Increasing Topsoil Depth Improves Yield and Nitrogen Fertilizer Use Efficiency in Maize
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Agronomic Management
2.3. Sampling and Measurements
2.3.1. Grain Yield and Its Components
2.3.2. Nitrogen Fertilizer Use Efficiency in Maize
2.3.3. Soil Nitrogen Characteristics
2.3.4. Activities of Key Soil Nitrogen Metabolism Enzymes
2.4. Statistical Analyses
3. Results
3.1. Grain Yield and Yield Components
3.2. Nitrogen Fertilizer Use Efficiency of Maize Plants and Grain
3.3. Nitrogen Distribution in the Soil Profile
3.4. Soil Nitrogen Stock
3.5. Relations Between Grain Yield and Soil Nitrogen Stock
3.6. Distribution of Nitrogen Fertilizer in the Soil
3.7. Key Enzymes of Soil Nitrogen Metabolism
4. Discussion
4.1. Increasing Topsoil Depth Improves Maize Grain Yield and Nitrogen Fertilizer Use Characteristics
4.2. Increasing Topsoil Depth Optimizes Soil Nitrogen Content and Stock Characteristics
4.3. Increasing Topsoil Depth Optimizes the Distribution Characteristics of Nitrogen Fertilizer in Topsoil
4.4. Increasing Topsoil Depth Improves Soil Nitrification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NFUE | N fertilizer use efficiency |
G-NFUE | Grain N fertilizer use efficiency |
CV | Coefficient of variation |
SYI | Sustainable yield index |
S-NR | Soil nitrate reductase |
S-NiR | Soil nitrite reductase |
S-HR | Soil hydroxylamine reductase |
P-Nseason | The percentage of N accumulation in maize plants from seasonal N fertilizer |
S-Nseason | The percentage of seasonal N fertilizer in soil N |
ΔS | The change in soil N stock |
δS | The percentage of the change in soil N stock |
References
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 2011, 57, 78–86. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Thaler, E.A.; Kwang, J.S.; Quirk, B.J.; Quarrier, C.L.; Larsen, I.J. Rates of historical anthropogenic soil erosion in the Midwestern United States. Earth’s Future 2022, 10, e2021EF002396. [Google Scholar] [CrossRef]
- Brevik, E.C.; Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. SOIL 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Moonilall, N.I.; Sklenka, K.A.; Nocco, M.A.; Lal, R. Rehabilitative capacity of amendments to restore maize productivity following artificial topsoil erosion/deposition. Field Crops Res. 2023, 304, 109178. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, M.; Wang, Y. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197–198, 67–78. [Google Scholar] [CrossRef]
- Schoof, J.; Holz, M.; Rütting, T.; Well, R.; Buchen-Tschiskale, C. Impact of different soil erosion levels on gross N transformation processes and gaseous N losses: An incubation study. Soil Biol. Biochem. 2025, 209, 109905. [Google Scholar] [CrossRef]
- Herbrich, M.; Gerke, H.H.; Sommer, M. Root development of winter wheat in erosion-affected soils depending on the position in a hummocky ground moraine soil landscape. J. Plant Nutr. Soil Sci. 2018, 181, 147–157. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Pulido, D.J.; Fenton, T.E.; Colvin, T.S.; Karlen, D.L.; Jaynes, D.B.; Meek, D.W. Relationship of corn and soybean yield to soil and terrain properties. Agron. J. 2004, 96, 700–709. [Google Scholar] [CrossRef]
- Zöbisch, M.A.; Richter, C.; Heiligtag, B.; Schlott, R. Nutrient losses from cropland in the Central Highlands of Kenya due to surface runoff and soil erosion. Soil Tillage Res. 1995, 33, 109–116. [Google Scholar] [CrossRef]
- Zheng, F.; He, X.; Gao, X.; Zhang, C.; Tang, K. Effects of erosion patterns on nutrient loss following deforestation on the Loess Plateau of China. Agric. Ecosyst. Environ. 2005, 108, 85–97. [Google Scholar] [CrossRef]
- Nie, X.; Zhao, T.; Qiao, X. Impacts of soil erosion on organic carbon and nutrient dynamics in an alpine grassland soil. Soil Sci. Plant Nutr. 2013, 59, 660–668. [Google Scholar] [CrossRef]
- Guo, L.; Yang, Y.; Zhao, Y.; Li, Y.; Sui, Y.; Tang, C.; Jin, J.; Liu, X. Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degrad. Dev. 2021, 32, 2849–2860. [Google Scholar] [CrossRef]
- Thaler, E.A.; Larsen, I.J.; Yu, Q. The extent of soil loss across the US Corn Belt. Proc. Natl. Acad. Sci. USA 2021, 118, e1922375118. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Costello, C.; Baffaut, C.; Thompson, A.; Sadler, E.J. Projection of future drought and extreme events occurrence in Goodwater Creek Experimental Watershed, Midwestern US. Hydrol. Sci. J. 2021, 66, 1045–1058. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; Kögel-Knabner, I. Amount, distribution and driving factors of soil organic carbon and nitrogen in cropland and grassland soils of southeast Germany (Bavaria). Agric. Ecosyst. Environ. 2013, 176, 39–52. [Google Scholar] [CrossRef]
- Kautz, T.; Amelung, W.; Ewert, F.; Gaiser, T.; Horn, R.; Jahn, R.; Javaux, M.; Kemna, A.; Kuzyakov, Y.; Munch, J.C.; et al. Nutrient acquisition from arable subsoils in temperate climates: A review. Soil Biol. Biochem. 2013, 57, 1003–1022. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Q.; Wei, L.; Fu, W.; Wei, Z.; Tian, S. Global predictions of topsoil organic carbon stocks under changing climate in the 21st century. Sci. Total Environ. 2024, 908, 168448. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Papiernik, S.; Schumacher, T.; Lobb, D.; Lindstrom, M.; Lieser, M.; Eynard, A.; Schumacher, J. Soil properties and productivity as affected by topsoil movement within an eroded landform. Soil Tillage Res. 2009, 102, 67–77. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Jones, R.A.; Rounsevell, M.D.A. The effect of soil erosion on Europe’s crop yields. Ecosystems 2007, 10, 1209–1219. [Google Scholar] [CrossRef]
- Zhou, K.; Sui, Y.; Liu, X.; Zhang, X.; Jin, J.; Wang, G.; Herbert, S.J. Crop rotation with nine-year continuous cattle manure addition restores farmland productivity of artificially eroded Mollisols in Northeast China. Field Crops Res. 2015, 171, 138–145. [Google Scholar] [CrossRef]
- Liebhard, G.; Toth, M.; Stumpp, C.; Bodner, G.; Klik, A.; Zhang, X.; Strohmeier, S.; Strauss, P. Developing topsoil structure through conservation management to protect subsoil from compaction. Soil Tillage Res. 2025, 253, 106669. [Google Scholar] [CrossRef]
- Tully, K.L.; McAskill, C. Promoting soil health in organically managed systems: A review. Org. Agric. 2020, 10, 339–358. [Google Scholar] [CrossRef]
- Bian, J.; Tang, J.; Lin, N. Relationship between saline–alkali soil formation and neotectonic movement in Songnen Plain, China. Environ. Geol. 2008, 55, 1421–1429. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Xue, J.; Wang, K.; Li, S.; Hou, P. Coordinating maize source and sink relationship to achieve yield potential of 22.5 Mg ha−1. Field Crops Res. 2022, 283, 108544. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Shao, X.; Kong, Y.; Lyu, Y.; Wang, Y. Deep tillage improves the grain yield and nitrogen use efficiency of maize (Zea mays L.) under a wide–narrow row alternative system in Northeast China. Int. J. Plant Prod. 2022, 16, 63–76. [Google Scholar] [CrossRef]
- Qu, M.; Chen, Y.; Khan, A.; Liu, P. Enhancing maize yield stability, soil health, and microbial diversity via long-term manure practices: Insights from a 14-year trial. Environ. Technol. Innov. 2025, 38, 104177. [Google Scholar] [CrossRef]
- Wang, S.; Lu, C.; Huai, S.; Yan, Z.; Wang, J.; Sun, J.; Raza, S. Straw burial depth and manure application affect the straw-C and N sequestration: Evidence from 13C & 15N-tracing. Soil Tillage Res. 2021, 208, 104884. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, W.; Zhao, Z.; Jiang, W.; Zhang, P.; Sun, X.; Xue, Q. Soil compaction and maize root distribution under subsoiling tillage in a wheat–maize double cropping system. Agronomy 2023, 13, 394. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Sun, J.; Chen, H.; Fu, J.; He, X.; Biswas, A.; Zheng, F.; Li, Z. Soil thinning dominates crop yield reduction among various degradation types in the typical black soil region of Northeast China. Eur. J. Agron. 2025, 169, 127694. [Google Scholar] [CrossRef]
- Larney, F.J.; Olson, B.M.; Janzen, H.H.; Lindwall, C.W. Early impact of topsoil removal and soil amendments on crop productivity. Agron. J. 2000, 92, 948–956. [Google Scholar] [CrossRef]
- Sui, Y.; Liu, X.; Jin, J.; Zhang, S.; Zhang, X.; Herbert, S.J.; Ding, G. Differentiating the early impacts of topsoil removal and soil amendments on crop performance/productivity of corn and soybean in eroded farmland of Chinese Mollisols. Field Crops Res. 2009, 111, 276–283. [Google Scholar] [CrossRef]
- Kropff, M.J.; Cassman, K.G.; Van Laar, H.H.; Peng, S. Nitrogen and yield potential of irrigated rice. Plant Soil 1993, 155–156, 391–394. [Google Scholar] [CrossRef]
- Zhong, X.; Peng, S.; Sanico, A.L.; Liu, H. Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. J. Plant Nutr. 2003, 26, 1203–1222. [Google Scholar] [CrossRef]
- Zheng, B.; Jing, Y.; Zou, Y.; Hu, R.; Liu, Y.; Xiao, Z.; He, F.; Zhou, Q.; Tian, X.; Gong, J.; et al. Responses of tobacco growth and development, nitrogen use efficiency, crop yield and economic benefits to smash ridge tillage and nitrogen reduction. Agronomy 2022, 12, 2097. [Google Scholar] [CrossRef]
- Maddonni, G.A.; Otegui, M.E. Leaf area, light interception, and crop development in maize. Field Crops Res. 1996, 48, 81–87. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Xiao, Y.; Luo, W.; Yang, K.; Fu, J.; Wang, P. Plow tillage with buried straw increases maize yield by regulating soil properties, root growth, photosynthetic capacity, and bacterial community assembly in semi-arid black soil farmlands. Eur. J. Agron. 2025, 164, 127532. [Google Scholar] [CrossRef]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Niu, R.; Zhu, C.; Jiang, G.; Yang, J.; Zhu, X.; Li, L.; Shen, F.; Jie, X.; Liu, S. Variations in soil nitrogen availability and crop yields under a three-year annual wheat and maize rotation in a fluvo-aquic soil. Plants 2023, 12, 808. [Google Scholar] [CrossRef]
- Mayne, J.C. An Investigation of Nutrient Uptake Partitioning by Depth as a Response to Competition. Ph.D. Thesis, University of Florida, Gainesville, FL, USA, 1993. [Google Scholar]
- Artacho, P.; Bonomelli, C.; Meza, F. Nitrogen application in irrigated rice grown in mediterranean conditions: Effects on grain yield, dry matter production, nitrogen uptake, and nitrogen use efficiency. J. Plant Nutr. 2009, 32, 1574–1593. [Google Scholar] [CrossRef]
- dos Santos, U.J.; de Sá Barretto Sampaio, E.V.; de Andrade, E.M.; de Siqueira Pinto, A.; de Oliveira Dias, B.; de Jesus, K.N.; da Silva Santana, M.; Althoff, T.D.; Fernandes, M.M.; Menezes, R.S.C. Nitrogen stocks in soil classes under different land uses in the brazilian semiarid region. J. Soil Sci. Plant Nutr. 2021, 21, 1621–1630. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Mosier, A.R.; Bleken, M.A.; Chaiwanakupt, P.; Ellis, E.C.; Freney, J.R.; Howarth, R.B.; Matson, P.A.; Minami, K.; Naylor, R.; Weeks, K.N.; et al. Policy implications of human-accelerated nitrogen cycling. In The Nitrogen Cycle at Regional to Global Scales; Springer: Dordrecht, The Netherlands, 2002; pp. 477–516. [Google Scholar] [CrossRef]
- Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycles 1999, 13, 647–662. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Chen, S.; Dong, Y.; Tian, J.; Lin, C. Effect of soil thickness on crop production and nitrogen loss in sloping land. Agric. Water Manag. 2024, 304, 109080. [Google Scholar] [CrossRef]
- Hartemink, A.E. Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: A review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2005; pp. 227–253. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Zhao, B.; Zhang, J.; Ren, B.; Li, Z.; Wang, Z. Root physiological adaptations that enhance the grain yield and nutrient use efficiency of maize (Zea mays L) and their dependency on phosphorus placement depth. Field Crops Res. 2022, 276, 108378. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, J.; Gao, H. Soil enzyme activities on eroded slopes in the Sichuan Basin, China. Pedosphere 2015, 25, 489–500. [Google Scholar] [CrossRef]
- Ai, L.; Wu, F.; Fan, X.; Yang, Y.; Zhang, Y.; Zheng, X.; Zhu, J.; Ni, X. Different effects of litter and root inputs on soil enzyme activities in terrestrial ecosystems. Appl. Soil Ecol. 2023, 183, 104764. [Google Scholar] [CrossRef]
- Thomson, B.C.; Tisserant, E.; Plassart, P.; Uroz, S.; Griffiths, R.I.; Hannula, S.E.; Buée, M.; Mougel, C.; Ranjard, L.; Van Veen, J.A.; et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 2015, 88, 403–413. [Google Scholar] [CrossRef]
- Yue, K.; Fornara, D.A.; Heděnec, P.; Wu, Q.; Peng, Y.; Peng, X.; Ni, X.; Wu, F.; Peñuelas, J. No tillage decreases GHG emissions with no crop yield tradeoff at the global scale. Soil Tillage Res. 2023, 228, 105643. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harden, J.W.; Torn, M.S.; Kleber, M.; Burton, S.D.; Harte, J. Persistence of soil organic matter in eroding versus depositional landform positions. J. Geophys. Res. Biogeosciences 2012, 117, G02019. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, M.; Pang, D.; Yin, Y.; Han, M.; Li, Y.; Luo, Y.; Xu, X.; Li, Y.; Wang, Z. Straw return and appropriate tillage method improve grain yield and nitrogen efficiency of winter wheat. J. Integr. Agric. 2017, 16, 1708–1719. [Google Scholar] [CrossRef]
- Wang, L.; Luo, P.; Guo, X.; Zhang, M.; Li, H.; Liu, F.; Wu, J. Leaching of soil legacy nitrogen in intact soil columns and significance of soil macropore structure. Sci. Total Environ. 2024, 906, 167546. [Google Scholar] [CrossRef] [PubMed]
Indicator | Statistics | Year (Y) | Topsoil Depth (D) | Y × D |
---|---|---|---|---|
Yield | df1 | 2 | 4 | 8 |
df2 | 132 | 130 | 120 | |
F-value | 7.1 | 70.1 | 1.4 | |
p-value | <0.001 | 0.003 | 0.247 | |
Kernels per ear | df1 | 2 | 4 | 8 |
df2 | 132 | 130 | 120 | |
F-value | 9.6 | 49.5 | 3.2 | |
p-value | 0.001 | 0.000 | 0.009 | |
1000-kernel weight | df1 | 2 | 4 | 8 |
df2 | 132 | 130 | 120 | |
F-value | 32.3 | 26.8 | 1.1 | |
p-value | <0.001 | <0.001 | 0.392 |
Topsoil Treatment | Kernels per Ear | 1000-Kernel Weight (g) | Grain Yield (g plant−1) | CV | SYI |
---|---|---|---|---|---|
D10 | 523.6 ± 41.8 c | 276.0 ± 23.6 b | 167.6 ± 15.4 b | 0.92 | 0.78 |
D20 | 558.3 ± 34.3 b | 284.4 ± 18.0 b | 184.5 ± 15.6 b | 0.85 | 0.79 |
D30 | 636.3 ± 27.5 a | 316.3 ± 26.6 a | 233.5 ± 14.8 a | 0.63 | 0.86 |
D40 | 649.3 ± 19.6 a | 328.1 ± 22.2 a | 247.5 ± 14.5 a | 0.59 | 0.86 |
D50 | 651.9 ± 43.0 a | 331.0 ± 26.8 a | 250.3 ± 19.4 a | 0.78 | 0.81 |
Statistics | Year (Y) | Topsoil Depth (D) | Y × D |
---|---|---|---|
df1 | 2 | 4 | 8 |
df2 | 132 | 130 | 120 |
F-value | 204.4 | 17.5 | 2.4 |
p-value | <0.001 | <0.001 | 0.039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Lv, Y.; Dai, H.; Kong, Y.; Wang, Y.; Liu, K. Increasing Topsoil Depth Improves Yield and Nitrogen Fertilizer Use Efficiency in Maize. Agronomy 2025, 15, 2160. https://doi.org/10.3390/agronomy15092160
Zhang X, Lv Y, Dai H, Kong Y, Wang Y, Liu K. Increasing Topsoil Depth Improves Yield and Nitrogen Fertilizer Use Efficiency in Maize. Agronomy. 2025; 15(9):2160. https://doi.org/10.3390/agronomy15092160
Chicago/Turabian StyleZhang, Xiaolong, Yanjie Lv, Hongcui Dai, Yuanyuan Kong, Yongjun Wang, and Kaichang Liu. 2025. "Increasing Topsoil Depth Improves Yield and Nitrogen Fertilizer Use Efficiency in Maize" Agronomy 15, no. 9: 2160. https://doi.org/10.3390/agronomy15092160
APA StyleZhang, X., Lv, Y., Dai, H., Kong, Y., Wang, Y., & Liu, K. (2025). Increasing Topsoil Depth Improves Yield and Nitrogen Fertilizer Use Efficiency in Maize. Agronomy, 15(9), 2160. https://doi.org/10.3390/agronomy15092160