Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots
Abstract
1. Introduction
2. Background
2.1. Fruit Harvesting Methods and Robots
2.1.1. Fruit Harvesting Methods
2.1.2. Fruit Harvesting Robot Components
- The mobile base bears the basic functions, such as positioning, navigation, and obstacle avoidance of the robot [47]. It is not only the integration point for various sensors, motors, and other equipment but also the key for the robot to achieve autonomous walking, obstacle avoidance, and path planning in natural orchards.
- The control panel is used to exchange information between the farmer or operator and the robot [50].
- The embedded development board is employed to run the analysis models (e.g., the visual detection model) on the edge side (the robot itself).
- The machine vision system is the eye for the robot, which can detect and localize fruits and obstacles [57,58]. It comprises hardware and software systems. The hardware system contains a camera, a server, information exchange devices, etc., and the software systems mainly consist of a visual-based fruit detection method.
- The collector is set to collect and temporarily store fruits.
2.2. Visual-Based Fruit Detection System
3. Recognition Technologies and Algorithms
3.1. Cameras
3.1.1. Binocular Stereo Cameras
3.1.2. Structured Light Cameras
3.1.3. Time of Flight Cameras
3.2. Traditional Fruit Detection Based on Handcrafted Features
3.2.1. Traditional Image Processing Methods
3.2.2. Traditional Machine Learning-Based Detection Methods
3.3. Fruit Detection Based on Deep Learning Methods
3.3.1. Two-Stage Methods
3.3.2. One-Stage Methods
Algorithms | Dataset | Feature | mAP/% | Speed (s/pic) | Reference |
---|---|---|---|---|---|
YOLOv3 | RGB image (kiwifruit) | YOLOv3 uses Darknet-53 as the backbone network and extensively employs residual skip connections for optimization. But it has increased complexity, slower than easier version. | 90.05 | 0.034 | [132] |
YOLOv4 | RGB image (red apple) | YOLOv4 introduces CSPDarknet53 as the backbone and incorporates the SPP-block, while using PANet instead of FPN. But less user-friendly. | 93.42 | 0.0158 | [133] |
YOLOv5 | RGB-D image (red apple) | YOLOv5 moves to the Pytorch framework for developers to use and extend, making further improvements than YOLOV3. But less adaptable than YOLOV4. | 96.4 | 0.01724 | [138] |
YOLOX | RGB-D Image (Fuji apple) | YOLOX employs anchor-free prediction and a decoupled head structure, introducing dynamic label assignment. | 94.09 | 0.006 | [136] |
YOLOv7 | RGB image (Citrus) | YOLOv7 introduces the E-ELAN architecture, and the SPPCSPC module is improved. But it has higher complexity and, risk of overfitting. | 96.98 | 0.0059 | [143] |
YOLOv8 | RGB image (Over 300 apple varieties in multi-stage) | YOLOv8 uses a more efficient backbone, a structure similar to CSPDarknet. But it has case-specific optimization. | 91.4 | 0.0254 | [146] |
3.4. Tree Branch Detection Methods
3.4.1. Tree Branch Detection Based on Images
3.4.2. Tree Branch Detection Based on Point Clouds
4. Challenges and Future Trends
4.1. Existing Challenges
4.2. Future Trends
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Ma, X.; Shu, L.; Hancke, G.P.; Abu-Mahfouz, A.M. From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges. IEEE Trans. Ind. Inform. 2021, 17, 4322–4334. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Ouafiq, E.M.; Saadane, R.; Chehri, A.; Jeon, S. AI-Based Modeling and Data-Driven Evaluation for Smart Farming-Oriented Big Data Architecture Using IoT with Energy Harvesting Capabilities. Sustain. Energy Technol. Assess 2022, 52, 102093. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, C.; Liu, S.; Zhao, Y.; Zhang, Y.; Wang, L. Multi-Robot Collaborative Manufacturing Driven by Digital Twins: Advancements, Challenges, and Future Directions. J. Manuf. Syst. 2025, 82, 333–361. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Zhang, X.; Xia, X. Research on the Smart Broad Bean Harvesting System and the Self-Adaptive Control Method Based on CPS Technologies. Agronomy 2024, 14, 1405. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Liu, Y.; Ren, S.; Yang, H. Digital Twin and Big Data-Driven Sustainable Smart Manufacturing Based on Information Management Systems for Energy-Intensive Industries. Appl. Energy 2022, 326, 119986. [Google Scholar] [CrossRef]
- Wang, W.; Shan, Y.; Xi, Y.; Xia, Z.; Xu, G.; Zhang, X. A Predictive Production-Logistics Cooperation Method for Service-Oriented Smart Discrete Manufacturing System. J. Eng. Des. 2025. [Google Scholar] [CrossRef]
- Xia, Z.; Zhao, Y.; Gu, J.; Wang, W.; Zhang, W.; Huang, Z. FC-DETR: High-Precision End-to-End Surface Defect Detector Based on Foreground Supervision and Cascade Refined Hybrid Matching. Expert Syst. Appl. 2025, 266, 126142. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.-H.; Yuan, S. Review of Intelligent Sprinkler Irrigation Technologies for Remote Autonomous System. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Darko, R.O.; Yuan, S.; Hong, L.; Liu, J.; Yan, H. Irrigation, a Productive Tool for Food Security—A Review. Acta. Agric. Scand. B Soil Plant Sci. 2016, 66, 191–206. [Google Scholar] [CrossRef]
- Hou, P.; Yuan, W.; Li, G.; Petropoulos, E.; Xue, L.; Feng, Y.; Xue, L.; Yang, L.; Ding, Y. Deep Fertilization with Controlled-release Fertilizer for Higher Cereal Yield and N Utilization in Paddies: The Optimal Fertilization Depth. Agron. J. 2021, 113, 5027–5039. [Google Scholar] [CrossRef]
- Sorour, S.E.; Alsayyari, M.; Alqahtani, N.; Aldosery, K.; Altaweel, A.; Alzhrani, S. An Intelligent Management System and Advanced Analytics for Boosting Date Production. Sustainability 2025, 17, 5636. [Google Scholar] [CrossRef]
- Wu, M.; Liu, S.; Li, Z.; Ou, M.; Dai, S.; Dong, X.; Wang, X.; Jiang, L.; Jia, W. A Review of Intelligent Orchard Sprayer Technologies: Perception, Control, and System Integration. Horticulturae 2025, 11, 668. [Google Scholar] [CrossRef]
- Subeesh, A.; Prakash Kumar, S.; Kumar Chakraborty, S.; Upendar, K.; Singh Chandel, N.; Jat, D.; Dubey, K.; Modi, R.U.; Mazhar Khan, M. UAV Imagery Coupled Deep Learning Approach for the Development of an Adaptive In-House Web-Based Application for Yield Estimation in Citrus Orchard. Measurement 2024, 234, 114786. [Google Scholar] [CrossRef]
- Liu, J.; Liang, J.; Zhao, S.; Jiang, Y.; Wang, J.; Jin, Y. Design of a Virtual Multi-Interaction Operation System for Hand–Eye Coordination of Grape Harvesting Robots. Agronomy 2023, 13, 829. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, J.; Wang, J.; Cai, L.; Jin, Y.; Zhao, S.; Xie, B. Realtime Picking Point Decision Algorithm of Trellis Grape for High-Speed Robotic Cut-and-Catch Harvesting. Agronomy 2023, 13, 1618. [Google Scholar] [CrossRef]
- Ma, J.; Li, M.; Fan, W.; Liu, J. State-of-the-Art Techniques for Fruit Maturity Detection. Agronomy 2024, 14, 2783. [Google Scholar] [CrossRef]
- Herman, R.A.; Ayepa, E.; Fometu, S.S.; Shittu, S.; Davids, J.S.; Wang, J. Mulberry Fruit Post-Harvest Management: Techniques, Composition and Influence on Quality Traits—A Review. Food Control 2022, 140, 109126. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B.; Tang, W.; Li, J.; Zhao, D. Grasping Damage Analysis of Apple by End-effector in Harvesting Robot. J. Food Process Eng. 2017, 40, e12589. [Google Scholar] [CrossRef]
- Au, W.; Zhou, H.; Liu, T.; Kok, E.; Wang, X.; Wang, M.; Chen, C. The Monash Apple Retrieving System: A Review on System Intelligence and Apple Harvesting Performance. Comput. Electron. Agric. 2023, 213, 108164. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Gu, R. Research Status and Prospects on Plant Canopy Structure Measurement Using Visual Sensors Based on Three-Dimensional Reconstruction. Agriculture 2020, 10, 462. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Dong, H. A Survey of Deep Learning-Driven 3D Object Detection: Sensor Modalities, Technical Architectures, and Applications. Sensors 2025, 25, 3668. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, T.; Yan, T.; Xie, F.; Feng, Q.; Zhu, Q.; Zhao, C. A Soft Gripper Design for Apple Harvesting with Force Feedback and Fruit Slip Detection. Agriculture 2022, 12, 1802. [Google Scholar] [CrossRef]
- Lu, E.; Ma, Z.; Li, Y.; Xu, L.; Tang, Z. Adaptive Backstepping Control of Tracked Robot Running Trajectory Based on Real-Time Slip Parameter Estimation. Int. J. Agric. Biol. Eng. 2020, 13, 178–187. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Moreira, A.P.; dos Santos, F.N.; Dias, J. Active Perception Fruit Harvesting Robots—A Systematic Review. J. Intell. Robot. Syst. Theory Appl. 2022, 105, 14. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Yao, B.; Luo, Q.; Zhu, Z.; Wu, W. Research Progress and Development Trend of Bionic Harvesting Technology. Comput. Electron. Agric 2024, 222, 109013. [Google Scholar] [CrossRef]
- Qureshi, W.S.; Payne, A.; Walsh, K.B.; Linker, R.; Cohen, O.; Dailey, M.N. Machine Vision for Counting Fruit on Mango Tree Canopies. Precis. Agric. 2017, 18, 224–244. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Y.; Lian, J.; Zheng, Y.; Zhao, D.; Li, C. Apple Harvesting Robot under Information Technology: A Review. Int. J. Adv. Robot. Syst. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Khan, Z.; Shen, Y.; Liu, H. ObjectDetection in Agriculture: A Comprehensive Review of Methods, Applications, Challenges, and Future Directions. Agriculture 2025, 15, 1351. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, J.; Xu, Z.; Yuan, S.; Li, P.; Wang, J. Development Status and Trend of Agricultural Robot Technology. Int. J. Agric. Biol. Eng. 2021, 14, 1–19. [Google Scholar] [CrossRef]
- Wang, H.; Gu, J.; Wang, M. A Review on the Application of Computer Vision and Machine Learning in the Tea Industry. Front. Sustain. Food Syst. 2023, 7, 1172543. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, B.; Xu, N.; Zhou, J.; Shi, J.; Diao, Z. Vision-Based Navigation and Guidance for Agricultural Autonomous Vehicles and Robots: A Review. Comput. Electron. Agric. 2023, 205, 107584. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, H.; Li, Y.; Cao, Y.; Lv, X.; Xu, G. Object Detection and Recognition Techniques Based on Digital Image Processing and Traditional Machine Learning for Fruit and Vegetable Harvesting Robots: An Overview and Review. Agronomy 2023, 13, 639. [Google Scholar] [CrossRef]
- Hua, W.; Zhang, Z.; Zhang, W.; Liu, X.; Hu, C.; He, Y.; Mhamed, M.; Li, X.; Dong, H.; Saha, C.K.; et al. Key Technologies in Apple Harvesting Robot for Standardized Orchards: A Comprehensive Review of Innovations, Challenges, and Future Directions. Comput. Electron. Agric. 2025, 235, 110343. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Chen, X.; Zhang, Y.; Zhang, Y. Review on Key Technologies for Autonomous Navigation in Field Agricultural Machinery. Agriculture 2025, 15, 1297. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Liu, Y.; Zhang, Y.; Ren, S.; Kong, X.; Leng, J. Industry 4.0 and Cleaner Production: A Comprehensive Review of Sustainable and Intelligent Manufacturing for Energy-Intensive Manufacturing Industries. J. Clean. Prod. 2024, 467, 142879. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Au, W.; Kang, H.; Chen, C. Intelligent Robots for Fruit Harvesting: Recent Developments and Future Challenges. Precis. Agric. 2022, 23, 1856–1907. [Google Scholar] [CrossRef]
- Zhou, J.; He, L.; Karkee, M.; Zhang, Q. Analysis of Shaking-Induced Cherry Fruit Motion and Damage. Biosyst. Eng. 2016, 144, 105–114. [Google Scholar] [CrossRef]
- Sola-Guirado, R.R.; Castro-Garcia, S.; Blanco-Roldán, G.L.; Gil-Ribes, J.A.; González-Sánchez, E.J. Performance Evaluation of Lateral Canopy Shakers with Catch Frame for Continuous Harvesting of Oranges for Juice Industry. Int. J. Agric. Biol. Eng. 2020, 13, 88–93. [Google Scholar] [CrossRef]
- Wang, W.; Lu, H.; Zhang, S.; Yang, Z. Damage Caused by Multiple Impacts of Litchi Fruits during Vibration Harvesting. Comput. Electron. Agric. 2019, 162, 732–738. [Google Scholar] [CrossRef]
- Han, L.; Mao, H.; Kumi, F.; Hu, J. Development of a Multi-Task Robotic Transplanting Workcell for Greenhouse Seedlings. Appl. Eng. Agric. 2018, 34, 335–342. [Google Scholar] [CrossRef]
- Levin, M.; Degani, A. Design of a Task-Based Modular Re-Configurable Agricultural Robot. IFAC-PapersOnLine 2016, 49, 184–189. [Google Scholar] [CrossRef]
- Barnett, J.; Duke, M.; Au, C.K.; Lim, S.H. Work Distribution of Multiple Cartesian Robot Arms for Kiwifruit Harvesting. Comput. Electron. Agric. 2020, 169, 105202. [Google Scholar] [CrossRef]
- Zhang, K.; Lammers, K.; Chu, P.; Li, Z.; Lu, R. System Design and Control of an Apple Harvesting Robot. Mechatronics 2021, 79, 102644. [Google Scholar] [CrossRef]
- Japar, A.F.; Ramli, H.R.; Norsahperi, N.M.H.; Hasan, W.Z.W. Oil Palm Loose Fruit Detection Using YOLOv4 for an Autonomous Mobile Robot Collector. IEEE Access 2024, 12, 138582–138593. [Google Scholar] [CrossRef]
- Xiao, X.; Wang, Y.; Zhou, B.; Jiang, Y. Flexible Hand Claw Picking Method for Citrus-Picking Robot Based on Target Fruit Recognition. Agriculture 2024, 14, 1227. [Google Scholar] [CrossRef]
- Khoshrangbaf, M.; Akram, V.K.; Challenger, M.; Dagdeviren, O. An Experimental Evaluation of Indoor Localization in Autonomous Mobile Robots. Sensors 2025, 25, 2209. [Google Scholar] [CrossRef]
- Xie, F.; Guo, Z.; Li, T.; Feng, Q.; Zhao, C. Dynamic Task Planning for Multi-Arm Harvesting Robots Under Multiple Constraints Using Deep Reinforcement Learning. Horticulturae 2025, 11, 88. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, H.; Zhang, K.; Wang, Y.; Li, Y.; Zhou, J.; Xu, L. Design, Development, Integration, and Field Evaluation of a Ridge-Planting Strawberry Harvesting Robot. Agriculture 2024, 14, 2126. [Google Scholar] [CrossRef]
- Liu, H.; Yan, S.; Shen, Y.; Li, C.; Zhang, Y.; Hussain, F. Model Predictive Control System Based on Direct Yaw Moment Control for 4wid Self-Steering Agriculture Vehicle. Int. J. Agric. Biol. Eng. 2021, 14, 175–181. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, X.; He, L.; Choi, D.; Pecchia, J.; Li, Y. Development of a Robotic Harvesting Mechanism for Button Mushrooms. Trans. ASABE 2021, 64, 565–575. [Google Scholar] [CrossRef]
- Ji, W.; He, G.; Xu, B.; Zhang, H.; Yu, X. A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture 2024, 14, 102. [Google Scholar] [CrossRef]
- Pi, J.; Liu, J.; Zhou, K.; Qian, M. An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Zhou, K.; Xia, L.; Liu, J.; Qian, M.; Pi, J. Design of a Flexible End-Effector Based on Characteristics of Tomatoes. Int. J. Agric. Biol. Eng. 2022, 15, 13–24. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Gao, Y.; Tang, S.; Li, Z. Virtual Model of Grip-and-Cut Picking for Simulation of Vibration and Falling of Grape Clusters. Trans. ASABE 2019, 62, 603–614. [Google Scholar] [CrossRef]
- Faheem, M.; Liu, J.; Chang, G.; Ahmad, I.; Peng, Y. Hanging Force Analysis for Realizing Low Vibration of Grape Clusters during Speedy Robotic Post-Harvest Handling. Int. J. Agric. Biol. Eng. 2021, 14, 62–71. [Google Scholar] [CrossRef]
- Yang, N.; Chang, K.; Dong, S.; Tang, J.; Wang, A.; Huang, R.; Jia, Y. Rapid Image Detection and Recognition of Rice False Smut Based on Mobile Smart Devices with Anti-Light Features from Cloud Database. Biosyst. Eng. 2022, 218, 229–244. [Google Scholar] [CrossRef]
- Jia, W.; Zheng, Y.; Zhao, D.; Yin, X.; Liu, X.; Du, R. Preprocessing Method of Night Vision Image Application in Apple Harvesting Robot. Int. J. Agric. Biol. Eng. 2018, 11, 158–163. [Google Scholar] [CrossRef]
- Huang, X.; Pan, S.; Sun, Z.; Ye, W.; Aheto, J.H. Evaluating Quality of Tomato during Storage Using Fusion Information of Computer Vision and Electronic Nose. J. Food Process Eng. 2018, 41, e12832. [Google Scholar] [CrossRef]
- Huang, X.; Lv, R.; Wang, S.; Aheto, J.H.; Dai, C. Integration of Computer Vision and Colorimetric Sensor Array for Nondestructive Detection of Mango Quality. J. Food Process Eng. 2018, 41, e12873. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Yang, M.; Wang, G.; Zhao, Y.; Hu, Y. Optimal Training Strategy for High-Performance Detection Model of Multi-Cultivar Tea Shoots Based on Deep Learning Methods. Sci. Hortic. 2024, 328, 112949. [Google Scholar] [CrossRef]
- Lu, P.; Zheng, W.; Lv, X.; Xu, J.; Zhang, S.; Li, Y.; Zhangzhong, L. An Extended Method Based on the Geometric Position of Salient Image Features: Solving the Dataset Imbalance Problem in Greenhouse Tomato Growing Scenarios. Agriculture 2024, 14, 1893. [Google Scholar] [CrossRef]
- Altaheri, H.; Alsulaiman, M.; Muhammad, G.; Amin, S.U.; Bencherif, M.; Mekhtiche, M. Date Fruit Dataset for Intelligent Harvesting. Data Brief 2019, 26, 104514. [Google Scholar] [CrossRef]
- James, J.A.; Manching, H.K.; Mattia, M.R.; Bowman, K.D.; Hulse-Kemp, A.M.; Beksi, W.J. CitDet: A Benchmark Dataset for Citrus Fruit Detection. IEEE Robot. Autom. Lett. 2024, 9, 10788–10795. [Google Scholar] [CrossRef]
- Azizi, A.; Zhang, Z.; Hua, W.; Li, M.; Igathinathane, C.; Yang, L.; Ampatzidis, Y.; Ghasemi-Varnamkhasti, M.; Radi; Zhang, M.; et al. Image Processing and Artificial Intelligence for Apple Detection and Localization: A Comprehensive Review. Comput. Sci. Rev. 2024, 54, 100690. [Google Scholar] [CrossRef]
- Zhu, J.; Jiang, X.; Rong, Y.; Wei, W.; Wu, S.; Jiao, T.; Chen, Q. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Food Chem. 2023, 414, 135705. [Google Scholar] [CrossRef]
- Wang, C.; Zou, X.; Tang, Y.; Luo, L.; Feng, W. Localisation of Litchi in an Unstructured Environment Using Binocular Stereo Vision. Biosyst. Eng. 2016, 145, 39–51. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Zhang, Y.; Zhou, J.; Wu, J.; Li, P. Real-Time Detection and Location of Potted Flowers Based on a ZED Camera and a YOLO V4-Tiny Deep Learning Algorithm. Horticulturae 2021, 8, 21. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, H.; Wang, H.; Zhang, Y. Fruit Detection and Positioning Technology for a Camellia Oleifera C. Abel Orchard Based on Improved YOLOv4-Tiny Model and Binocular Stereo Vision. Expert Syst. Appl. 2023, 211, 118573. [Google Scholar] [CrossRef]
- Li, T.; Fang, W.; Zhao, G.; Gao, F.; Wu, Z.; Li, R.; Fu, L.; Dhupia, J. An Improved Binocular Localization Method for Apple Based on Fruit Detection Using Deep Learning. Inf. Process. Agric. 2023, 10, 276–287. [Google Scholar] [CrossRef]
- Zhang, L.; Hao, Q.; Mao, Y.; Su, J.; Cao, J. Beyond Trade-Off: An Optimized Binocular Stereo Vision Based Depth Estimation Algorithm for Designing Harvesting Robot in Orchards. Agriculture 2023, 13, 1117. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhang, Y.; Wei, J.; Zhan, B.; Liu, X.; Luo, W. Structured-Illumination Reflectance Imaging Combined with Deep Learning for Detecting Early Decayed Oranges. Postharvest Biol. Technol. 2024, 217, 113121. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, W.H. Real-Time Recognition and Localization of Apples for Robotic Picking Based on Structural Light and Deep Learning. Smart Cities 2023, 6, 3393–3410. [Google Scholar] [CrossRef]
- Li, T.; Feng, Q.; Qiu, Q.; Xie, F.; Zhao, C. Occluded Apple Fruit Detection and Localization with a Frustum-Based Point-Cloud-Processing Approach for Robotic Harvesting. Remote Sens. 2022, 14, 482. [Google Scholar] [CrossRef]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef]
- Sun, M.; Xu, L.; Luo, R.; Lu, Y.; Jia, W. Fast Location and Recognition of Green Apple Based on RGB-D Image. Front. Plant Sci. 2022, 13, 864458. [Google Scholar] [CrossRef]
- Legg, M.; Parr, B.; Pascual, G.; Alam, F. Grape Maturity Estimation Using Time-of-Flight and LiDAR Depth Cameras. Sensors 2024, 24, 5109. [Google Scholar] [CrossRef]
- Peebles, M.; Lim, S.H.; Duke, M.; Mcguinness, B.; Au, C.K. Localization of Asparagus Spears Using Time-of-Flight Imaging for Robotic Harvesting. Ind. Robot. 2024, 51, 595–606. [Google Scholar] [CrossRef]
- Elbeltagi, A.; Srivastava, A.; Deng, J.; Li, Z.; Raza, A.; Khadke, L.; Yu, Z.; El-Rawy, M. Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments. Agric. Water Manag. 2023, 283, 108302. [Google Scholar] [CrossRef]
- Goel, N.; Sehgal, P. Fuzzy Classification of Pre-Harvest Tomatoes for Ripeness Estimation—An Approach Based on Automatic Rule Learning Using Decision Tree. Appl. Soft. Comput. 2015, 36, 45–56. [Google Scholar] [CrossRef]
- Yu, X.; Fan, Z.; Wang, X.; Wan, H.; Wang, P.; Zeng, X.; Jia, F. A Lab-Customized Autonomous Humanoid Apple Harvesting Robot. Comput. Electr. Eng. 2021, 96, 107459. [Google Scholar] [CrossRef]
- Ratprakhon, K.; Neubauer, W.; Riehn, K.; Fritsche, J.; Rohn, S. Developing an Automatic Color Determination Procedure for the Quality Assessment of Mangos (Mangifera Indica) Using a CCD Camera and Color Standards. Foods 2020, 9, 1709. [Google Scholar] [CrossRef]
- Tan, K.; Lee, W.S.; Gan, H.; Wang, S. Recognising Blueberry Fruit of Different Maturity Using Histogram Oriented Gradients and Colour Features in Outdoor Scenes. Biosyst. Eng. 2018, 176, 59–72. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Zhu, F.; Ning, J.; Chen, Q.; Zhang, Z. Colorimetric Sensor Array-Based Artificial Olfactory System for Sensing Chinese Green Tea’s Quality: A Method of Fabrication. Int. J. Food Prop. 2017, 20, 1762–1773. [Google Scholar] [CrossRef]
- Ji, W.; Qian, Z.; Xu, B.; Zhao, D. A Nighttime Image Enhancement Method Based on Retinex and Guided Filter for Object Recognition of Apple Harvesting Robot. Int. J. Adv. Robot. Syst. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Lin, G.; Tang, Y.; Zou, X.; Cheng, J.; Xiong, J. Fruit Detection in Natural Environment Using Partial Shape Matching and Probabilistic Hough Transform. Precis. Agric. 2020, 21, 160–177. [Google Scholar] [CrossRef]
- Lv, J.; Ni, H.; Wang, Q.; Yang, B.; Xu, L. A Segmentation Method of Red Apple Image. Sci. Hortic. 2019, 256, 108615. [Google Scholar] [CrossRef]
- Oo, L.M.; Aung, N.Z. A Simple and Efficient Method for Automatic Strawberry Shape and Size Estimation and Classification. Biosyst. Eng. 2018, 170, 96–107. [Google Scholar] [CrossRef]
- Lu, J.; Lee, W.S.; Gan, H.; Hu, X. Immature Citrus Fruit Detection Based on Local Binary Pattern Feature and Hierarchical Contour Analysis. Biosyst. Eng. 2018, 171, 78–90. [Google Scholar] [CrossRef]
- Liu, X.; Jia, W.; Ruan, C.; Zhao, D.; Gu, Y.; Chen, W. The Recognition of Apple Fruits in Plastic Bags Based on Block Classification. Precis. Agric. 2018, 19, 735–749. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, B.; Zhou, J.; Xiong, Y.; Gu, B.; Yang, X. Automatic Recognition of Ripening Tomatoes by Combining Multi-Feature Fusion with a Bi-Layer Classification Strategy for Harvesting Robots. Sensors 2019, 19, 612. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, D.; Jia, W.; Ji, W.; Sun, Y. A Detection Method for Apple Fruits Based on Color and Shape Features. IEEE Access 2019, 7, 67923–67933. [Google Scholar] [CrossRef]
- Mustaffa, M.R.; Xin Yi, N.; Abdullah, L.N.; Nasharuddin, N.A. Durian Recognition Based on Multiple Features and Linear Discriminant Analysis. Malays. J. Comput. Sci. 2018, 28, 57–72. [Google Scholar] [CrossRef]
- Liu, T.-H.; Ehsani, R.; Toudeshki, A.; Zou, X.-J.; Wang, H.-J. Identifying Immature and Mature Pomelo Fruits in Trees by Elliptical Model Fitting in the Cr–Cb Color Space. Precis. Agric. 2019, 20, 138–156. [Google Scholar] [CrossRef]
- Chen, J.; Lian, Y.; Zou, R.; Zhang, S.; Ning, X.; Han, M. Real-Time Grain Breakage Sensing for Rice Combine Harvesters Using Machine Vision Technology. Int. J. Agric. Biol. Eng. 2020, 13, 194–199. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Kang, W.; Shao, X.; Cai, J.; Li, H.; Chen, Q. Application of Colorimetric Sensor Array Coupled with Machine-learning Approaches for the Discrimination of Grains Based on Freshness. J. Sci. Food Agric. 2023, 103, 6790–6799. [Google Scholar] [CrossRef]
- Fan, P.; Lang, G.; Guo, P.; Liu, Z.; Yang, F.; Yan, B.; Lei, X. Multi-Feature Patch-Based Segmentation Technique in the Gray-Centered RGB Color Space for Improved Apple Target Recognition. Agriculture 2021, 11, 273. [Google Scholar] [CrossRef]
- Jiao, Y.; Luo, R.; Li, Q.; Deng, X.; Yin, X.; Ruan, C.; Jia, W. Detection and Localization of Overlapped Fruits Application in an Apple Harvesting Robot. Electronics 2020, 9, 1023. [Google Scholar] [CrossRef]
- Xu, Y.; Imou, K.; Kaizu, Y.; Saga, K. Two-Stage Approach for Detecting Slightly Overlapping Strawberries Using HOG Descriptor. Biosyst. Eng. 2013, 115, 144–153. [Google Scholar] [CrossRef]
- Feng, J.; Zeng, L.; He, L. Apple Fruit Recognition Algorithm Based on Multi-Spectral Dynamic Image Analysis. Sensors 2019, 19, 949. [Google Scholar] [CrossRef]
- Dhakshina Kumar, S.; Esakkirajan, S.; Bama, S.; Keerthiveena, B. A Microcontroller Based Machine Vision Approach for Tomato Grading and Sorting Using SVM Classifier. Microprocess. Microsyst. 2020, 76, 103090. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, S.; Liu, J. Fused Deep Features-Based Grape Varieties Identification Using Support Vector Machine. Agriculture 2021, 11, 869. [Google Scholar] [CrossRef]
- Ling, X.; Zhao, Y.; Gong, L.; Liu, C.; Wang, T. Dual-Arm Cooperation and Implementing for Robotic Harvesting Tomato Using Binocular Vision. Rob. Auton. Syst. 2019, 114, 134–143. [Google Scholar] [CrossRef]
- Reyes, J.F.; Contreras, E.; Correa, C.; Melin, P. Image Analysis of Real-Time Classification of Cherry Fruit from Colour Features. J. Agric. Eng. 2021, 52, 1160. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, C.; Sun, J.; Cao, Y.; Yao, K.; Xu, M. A Deep Learning Method for Predicting Lead Content in Oilseed Rape Leaves Using Fluorescence Hyperspectral Imaging. Food Chem. 2023, 409, 135251. [Google Scholar] [CrossRef]
- Xue, Y.; Jiang, H. Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model. Foods 2023, 12, 2402. [Google Scholar] [CrossRef]
- Huang, Y.; Li, Z.; Bian, Z.; Jin, H.; Zheng, G.; Hu, D.; Sun, Y.; Fan, C.; Xie, W.; Fang, H. Overview of Deep Learning and Nondestructive Detection Technology for Quality Assessment of Tomatoes. Foods 2025, 14, 286. [Google Scholar] [CrossRef]
- Qiu, D.; Guo, T.; Yu, S.; Liu, W.; Li, L.; Sun, Z.; Peng, H.; Hu, D. Classification of Apple Color and Deformity Using Machine Vision Combined with CNN. Agriculture 2024, 14, 978. [Google Scholar] [CrossRef]
- Pan, Z.; Gu, J.; Wang, W.; Fang, X.; Xia, Z.; Wang, Q.; Wang, M. Picking Point Identification and Localization Method Based on Swin-Transformer for High-Quality Tea. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102262. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentations. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 6 January 2015. [Google Scholar]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Niu, T.; He, D. Tomato Young Fruits Detection Method under near Color Background Based on Improved Faster R-Cnn with Attention Mechanism. Agriculture 2021, 11, 1059. [Google Scholar] [CrossRef]
- Wan, S.; Goudos, S. Faster R-CNN for Multi-Class Fruit Detection Using a Robotic Vision System. Comput. Netw. 2020, 168, 107036. [Google Scholar] [CrossRef]
- Mai, X.; Zhang, H.; Jia, X.; Meng, M.Q.H. Faster R-CNN with Classifier Fusion for Automatic Detection of Small Fruits. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1555–1569. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Martínez-Guanter, J.; Egea, G.; Raja, P.; Pérez-Ruiz, M. Deep Learning Techniques for Estimation of the Yield and Size of Citrus Fruits Using a UAV. Eur. J. Agron. 2020, 115, 126030. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Yang, L.; Zhang, D. Fruit Detection for Strawberry Harvesting Robot in Non-Structural Environment Based on Mask-RCNN. Comput. Electron. Agric. 2019, 163, 104846. [Google Scholar] [CrossRef]
- Wang, D.; He, D. Fusion of Mask RCNN and Attention Mechanism for Instance Segmentation of Apples under Complex Background. Comput. Electron. Agric. 2022, 196, 106864. [Google Scholar] [CrossRef]
- Lv, J.; Xu, H.; Xu, L.; Gu, Y.; Rong, H.; Zou, L. An Image Rendering-Based Identification Method for Apples with Different Growth Forms. Comput. Electron. Agric. 2023, 211, 108040. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, J.; Xu, L.; Gu, Y.; Zou, L.; Ma, Z. A Segmentation Method for Waxberry Image under Orchard Environment. Sci. Hortic. 2020, 266, 109309. [Google Scholar] [CrossRef]
- Pei, H.; Sun, Y.; Huang, H.; Zhang, W.; Sheng, J.; Zhang, Z. Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4. Agriculture 2022, 12, 975. [Google Scholar] [CrossRef]
- Magalhães, S.A.; Castro, L.; Moreira, G.; Dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the Single-Shot Multibox Detector and Yolo Deep Learning Models for the Detection of Tomatoes in a Greenhouse. Sensors 2021, 21, 3569. [Google Scholar] [CrossRef]
- Xia, Z.; Zhao, Y.; Gu, J.; Wang, W.; Huang, Z.; Gao, Y.; Sun, P. The end-to-end chip surface defect segmentation method based on the diffusion model and attention mechanism. Eng. Appl. Artif. Intell. 2025, 155, 111131. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, F.; Zhang, X.; Zheng, Y.; Peng, X.; Chen, C. Detection the Maturity of Multi-Cultivar Olive Fruit in Orchard Environments Based on Olive-EfficientDet. Sci. Hortic. 2024, 324, 112607. [Google Scholar] [CrossRef]
- Kirk, R.; Cielniak, G.; Mangan, M. L*a*b*Fruits: A Rapid and Robust Outdoor Fruit Detection System Combining Bio-Inspired Features with One-Stage Deep Learning Networks. Sensors 2020, 20, 275. [Google Scholar] [CrossRef]
- Kang, S.; Hu, Z.; Liu, L.; Zhang, K.; Cao, Z. Object Detection YOLO Algorithms and Their Industrial Applications: Overview and Comparative Analysis. Electronics 2025, 14, 1104. [Google Scholar] [CrossRef]
- Joseph, R.; Santosh, D.; Ross, G.; Ali, F. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NE, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Junos, M.H.; Mohd Khairuddin, A.S.; Thannirmalai, S.; Dahari, M. Automatic Detection of Oil Palm Fruits from UAV Images Using an Improved YOLO Model. Vis. Comput. 2022, 38, 2341–2355. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. TS-YOLO: An All-Day and Lightweight Tea Canopy Shoots Detection Model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Q.; Xu, W.; Xu, L.; Lu, E. Prediction of Feed Quantity for Wheat Combine Harvester Based on Improved YOLOv5s and Weight of Single Wheat Plant without Stubble. Agriculture 2024, 14, 1251. [Google Scholar] [CrossRef]
- Fu, L.; Feng, Y.; Wu, J.; Liu, Z.; Gao, F.; Majeed, Y.; Al-Mallahi, A.; Zhang, Q.; Li, R.; Cui, Y. Fast and Accurate Detection of Kiwifruit in Orchard Using Improved YOLOv3-Tiny Model. Precis. Agric. 2021, 22, 754–776. [Google Scholar] [CrossRef]
- Ji, W.; Gao, X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D. Apple Target Recognition Method in Complex Environment Based on Improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [Google Scholar] [CrossRef]
- Ji, W.; Pan, Y.; Xu, B.; Wang, J. A Real-Time Apple Targets Detection Method for Picking Robot Based on ShufflenetV2-YOLOX. Agriculture 2022, 12, 856. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Z.; Ali, S.; Yang, N.; Fu, S.; Zhang, Y. Multi-Class Detection of Cherry Tomatoes Using Improved YOLOv4-Tiny. Int. J. Agric. Biol. Eng. 2023, 16, 225–231. [Google Scholar] [CrossRef]
- Hu, T.; Wang, W.; Gu, J.; Xia, Z.; Zhang, J.; Wang, B. Research on Apple Object Detection and Localization Method Based on Improved YOLOX and RGB-D Images. Agronomy 2023, 13, 1816. [Google Scholar] [CrossRef]
- Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens. 2021, 13, 1619. [Google Scholar] [CrossRef]
- Kaukab, S.; Ghodki, B.M.; Ray, H.; Kalnar, Y.B.; Narsaiah, K.; Brar, J.S. Improving Real-Time Apple Fruit Detection: Multi-Modal Data and Depth Fusion with Non-Targeted Background Removal. Ecol. Inform. 2024, 82, 102691. [Google Scholar] [CrossRef]
- Lawal, O.M. YOLOv5-LiNet: A Lightweight Network for Fruits Instance Segmentation. PLoS ONE 2023, 18, e0282297. [Google Scholar] [CrossRef]
- Tao, T.; Wei, X. STBNA-YOLOv5: An Improved YOLOv5 Network for Weed Detection in Rapeseed Field. Agriculture 2024, 15, 22. [Google Scholar] [CrossRef]
- Xu, B.; Cui, X.; Ji, W.; Yuan, H.; Wang, J. Apple Grading Method Design and Implementation for Automatic Grader Based on Improved YOLOv5. Agriculture 2023, 13, 124. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Liu, W.; Yue, R.; Yao, M.; Shi, J.; Hu, J. Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny. Agronomy 2024, 14, 931. [Google Scholar] [CrossRef]
- Gu, B.; Wen, C.; Liu, X.; Hou, Y.; Hu, Y.; Su, H. Improved YOLOv7-Tiny Complex Environment Citrus Detection Based on Lightweighting. Agronomy 2023, 13, 2667. [Google Scholar] [CrossRef]
- Wang, W.; Xi, Y.; Gu, J.; Yang, Q.; Pan, Z.; Zhang, X.; Xu, G.; Zhou, M. YOLOv8-TEA: Recognition Method of Tender Shoots of Tea Based on Instance Segmentation Algorithm. Agronomy 2025, 15, 1318. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, X.; Lv, D.; Zhao, Y.; Liu, P. YOLOv8n-CSD: A Lightweight Detection Method for Nectarines in Complex Environments. Agronomy 2024, 14, 2427. [Google Scholar] [CrossRef]
- Ma, B.; Hua, Z.; Wen, Y.; Deng, H.; Zhao, Y.; Pu, L.; Song, H. Using an Improved Lightweight YOLOv8 Model for Real-Time Detection of Multi-Stage Apple Fruit in Complex Orchard Environments. Artif. Intell. Agric. 2024, 11, 70–82. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, Y.; Fan, W.; Liu, J. An Improved YOLOv8 Model for Lotus Seedpod Instance Segmentation in the Lotus Pond Environment. Agronomy 2024, 14, 1325. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Z.; Zhang, K.; Yang, L.; Zhang, D.; Yu, Y. Research on the Visual Location Method for Strawberry Picking Points under Complex Conditions Based on Composite Models. J. Sci. Food Agric. 2024, 104, 8566–8579. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single Shot Multibox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Wang, Y.; Xing, Z.; Ma, L.; Qu, A.; Xue, J. Object Detection Algorithm for Lingwu Long Jujubes Based on the Improved SSD. Agriculture 2022, 12, 1456. [Google Scholar] [CrossRef]
- Agarwal, D.; Bhargava, A. On-Tree Fruit Detection System Using Darknet-19 Based SSD Network. J. Food Meas. Charact. 2024, 18, 7067–7076. [Google Scholar] [CrossRef]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 213–229. [Google Scholar]
- Yang, Y.; Wang, X.; Liu, Z.; Huang, M.; Sun, S.; Zhu, Q. Detection of Multi-Size Peach in Orchard Using RGB-D Camera Combined with an Improved DEtection Transformer Model. Intell. Data Anal. 2023, 27, 1539–1554. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, X.; Wang, H.; Wei, H.; Zhang, Y.; Zhou, G. Pear Fruit Detection Model in Natural Environment Based on Lightweight Transformer Architecture. Agriculture 2024, 15, 24. [Google Scholar] [CrossRef]
- Ji, W.; Zhai, K.; Xu, B.; Wu, J. Green Apple Detection Method Based on Multidimensional Feature Extraction Network Model and Transformer Module. J. Food Prot. 2025, 88, 100397. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, J.; Hu, T.; Wang, B.; Xia, Z. An Image Segmentation and Point Cloud Registration Combined Scheme for Sensing of Obscured Tree Branches. Comput. Electron. Agric. 2024, 221, 108960. [Google Scholar] [CrossRef]
- Chen, Z.; Ting, D.; Newbury, R.; Chen, C. Semantic Segmentation for Partially Occluded Apple Trees Based on Deep Learning. Comput. Electron. Agric. 2021, 181, 105952. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of Fruit-Bearing Branches and Localization of Litchi Clusters for Vision-Based Harvesting Robots. IEEE Access 2020, 8, 117746–117758. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, Z.; Wang, W.; Gao, F.; Fu, L.; Li, R.; Cui, Y. Canopy Segmentation and Wire Reconstruction for Kiwifruit Robotic Harvesting. Comput. Electron. Agric. 2021, 181, 105933. [Google Scholar] [CrossRef]
- Lin, G.; Tang, Y.; Zou, X.; Wang, C. Three-Dimensional Reconstruction of Guava Fruits and Branches Using Instance Segmentation and Geometry Analysis. Comput. Electron. Agric. 2021, 184, 106107. [Google Scholar] [CrossRef]
- Yang, C.H.; Xiong, L.Y.; Wang, Z.; Wang, Y.; Shi, G.; Kuremot, T.; Zhao, W.H.; Yang, Y. Integrated Detection of Citrus Fruits and Branches Using a Convolutional Neural Network. Comput. Electron. Agric. 2020, 174, 105469. [Google Scholar] [CrossRef]
- Wan, H.; Fan, Z.; Yu, X.; Kang, M.; Wang, P.; Zeng, X. A Real-Time Branch Detection and Reconstruction Mechanism for Harvesting Robot via Convolutional Neural Network and Image Segmentation. Comput. Electron. Agric. 2022, 192, 106609. [Google Scholar] [CrossRef]
- Zheng, Z.; Hu, Y.; Guo, T.; Qiao, Y.; He, Y.; Zhang, Y.; Huang, Y. AGHRNet: An Attention Ghost-HRNet for Confirmation of Catch-and-shake Locations in Jujube Fruits Vibration Harvesting. Comput. Electron. Agric. 2023, 210, 107921. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Dong, J.; Zhao, P.; Qiao, Y.; Sun, S.; Huang, Y. A Novel Jujube Tree Trunk and Branch Salient Object Detection Method for Catch-and-Shake Robotic Visual Perception. Expert. Syst. Appl. 2024, 251, 124022. [Google Scholar] [CrossRef]
- Kok, E.; Wang, X.; Chen, C. Obscured Tree Branches Segmentation and 3D Reconstruction Using Deep Learning and Geometrical Constraints. Comput. Electron. Agric. 2023, 210, 107884. [Google Scholar] [CrossRef]
- Digumarti, S.T.; Nieto, J.; Cadena, C.; Siegwart, R.; Beardsley, P. Automatic Segmentation of Tree Structure From Point Cloud Data. IEEE Robot. Autom. Lett. 2018, 3, 3043–3050. [Google Scholar] [CrossRef]
- Ma, B.; Du, J.; Wang, L.; Jiang, H.; Zhou, M. Automatic Branch Detection of Jujube Trees Based on 3D Reconstruction for Dormant Pruning Using the Deep Learning-Based Method. Comput. Electron. Agric. 2021, 190, 106484. [Google Scholar] [CrossRef]
- Westling, F.; Underwood, J.; Bryson, M. Graph-Based Methods for Analyzing Orchard Tree Structure Using Noisy Point Cloud Data. Comput. Electron. Agric. 2021, 187, 106270. [Google Scholar] [CrossRef]
Methods | Algorithms | Advantages | Disadvantages |
---|---|---|---|
Traditional image processing | Color space transformation; Edge detection; Contour extraction; Threshold segmentation; Shape matching; Template matching. | Low computational requirements; Fast processing speeds; No need for a lot of training data. | Rely on manually designed feature extraction rules; Exhibit poor robustness. |
Traditional machine learning | HOG-SVM; KNN; RF; Shape matching-SVM; DT; K-means. | Faster training speed; Easier model interpretability; Low labeled data requirements; Automatic feature learning; Stronger generalization ability. | Sensitive to the inputs of abnormal data; Rely on manually designing and selecting appropriate feature extraction methods; Limited robustness. |
Deep learning | One-stage (YOLO, SSD, DETR, EfficientDet); Two-stage (Faster RCNN, Mask RCNN). | End-to-end learning; Automatic feature extraction; Exhibit best robustness and adaptability in complex environments; Adaptability to multiple tasks and data types. | Require a large amount of labeled data for training; High computational resource demands; Poor model interpretability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Li, C.; Xi, Y.; Gu, J.; Zhang, X.; Zhou, M.; Peng, Y. Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots. Agronomy 2025, 15, 1926. https://doi.org/10.3390/agronomy15081926
Wang W, Li C, Xi Y, Gu J, Zhang X, Zhou M, Peng Y. Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots. Agronomy. 2025; 15(8):1926. https://doi.org/10.3390/agronomy15081926
Chicago/Turabian StyleWang, Wenbo, Chenshuo Li, Yidan Xi, Jinan Gu, Xinzhou Zhang, Man Zhou, and Yuchun Peng. 2025. "Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots" Agronomy 15, no. 8: 1926. https://doi.org/10.3390/agronomy15081926
APA StyleWang, W., Li, C., Xi, Y., Gu, J., Zhang, X., Zhou, M., & Peng, Y. (2025). Research Progress and Development Trend of Visual Detection Methods for Selective Fruit Harvesting Robots. Agronomy, 15(8), 1926. https://doi.org/10.3390/agronomy15081926