Development of a Real-Time Irrigation Strategy Based on Cumulative Reference Evapotranspiration (ET0) for Cabbage Cultivation in Paddy-Converted Fields
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Experimental Design and Cultivation Conditions
2.3. Automated Irrigation Algorithm
2.4. Irrigation System Design
2.5. Irrigation System Evaluation
2.6. Soil Moisture Monitoring
2.7. Evaluated Variables
2.7.1. Photosynthesis
2.7.2. Yield and Water Use Efficiency
2.8. Statistical Analysis
3. Results
3.1. Irrigation System Performance
3.2. Soil Moisture Dynamics
3.3. Photosynthetic Performance
3.4. Yield and Growth Traits
4. Discussion
4.1. Functionality and Effectiveness of the Automated Irrigation System
4.2. Effects of Automated Irrigation System on Soil Moisture Dynamics
4.3. Cabbage Photosynthesis
4.4. Interaction Effects on Cabbage Yield
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, D.; Kim, J.Y.; Kwon, E.E. Circular economy approach to valorizing horticultural waste via thermochemical process. Process Saf. Environ. Protect. 2025, 197, 107088. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Fesendouz, S.O.; Ebrahimzadeh, A.; Rasouli, F. Using agricultural waste as an alternative growing medium for cultivating Cucumis sativus L. greenhouse transplants. Sci. Rep. 2025, 15, 14899. [Google Scholar] [CrossRef]
- Mehta, A.; Yadav, A.; Kumar, A.; Kumari, K. Waste utilization in horticulture: An overview. J. Exp. Agric. Int. 2024, 46, 742–749. [Google Scholar] [CrossRef]
- Martins, T.C.; Machado, R.M.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir-based growing media with municipal compost and biochar and their impacts on growth and some quality parameters in lettuce seedlings. Horticulturae 2023, 9, 105. [Google Scholar] [CrossRef]
- Koyama, S.; Urayama, H.; Karunaratne, K.M.P.D.; Yamashita, T. Effects of coir application on soil properties and cucumber production as a reuse model of organic medium used in soilless culture. J. Trop. Agric. 2009, 53, 7–13. [Google Scholar] [CrossRef]
- Lee, G.-B.; Park, E.-J.; Park, Y.-H.; Yeo, K.-H.; Rhee, H.-C.; Kang, J.-S. Effect of recycled coir organic substrates on vegetable crop growth. J. Environ. Sci. Int. 2016, 25, 1077–1085. [Google Scholar] [CrossRef]
- Woznicki, T.; Kusnierek, K.; Vandecasteele, B.; Sønsteby, A. Reuse of coir, peat, and wood fiber in strawberry production. Front. Plant Sci. 2024, 14, 1307240. [Google Scholar] [CrossRef]
- Wang, X.; Park, J.; Lee, Y.J.; Lee, G.Y.; Park, J. Enhancement of the growth and quality of soybeans using wasted coir substrates on multi-purpose utilization land. J. Bio-Environ. Control 2023, 32, 466–474. [Google Scholar] [CrossRef]
- Wang, X.; Lee, Y.; Kang, T.; Park, J. Optimizing cabbage cultivation in paddy-converted fields using discarded coir substrates and controlled irrigation. Agronomy 2024, 15, 8. [Google Scholar] [CrossRef]
- Luo, H.; Liu, S.; Song, Y.; Qin, T.; Xiao, S.; Li, W.; Xu, L.; Zhou, X. Effects of waterlogging stress on root growth and soil nutrient loss of winter wheat at seedling stage. Agronomy 2024, 14, 1247. [Google Scholar] [CrossRef]
- Zhou, W.; Zhao, D.; Lin, X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.). J. Plant Growth Regul. 1997, 16, 47–53. [Google Scholar] [CrossRef]
- Anjum, M.N.; Cheema, M.J.M.; Hussain, F.; Wu, R.-S. Precision irrigation: Challenges and opportunities. In Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2023; pp. 85–101. [Google Scholar] [CrossRef]
- Dingre, S.; Gorantiwar, S. Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region. Agric. Water Manag. 2020, 232, 106042. [Google Scholar] [CrossRef]
- Han, S.; Yang, Y.; Li, H.; Yang, Y.; Wang, J.; Cao, J. Determination of crop water use and coefficient in drip-irrigated cotton fields in arid regions. Field Crop. Res. 2019, 236, 85–95. [Google Scholar] [CrossRef]
- Rallo, G.; Paço, T.; Paredes, P.; Puig-Sirera, À.; Massai, R.; Provenzano, G.; Pereira, L. Updated single and dual crop coefficients for tree and vine fruit crops. Agric. Water Manag. 2021, 250, 106645. [Google Scholar] [CrossRef]
- Tezera, K.; Dirirsa, G.; Hordofa, T. Determination of crop water requirement and crop coefficient of wheat (Triticum aestivum L.) at Melkassa, Central Rift Valley of Ethiopia. In Results of Natural Resources Management Research; Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2020; pp. 561–568. [Google Scholar]
- Gabr, M.E.-S. Management of irrigation requirements using FAO-CROPWAT 8.0 model: A case study of Egypt. Model. Earth Syst. Environ. 2022, 8, 3127–3142. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Hunsaker, D.; López-Urrea, R.; Shad, Z.M. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; López-Urrea, R.; Hunsaker, D.; Mota, M.; Shad, Z.M. Standard single and basal crop coefficients for vegetable crops, an update of FAO56 crop water requirements approach. Agric. Water Manag. 2021, 243, 106196. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Ciampitti, I.; Jha, P. Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands. Field Crop. Res. 2021, 260, 108004. [Google Scholar] [CrossRef]
- Divya, K.; Mhatre, P.H.; Venkatasalam, E.; Sudha, R. Crop simulation models as decision-supporting tools for sustainable potato production: A review. Potato Res. 2021, 64, 387–419. [Google Scholar] [CrossRef]
- Nzimande, T.N.M. Application and Evaluation of AquaCrop, DSSAT and Simple Model in Modelling Yield and Water Use of Selected Underutilised Cereal Crops. Master’s Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2021. [Google Scholar]
- Ahmed, M.; Ahmad, S.; Fahad, S. Potential applications of DSSAT, AquaCrop, APSIM models for crop water productivity and irrigation scheduling. In Fertigation Technologies for Micro Irrigated Crops; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 137–170. [Google Scholar]
- Li, W.; Awais, M.; Ru, W.; Shi, W.; Ajmal, M.; Uddin, S.; Liu, C. Review of sensor network-based irrigation systems using IoT and remote sensing. Adv. Meteorol. 2020, 2020, 8396164. [Google Scholar] [CrossRef]
- Liao, R.; Zhang, S.; Zhang, X.; Wang, M.; Wu, H.; Zhangzhong, L. Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept. Agric. Water Manag. 2021, 245, 106632. [Google Scholar] [CrossRef]
- Jamal, A.; Cai, X.; Qiao, X.; Garcia, L.; Wang, J.; Amori, A.; Yang, H. Real-Time irrigation scheduling based on weather forecasts, field observations, and human-machine interactions. Water Resour. Res. 2023, 59, e2023WR035810. [Google Scholar] [CrossRef]
- Glória, A.; Cardoso, J.; Sebastião, P. Sustainable irrigation system for farming supported by machine learning and real-time sensor data. Sensors 2021, 21, 3079. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.K.; Misra, S.; Raghuwanshi, N.S.; Das, S.K. AgriSens: IoT-based dynamic irrigation scheduling system for water management of irrigated crops. IEEE Internet Things J. 2020, 8, 5023–5030. [Google Scholar] [CrossRef]
- Vera, J.; Conejero, W.; Mira-Garcia, A.B.; Conesa, M.R.; Ruiz-Sánchez, M.C. Towards irrigation automation based on dielectric soil sensors. J. Hortic. Sci. Biotechnol. 2021, 96, 696–707. [Google Scholar] [CrossRef]
- Amiri, Z.; Gheysari, M.; Mosaddeghi, M.R.; Amiri, S.; Tabatabaei, M.S. An attempt to find a suitable place for soil moisture sensor in a drip irrigation system. Inf. Process. Agric. 2022, 9, 254–265. [Google Scholar] [CrossRef]
- Yu, L.; Gao, W.; Shamshiri, R.R.; Tao, S.; Ren, Y.; Zhang, Y.; Su, G. Review of research progress on soil moisture sensor technology. Int. J. Agric. Biol. Eng. 2021, 14, 32–42. [Google Scholar] [CrossRef]
- Xie, A.; Zhou, Q.; Fu, L.; Zhan, L.; Wu, W. From lab to field: Advancements and applications of on-the-go soil sensors for real-time monitoring. Eurasian Soil Sci. 2024, 57, 1730–1745. [Google Scholar] [CrossRef]
- Park, C.; Son, S.; Kim, H.; Ham, Y.; Kim, J.; Cha, D.; Chang, E.; Lee, G.; Kug, J.; Lee, W. Record-breaking summer rainfall in South Korea in 2020: Synoptic characteristics and the role of large-scale circulations. Mon. Weather Rev. 2021, 149, 3085–3100. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015.
- ‘KoKoMa F1’ Cabbage Cultivation Method. Available online: https://www.asiaseedmall.com/board/view.php?bdId=notice&sno=19 (accessed on 2 March 2020).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, p. 111. [Google Scholar]
- Beshir, S. Review on estimation of crop water requirement, irrigation frequency and water use efficiency of cabbage production. Geosci. Environ. Prot. 2017, 5, 59. [Google Scholar] [CrossRef]
- Liao, Z.; Zeng, H.; Fan, J.; Lai, Z.; Zhang, C.; Zhang, F.; Wang, H.; Cheng, M.; Guo, J.; Li, Z. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agric. Water Manag. 2022, 268, 107688. [Google Scholar] [CrossRef]
- Lee, Y.; Ha, S.-u.; Wang, X.; Hahm, S.; Lee, K.; Park, J. An automatic irrigation system based on hourly cumulative evapotranspiration for reducing agricultural water usage. Agriculture 2025, 15, 308. [Google Scholar] [CrossRef]
- Kazda, J.; Mann, J. Mitigating impact of spatial variance of turbulence in wind energy applications. Wind. Energy Sci. 2020, 5, 439–450. [Google Scholar] [CrossRef]
- Mu, G.; Yang, M.; Wang, D.; Yan, G.; Qi, Y. Spatial dispersion of wind speeds and its influence on the forecasting error of wind power in a wind farm. J. Mod. Power Syst. Clean. Energy 2016, 4, 265–274. [Google Scholar] [CrossRef]
- Lin, Y.; Jin, Y.; Jin, H. Field study on the microclimate of public spaces in traditional residential areas in a severe cold region of China. Int. J. Environ. Res. Public Health 2019, 16, 2986. [Google Scholar] [CrossRef] [PubMed]
- Valle Júnior, L.C.G.d.; Vourlitis, G.L.; Curado, L.F.A.; Palácios, R.d.S.; Nogueira, J.d.S.; Lobo, F.d.A.; Islam, A.R.M.T.; Rodrigues, T.R. Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water 2021, 13, 1763. [Google Scholar] [CrossRef]
- Chu, R.; Li, M.; Shen, S.; Islam, A.R.M.T.; Cao, W.; Tao, S.; Gao, P. Changes in reference evapotranspiration and its contributing factors in Jiangsu, a major economic and agricultural province of eastern China. Water 2017, 9, 486. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Azorin-Molina, C.; Sanchez-Lorenzo, A.; Revuelto, J.; Morán-Tejeda, E.; López-Moreno, J.I.; Espejo, F. Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961–2011). Water Resour. Res. 2014, 50, 8458–8480. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N. A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Leghari, S.J.; Han, W.; Hu, K.; Laghari, Y.; Wei, Y.; Cui, L. What should we do for water security? A technical review on more yield per water drop. J. Environ. Manag. 2024, 370, 122832. [Google Scholar] [CrossRef]
- Gebeyhu, B.; Dagalo, S.; Muluneh, M. Soil moisture-based irrigation interval and irrigation performance evaluation: In the case of lower kulfo catchment, Ethiopia. Heliyon 2024, 10, e36089. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Zappa, L.; Schlaffer, S.; Brocca, L.; Vreugdenhil, M.; Nendel, C.; Dorigo, W. How accurately can we retrieve irrigation timing and water amounts from (satellite) soil moisture? Int. J. Appl. Earth Obs. Geoinf. 2022, 113, 102979. [Google Scholar] [CrossRef]
- Chen, S.-K.; Liu, C.W. Analysis of water movement in paddy rice fields (I) experimental studies. J. Hydrol. 2002, 260, 206–215. [Google Scholar] [CrossRef]
- Verbist, K.; Cornelis, W.; Schiettecatte, W.; Oltenfreiter, G.; Van Meirvenne, M.; Gabriëls, D. The influence of a compacted plow sole on saturation excess runoff. Soil Tillage Res. 2007, 96, 292–302. [Google Scholar] [CrossRef]
- Li, Y.; Jia, Z.; Niu, W.; Wang, J.; Zhang, M. Effect of post-infiltration soil aeration at different growth stages on growth and fruit quality of drip-irrigated potted tomato plants (Solanum lycopersicum). PLoS ONE 2015, 10, e0143322. [Google Scholar] [CrossRef]
- Yu, Z.-z.; Wang, H.-x.; Yu, D.-s.; Yin, N.-x.; Zhang, J. The effect of aeration and irrigation on the improvement of soil environment and yield in dryland maize. Front. Plant Sci. 2024, 15, 1464624. [Google Scholar] [CrossRef]
- Buga, N.; Petek, M. Use of biostimulants to alleviate anoxic stress in waterlogged cabbage (Brassica oleracea var. capitata)—A review. Agriculture 2023, 13, 2223. [Google Scholar] [CrossRef]
- Negyesi, G.; Szabó, S.; Buró, B.; Mohammed, S.; Loki, J.; Rajkai, K.; Holb, I.J. Influence of soil moisture and crust formation on soil evaporation rate: A wind tunnel experiment in Hungary. Agronomy 2021, 11, 935. [Google Scholar] [CrossRef]
- Wickramarachchi, K.; Betti, G.; Azam, G. Effect of clay amendment and strategic deep tillage on soil water dynamics and plant growth under controlled environments. Plants 2025, 14, 799. [Google Scholar] [CrossRef]
- Lim, M.Y.; Choi, S.H.; Jeong, H.J.; Choi, G.L. Characteristics of domestic net type melon in hydroponic spring cultivars using coir substrates. Hortic. Sci. Technol. 2020, 38, 78–86. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Guo, W.; Zheng, W.; Zhao, Q.; Yu, W.; Li, J. Effects of irrigation scheduling on the yield and irrigation water productivity of cucumber in coconut coir culture. Sci. Rep. 2024, 14, 2944. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.-J.; Choi, E.-Y.; Lee, Y.-B. Irrigation control for improving irrigation efficiency in coir substrate hydroponic system. J. Bio-Environ. Control 2015, 24, 153–160. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Sun, J.; Li, Y.; Geng, Y.; Pan, Y.; Zhang, Z. Root-zone aeration improves fruit yield and quality of tomato by enhancement of leaf photosynthetic performance. Agric. Water Manag. 2024, 291, 108639. [Google Scholar] [CrossRef]
- Li, G.; Cheng, H.; Qiao, C.; Feng, J.; Yan, P.; Yang, R.; Song, J.; Sun, J.; Zhao, Y.; Zhang, Z. Root-zone oxygen supply mitigates waterlogging stress in tomato by enhancing root growth, photosynthetic performance, and antioxidant capacity. Plant Physiol. Biochem. 2025, 222, 109744. [Google Scholar] [CrossRef]
- Marques, E.d.S.; Mota, J.C.A.; Lacerda, C.F.d.; Silva, F.G.d.; Romero, R.E. Gas exchange in maize as a function of aeration porosity in a cohesive soil. Rev. Ciência Agron. 2021, 52, e20196823. [Google Scholar] [CrossRef]
- Roosta, H.R. The responses of pepper plants to nitrogen form and dissolved oxygen concentration of nutrient solution in hydroponics. BMC Plant Biol. 2024, 24, 281. [Google Scholar] [CrossRef]
- Chai, H.; Gao, L.; Zhao, C.; Liu, X.; Jiang, D.; Dai, T.; Tian, Z. Low nitrogen priming enhances Rubisco activation and allocation of nitrogen to the photosynthetic apparatus as an adaptation to nitrogen-deficit stress in wheat seedling. J. Plant Physiol. 2024, 303, 154337. [Google Scholar] [CrossRef]
- Zhou, Y.; Kitudom, N.; Fauset, S.; Slot, M.; Fan, Z.; Wang, J.; Liu, W.; Lin, H. Leaf thermal regulation strategies of canopy species across four vegetation types along a temperature and precipitation gradient. Agric. For. Meteorol. 2023, 343, 109766. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Posch, B.C.; Evans, J.R.; Farquhar, G.D.; Atkin, O.K. Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat. Commun. 2023, 14, 2820. [Google Scholar] [CrossRef]
- Zhang, Z.; Furman, A. Soil redox dynamics under dynamic hydrologic regimes-A review. Sci. Total Environ. 2021, 763, 143026. [Google Scholar] [CrossRef]
- Li, G.; Zhu, G.; Liu, J.; Wang, Z.; Long, H.; Zhang, R.; Yu, K. Effects of stable and fluctuating soil water on the agronomic and biological performance of root vegetables. Front. Plant Sci. 2024, 15, 1325078. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, B.; Zhou, N. Effects of redox potential on the environmental behavior of nitrogen in riparian zones of West Dongting Lake Wetlands, China. Wetlands 2020, 40, 1307–1316. [Google Scholar] [CrossRef]
- Qu, M.; Zheng, G.; Hamdani, S.; Essemine, J.; Song, Q.; Wang, H.; Chu, C.; Sirault, X.; Zhu, X.-G. Leaf photosynthetic parameters related to biomass accumulation in a global rice diversity survey. Plant Physiol. 2017, 175, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Saba, M.; Abo-Elyousr, K.A.; AL-Solaimani, S.G. Organic production of cabbage (Brassica oleracea L.) for agricultural sustainability and healthy nutrition: An overview. J. Appl. Nat. Sci. 2025, 17, 253. [Google Scholar] [CrossRef]
- Henderson, R.; Patrick, W., Jr. Soil aeration and plant productivity. In Handbook of Agricultural Productivity; CRC Press: Boca Raton, FL, USA, 2018; pp. 51–70. [Google Scholar]
- Manghwar, H.; Hussain, A.; Alam, I.; Khoso, M.A.; Ali, Q.; Liu, F. Waterlogging stress in plants: Unraveling the mechanisms and impacts on growth, development, and productivity. Environ. Exp. Bot. 2024, 224, 105824. [Google Scholar] [CrossRef]
- Driesen, E.; De Proft, M.; Saeys, W. Drought stress triggers alterations of adaxial and abaxial stomatal development in basil leaves increasing water-use efficiency. Hortic. Res. 2023, 10, uhad075. [Google Scholar] [CrossRef]
- Demir, H.; Kaman, H.; Sönmez, İ.; Uçan, U.; Akgün, İ.H. Yield and yield parameters response of cabbage to partial root drying and conventional deficit irrigation. Agronomy 2024, 14, 2721. [Google Scholar] [CrossRef]
Treatments | PD (g·cm−3) | BD (g·cm−3) | TP (%) | Sand (%) | Silt (%) | Clay (%) |
---|---|---|---|---|---|---|
PS (0~20 cm) | 2.23 | 1.24 | 44.4 | 66.0 | 28.0 | 6.0 |
PS (20~40 cm) | 2.32 | 1.25 | 46.1 | 68.0 | 26.0 | 6.0 |
PS (40~60 cm) | 2.34 | 1.22 | 47.9 | 68.0 | 28.0 | 4.0 |
CS | 1.36 | 0.07 | 94.9 | – | – | – |
Treatments | pH (1:5) | EC (dS·m−1) | Total N (%) | OM (g·kg−1) | AP (mg·kg−1) | Exch. Cations (cmolc·kg−1) | ||
---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | ||||||
PS (0~20 cm) | 6.2 | 0.3 | 0.11 | 17 | 188 | 0.36 | 3.4 | 0.7 |
PS (20~40 cm) | 6.7 | 0.2 | 0.03 | 4 | 50 | 0.23 | 3.8 | 0.8 |
PS (40~60 cm) | 6.9 | 0.2 | 0.01 | 1 | 11 | 0.18 | 2.9 | 0.8 |
CS | 5.4 | 3.8 | 1.63 | 809.6 | 2594.13 | 1.04 | 75.03 | 10.64 |
Growth Stage (Date Range) | kc | Cumulative ET0 (mm) | Cumulative ETc (mm) |
---|---|---|---|
root establishment (4.16–4.22) | – | – | – |
initial (4.23–5.2) | 0.56 | 34.19 | 19.15 |
development (5.3–5.22) | 0.84 | 77.19 | 64.84 |
late (5.23–6.11) | 0.76 | 85.83 | 65.23 |
Irrigation Level | ETc140 | ETc100 | ETc60 | ETc0 |
ID (m3) | 4.65 | 3.45 | 2.26 | 0.47 |
Parameter | Meaning | Flow Rate (m3·h−1) | Accuracy |
---|---|---|---|
Q3 | Nominal flow rate | 1.0 | ±2.0% |
Q2 | Transition flow rate | 0.04 | ±2.0% |
Q1 | Minimum flow rate | 0.025 | ±5.0% |
Treatments | HD (cm) | HFW (g) | HDW (g) | Yield (t·ha−1) | WUE (kg·m−3) |
---|---|---|---|---|---|
GS | |||||
PS | 9.8 ± 0.45 b | 429.1 ± 54.71 b | 27.9 ± 3.64 b | 23.9 ± 3.04 b | 23.4 ± 3.14 b |
CS | 13.8 ± 0.44 a | 1309.0 ± 103.75 a | 84.6 ± 6.76 a | 72.8 ± 5.77 a | 60.6 ± 8.56 a |
ID | |||||
ETc140 | 10.8 ± 0.50 a | 603.3 ± 101.41 a | 39.0 ± 6.50 a | 33.5 ± 5.64 a | 17.4 ± 2.91 a |
ETc100 | 13.1 ± 0.84 a | 1158.4 ± 203.57a | 74.5 ± 12.91 a | 64.4 ± 11.32 a | 44.2 ± 7.59 a |
ETc60 | 13.1 ± 0.68 a | 1080.2 ± 181.00 a | 69.9 ± 11.96 a | 60.1 ± 10.06 a | 64.3 ± 10.98 a |
ETc0 | 10.3 ±1.12 a | 634.4 ± 177.23 a | 41.4 ± 11.80 a | 35.3 ± 9.85 a | - |
GS × ID | |||||
PS-ETc140 | 10.0 ± 0.39 c | 400.2 ± 60.04 de | 26.4 ± 4.55 de | 22.3 ± 3.34 de | 11.6 ± 1.74 c |
CS-ETc140 | 11.7 ± 0.75 bc | 806.3 ± 148.53 cd | 51.6 ± 9.51 cd | 44.8 ± 8.26 cd | 23.2 ± 4.27 bc |
PS-ETc100 | 11.0 ± 0.47 bc | 606.4 ± 73.85 de | 38.7 ± 4.75 de | 33.7 ± 4.11 de | 23.7 ± 2.89 bc |
CS-ETc100 | 15.2 ± 0.90 a | 1710.3 ± 169.38 a | 110.3 ± 9.30 a | 95.1 ± 9.42 a | 64.7 ± 6.41 ab |
PS-ETc60 | 11.3 ± 0.48 bc | 595.5 ± 86.21 de | 39.0 ± 6.22 de | 33.1 ± 4.79 de | 34.7 ± 5.03 bc |
CS-ETc60 | 14.8 ± 0.52 a | 1564.8 ± 150.13 ab | 100.8 ± 11.29 ab | 87.0 ± 8.35 ab | 93.8 ± 9.00 a |
PS-ETc0 | 7.1 ± 0.63 d | 114.3 ± 24.85 e | 7.2 ± 1.64 e | 6.4 ± 1.38 e | - |
CS-ETc0 | 13.5 ± 0.39 ab | 1154.5 ± 73.93 bc | 75.6 ± 6.26 bc | 64.2 ± 4.11 bc | - |
GS | *** | *** | *** | *** | *** |
ID | *** | *** | *** | *** | *** |
GS × ID | ** | * | * | * | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Lee, Y.; Kang, T.; Park, J. Development of a Real-Time Irrigation Strategy Based on Cumulative Reference Evapotranspiration (ET0) for Cabbage Cultivation in Paddy-Converted Fields. Agronomy 2025, 15, 1981. https://doi.org/10.3390/agronomy15081981
Wang X, Lee Y, Kang T, Park J. Development of a Real-Time Irrigation Strategy Based on Cumulative Reference Evapotranspiration (ET0) for Cabbage Cultivation in Paddy-Converted Fields. Agronomy. 2025; 15(8):1981. https://doi.org/10.3390/agronomy15081981
Chicago/Turabian StyleWang, Xin, Yongjae Lee, To Kang, and Jongseok Park. 2025. "Development of a Real-Time Irrigation Strategy Based on Cumulative Reference Evapotranspiration (ET0) for Cabbage Cultivation in Paddy-Converted Fields" Agronomy 15, no. 8: 1981. https://doi.org/10.3390/agronomy15081981
APA StyleWang, X., Lee, Y., Kang, T., & Park, J. (2025). Development of a Real-Time Irrigation Strategy Based on Cumulative Reference Evapotranspiration (ET0) for Cabbage Cultivation in Paddy-Converted Fields. Agronomy, 15(8), 1981. https://doi.org/10.3390/agronomy15081981