2017 | 73.6 ± 0.52 b | 34.1 ± 0.81 b | 0.46 ± 0.01 b |
2018 | 82.9 ± 0.71 a | 35.7 ± 1.06 b | 0.43 ± 0.01 b |
F ratio | 127.4 *** | 15.6 *** | 44.9 *** |
Treatment | Year | Mean | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
K0 | 66.8 ± 2.13 | 69.6 ± 0.48 c | 77.5 ± 2.17 c | 71.3 ± 1.65 b |
K1 (SP) | 71.5 ± 1.88 | 76.6 ± 1.12 ab | 83.7 ± 0.99 abc | 77.3 ± 1.67 a |
K2 (SP) | 69.9 ± 2.08 | 72.4 ± 0.32 abc | 79.2 ± 1.26 bc | 73.8 ± 1.40 ab |
K2 (SP) + Mg | 73.7 ± 2.15 | 75.1 ± 1.06 ab | 83.4 ± 2.00 abc | 77.4 ± 1.60 a |
K1 (KK) | 68.3 ± 0.60 | 76.9 ± 0.58 a | 85.9 ± 1.38 ab | 77.1 ± 2.22 a |
K2 (KK) | 69.3 ± 2.10 | 72.1 ± 1.65 bc | 86.7 ± 1.42 a | 76.0 ± 2.46 a |
K2 (KK) + Mg | 75.9 ± 2.89 | 72.6 ± 1.36 abc | 84.9 ± 1.06 ab | 77.8 ± 1.86 a |
K2 (KK) + Mg + FF | 72.4 ± 2.00 | 73.2 ± 0.65 abc | 81.7 ± 0.79 abc | 75.8 ± 1.43 a |
F ratio | 2.09 n.s. | 6.11 *** | 4.90 ** | 6.00 *** |
Treatment | Year | Mean | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
K0 | 43.3 ± 2.69 | 34.6 ± 2.85 | 32.0 ± 0.78 | 36.6 ± 1.89 |
K1 (SP) | 43.8 ± 2.15 | 34.0 ± 2.54 | 34.9 ± 1.63 | 37.6 ± 1.74 |
K2 (SP) | 38.1 ± 2.42 | 35.1 ± 1.44 | 35.7 ± 0.41 | 36.3 ± 0.95 |
K2 (SP) + Mg | 38.0 ± 1.49 | 31.1 ± 1.54 | 33.9 ± 1.62 | 34.3 ± 1.18 |
K1 (KK) | 42.4 ± 1.69 | 37.0 ± 2.76 | 36.8 ± 2.05 | 38.7 ± 1.41 |
K2 (KK) | 39.6 ± 1.36 | 33.8 ± 2.52 | 39.6 ± 5.97 | 37.7 ± 2.16 |
K2 (KK) + Mg | 41.1 ± 1.37 | 31.1 ± 1.68 | 32.8 ± 1.20 | 35.0 ± 1.51 |
K2 (KK) + Mg + FF | 41.4 ± 3.99 | 36.4 ± 2.74 | 39.8 ± 5.04 | 39.2 ± 2.20 |
F ratio | 0.93 n.s. | 0.87 n.s. | 0.92 n.s. | 1.31 n.s. |
Year/Treatment | SC | α-N | K | Na | SML | WSC | WSR |
---|---|---|---|---|---|---|---|
% | mmol kg−1 | % | % | % | |||
2016 | 18.75 ± 0.07 b | 23.4 ± 0.79 b | 30.1 ± 0.44 b | 2.79 ± 0.08 c | 2.04 ± 0.02 b | 16.71 ± 0.07 b | 89.1 ± 0.13 a |
2017 | 16.81 ± 0.05 c | 15.4 ± 0.28 c | 31.3 ± 0.37 b | 3.80 ± 0.08 b | 1.87 ± 0.01 c | 14.94 ± 0.05 c | 88.9 ± 0.07 ab |
2018 | 20.80 ± 0.12 a | 31.5 ± 0.87 a | 39.0 ± 0.64 a | 5.14 ± 0.12 a | 2.37 ± 0.02 a | 18.44 ± 0.14 a | 88.6 ± 0.17 b |
K0 | 18.83 ± 0.51 | 26.5 ± 2.5 a | 33.2 ± 1.3 | 3.73 ± 0.33 | 2.16 ± 0.07 | 16.67 ± 0.46 | 88.5 ± 0.22 |
K1 (SP) | 18.68 ± 0.54 | 23.5 ± 2.3 ab | 33.8 ± 1.2 | 4.07 ± 0.32 | 2.10 ± 0.07 | 16.58 ± 0.49 | 88.8 ± 0.19 |
K2 (SP) | 18.92 ± 0.56 | 22.8 ± 2.5 ab | 33.5 ± 1.5 | 3.64 ± 0.26 | 2.07 ± 0.08 | 16.85 ± 0.49 | 89.1 ± 0.19 |
K2 (SP) + Mg | 18.78 ± 0.51 | 23.6 ± 2.4 ab | 34.7 ± 1.9 | 3.84 ± 0.30 | 2.11 ± 0.08 | 16.67 ± 0.45 | 88.8 ± 0.28 |
K1 (KK) | 18.80 ± 0.48 | 22.4 ± 1.9 ab | 32.5 ± 1.3 | 4.01 ± 0.38 | 2.06 ± 0.06 | 16.74 ± 0.43 | 89.1 ± 0.16 |
K2 (KK) | 18.73 ± 0.49 | 23.6 ± 2.3 ab | 34.0 ± 1.6 | 3.93 ± 0.27 | 2.10 ± 0.07 | 16.62 ± 0.45 | 88.8 ± 0.30 |
K2 (KK) + Mg | 18.73 ± 0.49 | 23.7 ± 2.2 ab | 33.4 ± 1.5 | 3.97 ± 0.31 | 2.10 ± 0.07 | 16.63 ± 0.43 | 88.8 ± 0.19 |
K2 (KK) + Mg + FF | 18.84 ± 0.51 | 21.3 ± 1.8 b | 32.6 ± 3.0 | 4.08 ± 0.44 | 2.03 ± 0.06 | 16.80 ± 0.43 | 89.2 ± 0.19 |
ANOVA (F ratio) | |||||||
Year (Y) | 486.6 *** | 165.8 *** | 87.5 *** | 150.1 *** | 203.4 *** | 292.4 *** | 4.0 * |
Treatment (T) | 0.30 n.s. | 2.14 * | 0.76 n.s. | 1.02 n.s. | 1.78 n.s. | 0.94 n.s. | 1.0 n.s. |
Interaction Y × T | 0.51 n.s. | 2.06 * | 0.69 n.s. | 1.11 n.s. | 1.80 n.s. | 0.93 n.s. | 1.0 n.s. |
Variable | BY | LY | SC | K | Na | α-N |
---|---|---|---|---|---|---|
Year 2016 (n = 8) | ||||||
LY | −0.30 | |||||
SC | 0.02 | −0.45 | ||||
K | 0.28 | 0.03 | −0.53 | |||
Na | 0.09 | −0.18 | −0.66 | 0.60 | ||
α-N | −0.48 | 0.45 | −0.08 | 0.09 | −0.20 | |
WSY | 0.96 *** | −0.43 | 0.27 | 0.10 | −0.06 | −0.58 |
Year 2017 (n = 8) | ||||||
LY | 0.11 | |||||
SC | −0.39 | 0.47 | ||||
K | 0.66 | −0.27 | −0.47 | |||
Na | 0.44 | −0.40 | −0.82 * | 0.52 | ||
α-N | 0.34 | −0.27 | −0.40 | 0.81 * | 0.37 | |
WSY | 0.95 *** | 0.28 | −0.10 | 0.53 | 0.19 | 0.19 |
Year 2018 (n = 8) | ||||||
LY | 0.39 | |||||
SC | −0.57 | 0.02 | ||||
K | −0.10 | −0.30 | −0.25 | |||
Na | 0.37 | 0.46 | −0.20 | −0.72 * | ||
α-N | −0.14 | −0.73 * | 0.02 | 0.67 | −0.82 * | |
WSY | 0.96 *** | 0.50 | −0.35 | −0.29 | 0.45 | −0.26 |
Years 2016–2018 (n = 24) | ||||||
LY | −0.31 | |||||
SC | 0.65 ** | 0.15 | ||||
K | 0.86 *** | −0.35 | 0.76 *** | |||
Na | 0.87 *** | −0.50 * | 0.55 * | 0.86 *** | ||
α-N | 0.58 ** | 0.13 | 0.93 *** | 0.76 *** | 0.49 * | |
WSY | 0.89 *** | −0.07 | 0.92 *** | 0.89 *** | 0.77 *** | 0.84 *** |
Year/Treatment | PFPf kg kg−1 | AE kg kg−1 | NUEs kg kg−1 | PFPin kg kg−1 |
---|---|---|---|---|
Mean | 689.1 ± 6.0 | 199.0 ± 7.4 | 515.5 ± 4.0 | 346.2 ± 2.6 |
2016 | 645.2 ± 7.4 c | 138.5 ± 7.4 c | 532.8 ± 5.9 a | 337.8 ± 3.9 b |
2017 | 669.0 ± 4.7 b | 173.3 ± 4.7 b | 482.0 ± 4.5 b | 329.2 ± 2.3 b |
2018 | 753.3 ± 6.4 a | 285.3 ± 6.4 a | 531.5 ± 6.3 a | 371.6 ± 3.2 a |
F ratio | 127.4 *** | 232.4 *** | 29.2 * | 75.9 *** |
K0 | 648.3 ± 15.0 b | 158.2 ± 19.2 b | 493.8 ± 9.1 | 325.7 ± 6.4 b |
K1 (SP) | 702.3 ± 15.2 a | 212.2 ± 19.7 a | 525.0 ± 9.8 | 352.7 ± 5.9 a |
K2 (SP) | 671.1 ± 12.7 ab | 181.0 ± 17.1 ab | 503.5 ± 7.7 | 337.2 ± 5.2 ab |
K2 (SP) + Mg | 703.5 ± 14.5 a | 213.4 ± 18.7 a | 510.9 ± 10.3 | 353.5 ± 6.4 a |
K1 (KK) | 700.5 ± 20.2 a | 210.3 ± 24.9 a | 529.0 ± 8.3 | 351.5 ± 7.9 a |
K2 (KK) | 691.3 ± 22.4 a | 201.2 ± 27.0 a | 519.5 ± 16.1 | 347.1 ± 9.8 a |
K2 (KK) + Mg | 707.4 ± 16.9 a | 217.3 ± 20.7 a | 516.2 ± 13.3 | 355.7 ± 8.4 a |
K2 (KK) + Mg + FF | 688.9 ± 13.0 a | 198.8 ± 14.2 a | 525.7 ± 13.4 | 346.2 ± 5.7 a |
F ratio | 6.0 *** | 6.0 *** | n.s | 5.81 *** |
Year × Treatment Interaction | ||||
F ratio | 2.2 * | 2.2 * | n.s | 2.1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barłóg, P.; Grzebisz, W. Potassium and Magnesium Balance the Effect of Nitrogen on the Yield and Quality of Sugar Beet. Agronomy 2025, 15, 2075. https://doi.org/10.3390/agronomy15092075
Barłóg P, Grzebisz W. Potassium and Magnesium Balance the Effect of Nitrogen on the Yield and Quality of Sugar Beet. Agronomy. 2025; 15(9):2075. https://doi.org/10.3390/agronomy15092075
Chicago/Turabian StyleBarłóg, Przemysław, and Witold Grzebisz. 2025. "Potassium and Magnesium Balance the Effect of Nitrogen on the Yield and Quality of Sugar Beet" Agronomy 15, no. 9: 2075. https://doi.org/10.3390/agronomy15092075
APA StyleBarłóg, P., & Grzebisz, W. (2025). Potassium and Magnesium Balance the Effect of Nitrogen on the Yield and Quality of Sugar Beet. Agronomy, 15(9), 2075. https://doi.org/10.3390/agronomy15092075