Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling and Analyses
2.3.1. Rubber Yield
2.3.2. Sampling and Analysis of Leaves
2.3.3. Soil Sampling and Analyses
2.4. Soil Quality Measurement
2.5. Statistical Analyses
3. Results
3.1. Rubber Latex Yield
3.2. Leaf Nutrients
3.3. Soil Chemical Properties and Enzyme Activities
3.4. Soil Quality Evaluation and Correlation with Rubber Latex Yield
3.5. Relationships of Rubber Leaf Nutrient and Latex Yield with Soil Variables
4. Discussion
4.1. Effect of the Soil Property, Enzyme Activity, and Soil Quality Under Organic Substitution Fertilization
4.2. Effect of the Leaf Nutrient Under Organic Substitution Fertilization
4.3. Effect of Soil Quality on Latex Yield Under Organic Substitution Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT Statistical Database (FAO). 2024. Available online: https://www.fao.org/faostat/en/#data (accessed on 1 January 2025).
- Wei, J.Y.; Zheng, H.Y.; Shi, Y.X. Analysis of China’s natural rubber industry in 2024 and future outlook. Trop. Agric. China 2025, 2, 17–22+7. [Google Scholar]
- Park, J.C.; Ling, T.; Kim, M.Y.; Bae, S.W.; Ryu, S.B. Enhanced natural rubber production in rubber dandelion Taraxacum kok-saghyz roots by foliar application of a natural lipid. Ind. Crops Prod. 2024, 213, 117714. [Google Scholar] [CrossRef]
- Zhao, L.; Zeng, R.; Ding, L.; Xing, P.; Xin, Z.X.; Qiu, J.; Gui, H.X. Practices of six-day tapping system for enhanced natural rubber yield and quality in China. Ind. Crops Prod. 2024, 224, 120343. [Google Scholar] [CrossRef]
- Gohet, E.; Saaban, I.; Soumahoro, M.; Uche, E.; Soumahoro, B.; Cauchy, T. Sustainable rubber production through good latex harvesting practices: An update on mature rubber fertilization effects on latex cell biochemistry and rubber yield potential. In Proceedings of the IRRDB Workshop on Latex Harvesting Technology, Binh Duong, Vietnam, 19–22 November 2013; p. 8. [Google Scholar]
- Lu, W.; Xu, W.X.; Su, T.Y.; Yu, L.; Jiang, Y.M.; Lu, J.L.; Liu, W.J.; Yang, Q. Effects of organic fertilizer replacing chemical nitrogen fertilizer on soil nutrients and enzyme activities of rubber plantation in Hainan Island. J. Trop. Biol. 2024, 15, 745–755. [Google Scholar]
- Qu, J.Z.; Lin, Q.H.; Jin, D.; Yang, H.; Lin, W.H.; Huang, Y.Y.; Ning, H.; Zhao, Q.J.; Li, J.H. Effect of different fertilization practices on the yield and quality of rubber tree latex. J. Plant Nutr. Fert. 2025, 31, 759–773. [Google Scholar]
- Yuan, J.; Wang, J.; Ye, J.; Dai, A.; Zhang, L.; Wang, J.; Li, J.; Zhang, M.; Zhang, H.; Chen, D.; et al. Long-term organic fertilization enhances potassium uptake and yield of sweet potato by expanding soil aggregates-associated potassium stocks. Agric. Ecosyst. Environ. 2023, 358, 108701. [Google Scholar] [CrossRef]
- Xu, W.; Yang, Q.; Jiang, Y.; Yu, J.; Li, J.; Liu, W.; Wu, Z. Improving soil pH, nutrient concentrations, and enzyme activities by green manure returning in young and mature rubber plantation on Hainan Island, China. Plant. Soil 2024, 495, 341–358. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Liu, L.; Li, T.; Dou, Y.; Qiao, J.; Wang, Y.; An, S.; Chang, S.X. Nitrogen fertilization weakens the linkage between soil carbon and microbial diversity: A global meta-analysis. Glob. Change Biol. 2022, 28, 6446–6461. [Google Scholar] [CrossRef]
- Li, C.; Aluko, O.O.; Yuan, G.; Li, J.; Liu, H. The responses of soil organic carbon and total nitrogen to chemical nitrogen fertilizers reduction base on a meta-analysis. Sci. Rep. 2022, 29, 16326. [Google Scholar] [CrossRef]
- Gautam, A.; Guzman, J.; Kovacs, P.; Kumar, S. Manure and inorganic fertilization impacts soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. 2021, 68, 1261–1273. [Google Scholar] [CrossRef]
- Lv, F.; Song, J.; Giltrap, D.; Feng, Y.; Yang, X.; Zhang, S. Crop yield and N2O emission affected by long-term organic manure substitution fertilizer under winter wheat-summer maize crop system. Sci. Total Environ. 2020, 25, 139321. [Google Scholar] [CrossRef]
- Guo, H.T.; Gao, J.; Zhang, Q.; Li, J.H.; Jin, D.S.; Xu, M.G. Differences and reasons for the effects of organic fertilizer on the pH of acidic and alkaline soils in China. Chin. J. Appl. Environ. Biol. 2024, 30, 496–503. [Google Scholar]
- Shahid, M.; Nayak, A.K.; Puree, C.; Tripathi, R.; Lal, B.; Gautam, P.; Bhattacharyya, P.; Mohanty, S.; Kumar, A.; Panda, B.B.; et al. Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil. Soil Till. Res. 2017, 170, 136–146. [Google Scholar] [CrossRef]
- Xu, W.; Liu, W.; Tang, S.; Yang, Q.; Meng, L.; Wu, Y.; Wang, J.; Wu, L.; Wu, M.; Xue, X.; et al. Long-term partial substitution of chemical nitrogen fertilizer with organic fertilizers increased SOC stability by mediating soil C mineralization and enzyme activities in a rubber plantation of Hainan Island, China. Appl. Soil Ecol. 2023, 182, 104691. [Google Scholar] [CrossRef]
- Peerawat, M.; Blaud, A.; Trap, J.; Chevallier, T.; Alonso, P.; Gay, F.; Brauman, A. Rubber plantation ageing controls soil biodiversity after land conversion from cassava. Agric. Ecosyst. Environ. 2018, 257, 92–102. [Google Scholar] [CrossRef]
- Jia, R.; Zhou, J.; Chu, J.; Shahbaz, M.; Yang, Y.; Jones, D.L.; Zang, H.D.; Razavi, B.S.; Zeng, Z. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: A case study from the North China Plain. J. Clean. Prod. 2022, 362, 132265. [Google Scholar] [CrossRef]
- Yu, G.; Chen, F.; Xie, Y.; Tan, Z. Effects of chemical fertilizer replacing organic fertilizer ratio on active organic carbon and enzymatic activity in yellow loam soil. China Veget. 2020, 4, 48–55. [Google Scholar]
- Lv, F.; Hou, M.; Zhang, H.; Qiang, J.; Zhou, Y.; Lu, G.; Zhao, B.; Yang, X.; Zhang, S. Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat–summer maize rotation system in Lou soil. J. Plant Nutr. Fert. 2018, 24, 22–32. [Google Scholar]
- Shu, Z.; Ji, Q.; Shao, N.; Zheng, S.; Zhou, H.; He, W. Effects of organic fertilizer replacement on soil nutrients in tea garden and yield-quality of tea plant. Acta Hortic. Sin. 2023, 50, 2207–2219. [Google Scholar]
- Mei, N.; Zhang, X.; Wang, X.; Peng, C.; Gao, H.; Zhu, P.; Gu, Y. Effects of 40 years applications of inorganic and organic fertilization on soil bacterial community in a maize agroecosystem in northeast China. Eur. J. Agron. 2021, 130, 126332. [Google Scholar] [CrossRef]
- Qi, D.; Wu, Z.; Chen, B.; Zhang, X.; Yang, C.; Fu, Q. Integrative cultivation pattern, distribution, yield and potential benefit of rubber-based agroforestry system in China. Ind. Crops Prod. 2024, 220, 119228. [Google Scholar] [CrossRef]
- Puttaso, P.; Namanusart, W.; Thumanu, K.; Kamolmanit, B.; Brauman, A.; Lawongsa, P. Assessing the effect of rubber (Hevea brasiliensis (Willd. Ex A. Juss.) muell. Arg.) leaf chemical composition on some soil properties of differently aged rubber tree plantations. Agronomy 2020, 10, 1871. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Liu, W.; Yang, Q.; Xu, W.; Tang, S.; Wang, J. Effects of manure substituting chemical nitrogen fertilizer on rubber seedling growth and soil environment. Chin. J. Appl. Ecol. 2022, 33, 431–438. [Google Scholar]
- Lu, R. Chemical Analysis of Agricultural Soil; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 239–469. [Google Scholar]
- DeForest, J.L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 2009, 41, 1180–1186. [Google Scholar] [CrossRef]
- He, H.; Peng, M.; Lu, W.; Hou, Z.; Li, J. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Sci. Total Environ. 2022, 851, 158132. [Google Scholar] [CrossRef] [PubMed]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Chen, L.; Liang, J.; Huang, R.; Tang, X.; Zhang, X.; Wang, C. Partial substitution of chemical fertilizer with organic fertilizer over seven years increases yields and restores soil bacterial community diversity in wheat–rice rotation. Eur. J. Agron. 2022, 133, 126445. [Google Scholar] [CrossRef]
- Liu, P.; Lin, Y.; Liu, X.; Deng, M.; Zhang, P.; Ren, X.; Chen, X. Manure substitution with appropriate N rate enhanced the soil quality, crop productivity, and net ecosystem economic benefit: A sustainable rainfed wheat practice. Field Crops Res. 2023, 304, 109164. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef]
- Mustafa, A.; Hu, X.; Shah, S.A.A.; Abrar, M.M.; Maitlo, A.A.; Kubar, K.A.; Xu, M. Long-term fertilization alters the chemical composition and stability of aggregate-associated organic carbon in a Chinese red soil: Evidence from aggregate fractionation, C mineralization, and 13C NMR analyses. J. Soil. Sediment. 2021, 21, 2483–2496. [Google Scholar] [CrossRef]
- Gross, A.; Glaser, B. Meta-analysis on how manure application changes soil organic carbon storage. Sci. Rep. 2021, 11, 5516. [Google Scholar] [CrossRef]
- Ju, X.; Christie, P. Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive crop systems: A case study on the North China Plain. Field Crops Res. 2011, 124, 450–458. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. Microbiota Biofertil. 2021, 2, 1–20. [Google Scholar]
- Liu, H.; Du, X.; Li, Y.; Han, X.; Li, B.; Zhang, X.; Li, Q.; Liang, W. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity. J. Clean. Prod. 2022, 347, 131323. [Google Scholar] [CrossRef]
- Ransirini, A.M.; Elżbieta, M.S.; Joanna, G.; Bartosz, K.; Mirosław, K.J.; Magdalena, U. Aged Turkey manure shapes microbial diversity and antibiotic resistance genes in soil and plants under fertilization. Sci. Rep. 2025, 15, 20463. [Google Scholar] [CrossRef]
- Lori, M.; Hartmann, M.; Kundel, D.; Mayer, J.; Mueller, R.C.; Mäder, P.; Krause, H.M. Soil microbial communities are sensitive to differences in fertilization intensity in organic and conventional farming systems. Microbiol. Ecol. 2023, 99, fiad046. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Shah, J.J.F.; Findlay, S.G.; Kuehn, K.A.; Moorhead, D.L. Scaling microbial biomass, metabolism and resource supply. Biogeochemistry 2014, 122, 175–190. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Wang, Q.; Zhu, W.; Kang, Y. Soil extracellular enzyme activity linkage with soil organic carbon under conservation tillage: A global meta-analysis. Eur. J. Agron. 2024, 155, 127135. [Google Scholar] [CrossRef]
- Li, J.; Liang, Y.; Xue, L.; Li, W.; Zhang, S.; Zamanian, K.; Zhao, X. Enzymatic stoichiometry and microbial resource limitation in a saline-alkaline soil five years after biochar application, fertilization, and irrigation. Agronomy 2025, 15, 589. [Google Scholar] [CrossRef]
- Liu, B.; Xia, H.; Jiang, C.; Riaz, M.; Yang, L.; Chen, Y.; Fan, X.; Xia, X. 14-year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities, and microbial community in rice-wheat rotation of middle China. Sci. Total Environ. 2022, 841, 156608. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, M.; Wu, J.; Pan, X.; Gao, C.; Tang, D. Impact of combining long-term subsoiling and organic fertilizer on soil microbial biomass carbon and nitrogen, soil enzyme activity, and water use of winter wheat. Front. Plant Sci. 2022, 12, 788651. [Google Scholar] [CrossRef]
- Kang, H.; Lee, D. Inhibition of extracellular enzyme activities in a forest soil by additions of inorganic nitrogen. Commun. Soil Sci. Plant Anal. 2005, 36, 2129–2135. [Google Scholar] [CrossRef]
- Le, J.; Su, Y.; Peng, Q. Effects of nitrogen addition on soft enzyme activities and ecoenzymatic stoichiometry in alpine grassland of the Tianshan. Arid Zone Res. 2000, 37, 2–9. [Google Scholar]
- Wang, K.; Shi, L.; Wang, S.; Wang, T.; Ma, L.; Zheng, W.; Zhai, B. Responses of environmental and soil enzyme stoichiometric characteristics of wheat cropping system to fertilizer management in rain-fed areas of China. Environ. Sci. Pollut. Res. 2022, 29, 41520–41533. [Google Scholar] [CrossRef]
- Ji, L.; Ni, K.; Wu, Z.; Zhang, J.; Yi, X.; Yang, X.; Ling, N.; You, Z.; Guo, S.; Ruan, J. Effect of organic substitution rates on soil quality and fungal community composition in a tea plantation with long-term fertilization. Biol. Fert. Soil. 2020, 56, 633–646. [Google Scholar] [CrossRef]
- Liang, Y.T.; Ning, D.L.; Lu, Z.M.; Zhang, N.; Hale, L.; Wu, L.Y.; Clark, I.M.; McGrath, S.P.; Storkry, J.; Hirsch, P.R.; et al. Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biol. Biochem. 2020, 151, 108023. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Le, L.B.; Pham, L.P.; Nguyen, H.T.; Tran, T.D.; Van Thai, N. The effects of biochar on the biomass yield of elephant grass (Pennisetum purpureum Schumach) and properties of acidic soils. Ind. Crops Prod. 2021, 161, 113224. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, M.; Su, J.; Xu, J.; Zhang, X.; Shang, J.; Gao, J. Leaf nutrient traits of planted forests demonstrate a heightened sensitivity to environmental changes compared to natural forests. Front. Plant Sci. 2024, 15, 1372530. [Google Scholar] [CrossRef]
- He, K.; Huang, Z. Rubber Culture in the Northern Part of Tropical Area; Guangdong Science and Technology Press: Guangzhou, China, 1987; ISBN 7-5359-0074-7. [Google Scholar]
- Chotiphan, R.; Vaysse, L.; Lacote, R.; Gohet, E.; Thaler, P.; Sajjaphan, K.; Bottier, C.; Char, C.; Lieengprayoon, S.; Gay, F. Can fertilization be a driver of rubber plantation intensification? Ind. Crops Prod. 2019, 141, 111813. [Google Scholar] [CrossRef]
- Lin, Q.H.; Lin, Z.M.; Cha, Z.Z.; Luo, W.; Bei, M.R.; Hua, Y.G.; Zhang, P.S.; Yang, H.Z. Annual variation of N, P, K content of rubber tree leaves in Hainan. Chin. J. Trop. Crops 2012, 33, 595–601. [Google Scholar]
- Hytönen, J.; Nurmi, J.; Kaakkurivaara, N.; Kaakkurivaara, T. Rubber tree (Hevea brasiliensis) biomass, nutrient content, and heating values in Southern Thailand. Forests 2019, 10, 638. [Google Scholar] [CrossRef]
- Tiva, L.K.; Lacote, R.; Chan, C.; Sopheaveasna, M.; Gohet, E. Effect of fertilization on latex yield potential and physiological parameters of clone PB 217 in Cambodia. In Proceedings of the CRRI & IRRDB International Rubber Conference, Siem Reap, Cambodia, 21–25 November 2016; Volume 12, pp. 20–25. [Google Scholar]
- Gashua, A.G.; Sulaiman, Z.; Yusoff, M.M.; Samad, M.Y.A.; Ramlan, M.F.; Mokhatar, S.J. Short-term effects of bokashi fertilizer with reduced NPK fertilization on soil fertility, growth, and yield of rubber trees. Pertanika J. Trop. Agri. Sci. 2023, 46, 839–859. [Google Scholar] [CrossRef]
- Zhu, Y.; Merbold, L.; Leitner, S.; Pelster, D.E.; Okoma, S.A.; Ngetich, F.; Butterbach-Bahl, K. The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant Soil 2020, 451, 325–343. [Google Scholar] [CrossRef]
- Xing, K.; Zhao, M.; Niinemets, Ü.; Niu, S.; Tian, J.; Jiang, Y.; Chen, H.Y.H.; White, P.J.; Guo, D.; Ma, Z. Relationships between leaf carbon and macronutrients across woody species and forest ecosystems highlight how carbon is allocated to leaf structural function. Front. Plant Sci. 2021, 12, 674932. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, D.; Yan, X.; Jia, L.; Chen, N.; Liu, J.; Zhao, P.; Zhou, L.; Cao, Q. Effect of nitrogen, phosphorus and potassium fertilization management on soil properties and leaf traits and yield of Sapindus mukorossi. Front. Plant Sci. 2024, 15, 1300683. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, S.; Li, G.; Fu, L.; Chen, H.; Yin, M.; Chen, J. Reducing nitrogen fertilizer usage coupled with organic substitution improves soil quality and boosts tea yield and quality in tea plantations. J. Sci. Food Agric. 2025, 105, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, L.; Sun, Y.; Yang, S.; Qin, Q.; Xue, Y. Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield. Environ. Res. 2025, 270, 120935. [Google Scholar] [CrossRef] [PubMed]
- Lalani, S. Economic and Efficiency of fertilizer utilization in mature rubber. Bull. Rubber Res. Inst. Sri Lanka 2000, 42, 11–24. [Google Scholar]
Year | Fertilization | Leaf C | Leaf N | Leaf P | Leaf C:N Ratio | Leaf C:P Ratio | Leaf N:P Ratio |
---|---|---|---|---|---|---|---|
(g·kg−1) | |||||||
2020 | CK | 441.76 ± 5.19Ba | 13.37 ± 0.38Cb | 1.63 ± 0.12Ba | 33.07 ± 0.71Aa | 272.06 ± 21.56Aa | 8.23 ± 0.62Ca |
NPK | 445.00 ± 10.84ABb | 18.28 ± 0.37Bb | 1.76 ± 0.03ABb | 24.34 ± 0.37Ba | 252.49 ± 9.19ABa | 10.37 ± 0.32ABa | |
25M | 457.00 ± 8.24Ab | 18.60 ± 0.61Bb | 1.89 ± 0.32Ab | 24.59 ± 1.01Ba | 248.51 ± 48.84ABa | 10.14 ± 2.15ABa | |
50M | 452.71 ± 7.22ABb | 18.50 ± 0.48Bb | 1.85 ± 0.09ABb | 24.48 ± 0.91Ba | 245.69 ± 14.52ABa | 10.04 ± 0.67ABa | |
75M | 456.09 ± 9.76Aa | 18.72 ± 0.40Bb | 1.99 ± 0.07Ab | 24.37 ± 0.65Ba | 230.06 ± 12.09Ba | 9.44 ± 0.44BCa | |
100M | 446.51 ± 9.44ABb | 20.57 ± 0.10Ab | 1.83 ± 0.12ABb | 21.71 ± 0.52Ca | 244.50 ± 17.19ABa | 11.26 ± 0.71Aa | |
2021 | CK | 447.43 ± 17.35Ba | 14.35 ± 0.14Da | 1.65 ± 0.02Da | 31.18 ± 1.49Ab | 270.80 ± 13.80Aa | 8.68 ± 0.07Ba |
NPK | 466.72 ± 8.47Aa | 20.62 ± 0.13Ba | 1.96 ± 0.04Ca | 22.63 ± 0.51Bb | 238.66 ± 5.08Bb | 10.55 ± 0.25Aa | |
25M | 470.79 ± 9.53Aa | 20.81 ± 0.04Ba | 2.02 ± 0.02BCa | 22.62 ± 0.48Bb | 232.70 ± 6.61Ba | 10.28 ± 0.10Aa | |
50M | 475.73 ± 13.71Aa | 20.80 ± 0.06Ba | 1.98 ± 0.13BCa | 22.87 ± 0.71Bb | 240.60 ± 15.91Ba | 10.53 ± 0.74Aa | |
75M | 478.20 ± 19.20Aa | 20.79 ± 0.08Ba | 2.45 ± 0.04Aa | 23.15 ± 0.92Bb | 194.91 ± 8.76Cb | 8.42 ± 0.15Bb | |
100M | 468.86 ± 9.54Aa | 21.09 ± 0.13Aa | 2.05 ± 0.02Ba | 22.23 ± 0.37Ba | 228.99 ± 4.60Ba | 10.30 ± 0.07Ab | |
ANOVA results (F values) | |||||||
Fertilization | 5.178 ** | 671.536 ** | 24.529 ** | 218.523 ** | 10.176 ** | 15.082 ** | |
Year | 37.844 ** | 474.731 ** | 40.907 ** | 42.010 ** | 8.944 ** | 0.382 ns | |
Fertilization × Year | 0.941 ns | 16.050 ** | 4.105 ** | 3.589 ** | 0.991 ns | 2.055 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Liu, W.; Zhao, C.; Zhang, Y.; Tahir, A.; Guo, X.; Sun, R.; Yang, Q.; Wu, Z. Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations. Agronomy 2025, 15, 1936. https://doi.org/10.3390/agronomy15081936
Xu W, Liu W, Zhao C, Zhang Y, Tahir A, Guo X, Sun R, Yang Q, Wu Z. Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations. Agronomy. 2025; 15(8):1936. https://doi.org/10.3390/agronomy15081936
Chicago/Turabian StyleXu, Wenxian, Wenjie Liu, Congju Zhao, Yingying Zhang, Ashar Tahir, Xinwei Guo, Rui Sun, Qiu Yang, and Zhixiang Wu. 2025. "Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations" Agronomy 15, no. 8: 1936. https://doi.org/10.3390/agronomy15081936
APA StyleXu, W., Liu, W., Zhao, C., Zhang, Y., Tahir, A., Guo, X., Sun, R., Yang, Q., & Wu, Z. (2025). Partial Organic Substitution Improves Soil Quality and Increases Latex Yield in Rubber Plantations. Agronomy, 15(8), 1936. https://doi.org/10.3390/agronomy15081936