Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Device and Measurement Design
2.3. Theoretical Calculations
2.4. Experimental Design
- (1)
- Significance of terms (p < 0.05).
- (2)
- Maximizing the adjusted R2 (to avoid overfitting).
- (3)
- Predicted R2 close to the adjusted R2 (to ensure predictive capability).
- (4)
- Non-significant lack-of-fit test (p > 0.05).
- (5)
- Prioritizing a parsimonious model with fewer significant terms.
2.5. Uncertainty Analysis
2.6. Theoretical Consideration
- (1)
- The internal water content gradient of a single rapeseed is ignored.
- (2)
- There is no rotational movement of the rapeseed during the falling process.
- (3)
- The surface of the colliding material is smooth.
- (4)
- The influence of individual shape differences of rapeseed on the experimental results can be ignored.
- (5)
- A single rapeseed is considered a standard sphere.
3. Results
3.1. The Results of the Single-Factor Experiment
3.2. Center Rotation Regression Experiment
4. Discussions
4.1. The Variations of H and Mc with ec
4.2. Effects of Interaction Between Factors on Elastic Rapeseed Collision Recovery Coefficient
4.3. Model Verification
5. The Experimental Validation of the Designed ec
5.1. Rapeseed Free-Fall Test Platform
5.2. Simulation Experiment of Rapeseed Free Fall Based on Discrete Element EDEM
5.2.1. Establishment of Rapeseed Particle Model and Platform
5.2.2. Stiffness Sensitivity Analysis
5.2.3. Analysis of Simulation Results
5.3. Analysis of Rapeseed Collision Stress Based on Finite Element ANSYS Software
6. Conclusions
- (1)
- The collision recovery coefficient (ec) of rapeseed is significantly influenced by the thickness of the collision material (L), the drop height (H), and the moisture content (Mc). Specifically, L, H, and Mc all have a negative correlation with ec.
- (2)
- By using a high-speed camera on a test bench, this study accurately measured the collision recovery coefficient of rapeseed under different conditions. Through discrete element EDEM software simulation and platform free-fall experiments, the rebound height of rapeseed in free fall was measured. The measured value (Hr) and the simulated value (Hs) were compared, and the relative error range was calculated to be between −1% and 1%, thereby verifying the reliability of the obtained collision recovery coefficient of rapeseed.
- (3)
- Data analysis was conducted using Design-Expert 12 software, and based on the response surface analysis of the three-factor rotational regression experiment, it was determined that the interaction effect of drop height and material thickness (H·L) has a significant impact on the collision recovery coefficient of rapeseed.
- (4)
- A finite element simulation software ANSYS was used to establish a free-fall collision model of rapeseed with Q235 steel. The simulation experiment showed that the collision process of rapeseed with Q235 steel includes the free-fall stage, elastic compression stage, elastic rebound stage, elastic oscillation stage, and stabilization stage. During the elastic compression stage, the contact between rapeseed and Q235 steel changes from point to surface until the contact area is maximized. In the elastic rebound stage, the rapeseed begins to move upward, and its internal energy transforms from kinetic energy to elastic potential energy. At this time, the contact between rapeseed and Q235 steel starts to change from surface to point. When there is no contact between rapeseed and Q235 steel, the surface deformation of rapeseed continues to change due to the elastic potential energy, which is the elastic oscillation stage. When the deformation of rapeseed and the stress it experiences become stable, this marks the stabilization stage.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
L | The material layer thickness (mm) |
Mc | The moisture content (%w.b.) |
H | The drop height of rapeseed (mm) |
Hr | The actual value of the rebound height (mm) |
Hs | Simulation value of rebound height (mm) |
m0 | The initial mass of the sample rapeseed (g) |
mt | The mass of the rapeseed varying with time (g) |
W | The amount of water added (g) |
Mct | The target moisture content (%w.b.) |
ec | The elastic collision recovery coefficient of rapeseed |
Vy | The horizontal component velocity (m/s) |
Vx | The vertical component velocity (m/s) |
V0 | The instantaneous velocity after collision (m/s) |
g | The gravity (m/s2) |
v | The terminal velocity (m/s) |
t | The free fall time of rapeseed (s) |
References
- Zheng, M.; Terzaghi, W.; Wang, H.; Hua, W. Integrated strategies for increasing rapeseed yield. Trends Plant Sci. 2022, 27, 742–745. [Google Scholar] [CrossRef]
- Duff, H.; Hegedus, P.B.; Loewen, S.; Bass, T.; Maxwell, B.D. Precision Agroecology. Sustainability 2022, 14, 106. [Google Scholar] [CrossRef]
- Auernhammer, H. Precision farming—the environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43. [Google Scholar] [CrossRef]
- Tauber, M.; Gollan, B.; Schmittner, C.; Knopf, P. Passive Precision Farming Reshapes the Agricultural Sector. Computer 2023, 56, 120–124. [Google Scholar] [CrossRef]
- Liao, Q.; Lei, X.; Liao, Y.; Ding, Y.; Zhang, Q.; Wang, L. Research Progress of Precision Seeding for Rapeseed. Trans. Chin. Soc. Agric. Mach. 2017, 48, 16. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, T.H.; Chen, J.; Wang, Y.; Teng, S. Design and Simulation of Seeding and Fertilizing Control System Based on MCGS. J. Agric. Univ. Hebei 2019, 42, 117–121. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Q.; Li, H.; Xu, C.; Ding, Y. Design and Test of Dust Removal Seeding Rate Monitoring System for Rapeseed Seeders. Smart Agric. 2024, 6, 107–117. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.; Wu, M.; Wu, Z. Sowing Performance of the seeder drill for the 2BYG-220 type combined rapeseed planter under vibration conditions. Appl. Sci. 2024, 14, 5091. [Google Scholar] [CrossRef]
- Liao, Q.; Wang, C.; He, K.; Yuan, J.; Wang, X. Design and Experiment on Re-cleaning Machine for Rapeseed after Combine Harvesting. Trans. Chin. Soc. Agric. Mach. 2021, 52, 175–185. [Google Scholar]
- Kumar, D.; Mishra, A.; Prasad, M.; Pyare, R.; Majhi, M. Performance analysis of deep bed drying of canola seeds using numerical technique. J. Stored Prod. Res. 2021, 94, 101891. [Google Scholar] [CrossRef]
- Wang, L.; Xi, R.; Liao, Y.; Zhang, Q.; Xiao, W.; Liao, Q. Effects of land slope on seeding performance of a broad width precision no-tillage planter for rapeseed. Trans. Chin. Soc. Agric. Eng. 2020, 36, 11–21. [Google Scholar] [CrossRef]
- Wang, L.J.; Liu, T.H.; Feng, X.; Gao, Y.P. Research Progress of the Restitution Coefficients of Collision of Particles in Agricultural and Food Fields. Trans. Chin. Soc. Agric. Eng. 2021, 37, 313–322. [Google Scholar]
- Fang, R.; Shu, C.; Liao, Y.; Tian, B.; Liao, Q. Design and Performance testing of 2BZ-4 Vibrational Planter for Rapeseed. J. Huazhong Agric. Univ. 2015, 34, 115–120. [Google Scholar] [CrossRef]
- Zuo, Q.; You, J.; Wang, L.; Zheng, J.; Li, J.; Qian, C.; Lin, G.; Yang, G.; Leng, S. A Balanced Sowing Density Improves Quality of Rapeseed Blanket Seedling. Agronomy 2022, 12, 1539. [Google Scholar] [CrossRef]
- Martinez-Soberanes, E.E.; Purdy, S.K.; Reaney, M.J.T.; Zhang, W.J. Mechanical stress on canola seed during dehulling. J. Food Sci. 2022, 87, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, X.; Wu, C. Feasibility analysis and promotion recommendations for rapeseed segmented mechanical harvesting. Chin. J. Agric. Mech. 2025, 46, 1–4. [Google Scholar] [CrossRef]
- Yang, J.; Wan, X.; Liao, Y.; Liao, Q. Design and Experiment of Cylinder Sieve Type Re-cleaning Device for Rape Combine Harvester. Trans. Chin. Soc. Agric. Mach. 2022, 53, 99–108. [Google Scholar]
- Wang, Y.; Zhang, W.; Qi, B.; Ding, Y.; Xia, Q. Research on Control System of Corn Planter Based on Radar Speed Measurement. Agronomy 2024, 14, 1043. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Yi, S.; Chen, T.; Zhang, D.; Wang, S.; Tari, V.S. Analysis measurements of millet collision coefficient of restitution for mechanized seeding. PLoS ONE 2025, 20, e0320001. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, W.; Wang, F.; Liu, Y.; Zhao, B.; Fang, X. Experimental Analysis and Verification of the Influence on the Elastic Recovery Coefficient of Wheat. Appl. Sci. 2023, 13, 5481. [Google Scholar] [CrossRef]
- Lu, Y.G.; Wu, N.; Lin, D.Z.; Yu, Z.Y.; You, Y.Z.; Hu, Z.C. Study on the Recovery Coefficient and Friction Coefficient of Peanut Kernel. Jiangsu Agric. Sci. 2016, 44, 386–390. [Google Scholar] [CrossRef]
- Kong, F.; Shi, L.; Zhang, Y.; Chen, C.; Sun, Y.; Xie, Q. Measurement and Analysis of Seed Cotton’ Restitution Coefficient in Point-to-plate Collision Model. J. Agric. Sci. Technol. 2019, 21, 92–99. [Google Scholar]
- Shi, L.R.; Ma, Z.T.; Zhao, W.Y.; Yang, X.P.; Sun, B.G.; Zhang, J.P. Calibration of Simulation Parameters of Flaxed Seeds Using Discrete Element Method and Verification of Seed-Metering Test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 25–33. [Google Scholar]
- Wang, W.Z.; Liu, W.R.; Yuan, L.H. Calibration of Discrete Element Parameters of Wheat Plants at Harvest Period Based on EDEM. J. Henan Agric. Univ. 2021, 55, 64–72. [Google Scholar] [CrossRef]
- Xu, J. The Key Technology Research of Rapeseed Low Dehumidification Drying. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2014. [Google Scholar]
- Wu, W.; Deng, X.; Li, J.; Hu, J.; Cheng, H.; Zhou, W.; Deng, F.; Chen, Y.; Ren, W.; Lei, X. Micro-level stress characteristics of rapeseed particle during the seeding process using the MFBD-DEM coupled method. Comput. Electron. Agric. 2024, 220, 108929. [Google Scholar] [CrossRef]
- Bester, C.S.; Behringer, R.P. Collisional model of energy dissipation in three-dimensional granular impact. Phys. Rev. E 2017, 95, 032906. [Google Scholar] [CrossRef]
- Hansen, J.; Tuchin, K. Collisional energy loss and the chiral magnetic effect. Am. Phys. Soc. 2021, 104, 034903. [Google Scholar] [CrossRef]
- Jiang, B.; Cheng, C.; Yang, D.; Guo, H.; Xie, D.; Shen, X. Dynamics of collision-induced energy transfer. Fundam. Res. 2023, 12, 28. [Google Scholar] [CrossRef]
- Zhan, G.; Zong, W.; Ma, L.; Wei, J.; Liu, W. Biomechanical properties of ready-to-harvest rapeseed plants: Measurement and analysis. Inf. Process. Agric. 2023, 10, 391–399. [Google Scholar] [CrossRef]
- Bravina, L.; Kvasiuk, Y.; Sivoklokov, S.; Vitiuk, O.; Zabrodin, E. Directed Flow in Microscopic Models in Relativistic A+A Collisions. Universe 2019, 5, 69. [Google Scholar] [CrossRef]
- Yuan, J.; Wan, X.; Liao, Q.; Gao, D.; Xiao, W.; Yang, J. Mechanical compression characteristics of rapeseed based on continuous damage theory. Biosyst. Eng. 2022, 224, 301–312. [Google Scholar] [CrossRef]
- Zhang, X.F.; Li, B.; Peng, G.L.; Meng, G.D.; Luo, C.W.; Yang, L. Analysis of Vacuum Drying Kinetics of Rapeseed and Analysis of Weibull Model. Food Ferment. Ind. 2019, 45, 66–73. [Google Scholar] [CrossRef]
- Huang, X.M.; Zha, X.T.; Pan, H.B.; Zong, W.Y.; Chen, H. Measurement and Analysis of Rapeseeds’ Restitution Coefficient in Point-to-Plate Collision Model. Trans. Chin. Soc. Agric. Eng. 2014, 30, 22–29. [Google Scholar]
- Wang, L.; Liao, Y.; Li, M.; Ren, N.; Zheng, X.; Wang, M.; Liao, Q. Motion characteristics of rapeseed and wheat seeds within mixing components of air-assisted centralized metering device based on DEM-CFD. Comput. Electron. Agric. 2024, 221, 108986. [Google Scholar] [CrossRef]
- Wang, G.; He, B.; Han, D.; Zhang, H.; Wang, X.; Chen, Y.; Chen, X.; Zhao, R.; Li, G. Investigation of Collision Damage Mechanisms and Reduction Methods for Pod Pepper. Agriculture 2024, 14, 117. [Google Scholar] [CrossRef]
- Moya, M.; Sánchez, D.; Romero, J.Á.; Villar-García, J.R. Influence of Moisture Content on Some Mechanical Properties of Wheat. Agronomy 2024, 14, 347. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.P.; Wang, Y.; He, W.; Chen, H.Y. Structural Design Optimization of Built-in Vertical Clapboard for Rapeseed Fluidized Bed Dryer. Food Mach. 2019, 35, 82–88. [Google Scholar] [CrossRef]
- Li, W. Difficulties and Suggestions for Developing Green Food Processing Products. Grain Sci. Technol. Econ. 2020, 45, 75–78. [Google Scholar] [CrossRef]
- Rao, G.; Zhao, W.Y.; Shi, L.R.; Sun, B.G.; Guo, J.H.; Wang, Z. Calibration and Experimental Validation of Discrete Element Simulation Parameters for Double-low Rapeseed. J. China Agric. Univ. 2023, 28, 192–207. [Google Scholar]
- James, T.W. Sensitivity Analysis in Practice, Andrea Saltelli. Technometrics 2005, 47, 236. [Google Scholar] [CrossRef]
- Yıldırım, B.; Müftü, S. Simulation and Analysis of the Impact of Micron-Scale Particles onto a Rough Surface. Int. J. Solids Struct. 2012, 49, 1375–1386. [Google Scholar] [CrossRef]
- Tofighian, H.; Amani, E.; Saffar-Avval, M. A Large Eddy Simulation Study of Cyclones: The Effect of Sub-Models on Efficiency and Erosion Prediction. Powder Technol. 2020, 360, 1237–1252. [Google Scholar] [CrossRef]
- Zhang, P.C. Studies on Rapeseed Drying Technology in A Novel Spouted Bed. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2007. [Google Scholar]
- Yildirim, B.; Muftu, S.; Gouldstone, A. Modeling of High Velocity Impact of Spherical Particles. Wear 2011, 270, 703–713. [Google Scholar] [CrossRef]
Devices | Model | Production Information | Measurement Range | Precision |
---|---|---|---|---|
High-speed camera | FASTCAM Mini UX50 | (Photron) Tokyo, Japan | Max fps 2000 | - |
LED lighting power supply | CLG-150-48A | (Shenzhen Longood Intelligent Electric Co., Ltd.) Shenzhen, China | 48 V, 0~3.20 A | ±1 (%U) |
Electronic balance | FA-2204BN | (Shanghai Youke Instrument Co., Ltd.) Shanghai, China | 0.01–220 g | 0.0001 g |
Moisture analyzer | SFY-001 | (Shenzhen Guanya Technology Co., Ltd.) Shenzhen, China | 0–50 g | 0.001 g/0.5% |
Number | Collision Material | L/mm | Mc/%w.b. | H/mm |
---|---|---|---|---|
1 | Q235 steel | 6 | 10 | 350 |
2 | 20 | |||
3 | 30 | |||
4 | Organic glass | 10 | ||
5 | 20 | |||
6 | 30 | |||
7 | SBR Rubber | 10 | ||
8 | 20 | |||
9 | 30 | |||
10 | Aluminum alloy | 10 | ||
11 | 20 | |||
12 | 30 | |||
13 | Q235 steel | 2 | 20 | |
14 | 4 | |||
15 | 6 | |||
16 | 8 | |||
17 | 10 | |||
18 | 6 | 10 | 150 | |
19 | 250 | |||
20 | 350 | |||
21 | 450 | |||
22 | 550 | |||
23 | 20 | 150 | ||
24 | 250 | |||
25 | 350 | |||
26 | 450 | |||
27 | 550 | |||
28 | 30 | 150 | ||
29 | 250 | |||
30 | 350 | |||
31 | 450 | |||
32 | 550 | |||
33 | 10 | 350 | ||
34 | 15 | |||
35 | 20 | |||
36 | 25 | |||
37 | 30 |
Level | L/mm | Mc/%w.b. | H/mm |
---|---|---|---|
−1 | 2 | 10 | 150 |
0 | 6 | 20 | 350 |
+1 | 10 | 30 | 550 |
Name | Units | Uncertainty |
---|---|---|
Horizontal component velocity (Vx) | m·s−1 | ±0.04 |
Vertical component velocity (Vy) | m·s−1 | ±0.03 |
Instantaneous velocity after collision (V0) | m·s−1 | ±0.03 |
The actual value of the rebound height (Hr) | mm | ±0.04 |
Simulation value of rebound height (Hs) | mm | ±0.02 |
Test Number | X1 | X2 | X3 | Vx/m·s−1 | Vy/m·s−1 | V0/m·s−1 | Y |
---|---|---|---|---|---|---|---|
1 | 350 (0) | 2 (−1) | 10 (−1) | 1.971 | 0.254 | 2.646 | 0.649 |
2 | 350 (0) | 6 (0) | 20 (0) | 1.969 | 0.502 | 2.597 | 0.565 |
3 | 550 (+1) | 6 (0) | 10 (−1) | 2.836 | 0.878 | 3.234 | 0.605 |
4 | 150 (−1) | 6 (0) | 10 (−1) | 1.395 | 0.315 | 1.666 | 0.648 |
5 | 550 (+1) | 6 (0) | 30 (+1) | 2.508 | 0.758 | 3.234 | 0.541 |
6 | 150 (−1) | 10 (+1) | 20 (0) | 1.101 | 0.249 | 1.568 | 0.543 |
7 | 150 (−1) | 6 (0) | 30 (+1) | 1.212 | 0.305 | 1.676 | 0.541 |
8 | 550 (+1) | 10 (+1) | 20 (0) | 2.712 | 0.919 | 3.254 | 0.551 |
9 | 350 (0) | 10 (+1) | 30 (+1) | 1.949 | 0.559 | 2.577 | 0.539 |
10 | 350 (0) | 6 (0) | 20 (0) | 1.971 | 0.503 | 2.597 | 0.565 |
11 | 350 (0) | 2 (−1) | 30 (+1) | 2.045 | 0.601 | 2.617 | 0.552 |
12 | 350 (0) | 6 (0) | 20 (0) | 1.965 | 0.511 | 2.597 | 0.550 |
13 | 350 (0) | 10 (+1) | 10 (−1) | 1.995 | 0.321 | 2.577 | 0.645 |
14 | 350 (0) | 6 (0) | 20 (0) | 1.975 | 0.508 | 2.597 | 0.565 |
15 | 350 (0) | 6 (0) | 20 (0) | 1.968 | 0.501 | 2.597 | 0.565 |
16 | 550 (+1) | 2 (−1) | 20 (0) | 2.669 | 0.814 | 3.283 | 0.565 |
17 | 150 (−1) | 2 (−1) | 20 (0) | 1.379 | 0.31 | 1.715 | 0.623 |
Variation Source | Quadratic Sum | Degree of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 0.0246 | 9 | 0.0027 | 18.16 | 0.0005 |
H | 0.0011 | 1 | 0.0011 | 7.17 | 0.0316 |
L | 0.0015 | 1 | 0.0015 | 10.22 | 0.0151 |
Mc | 0.0175 | 1 | 0.0175 | 115.98 | <0.0001 |
HL | 0.0011 | 1 | 0.0011 | 7.22 | 0.0312 |
HMc | 0.0005 | 1 | 0.0005 | 3.07 | 0.1234 |
LMc | 0 | 1 | 0 | 0.1343 | 0.7248 |
H2 | 0 | 1 | 0 | 0.1117 | 0.748 |
L2 | 0.0005 | 1 | 0.0005 | 3.08 | 0.1227 |
Mc2 | 0.0024 | 1 | 0.0024 | 15.75 | 0.0054 |
Residual error | 0.0011 | 7 | 0.0002 | ||
Lack of fit | 0.0009 | 3 | 0.0003 | 6.48 | 0.0513 |
Error | 0.0002 | 4 | 0 | ||
Summation | 0.0257 | 16 |
Mc (%w.b.) | L (mm) | H (mm) | The Predicted Value of ec | The Measured Value of ec | RD (%) |
---|---|---|---|---|---|
15 | 10 | 200 | 0.542834 | 0.505228235 | 0.074 |
25 | 6 | 400 | 0.605377 | 0.567502217 | 0.066 |
30 | 2 | 300 | 0.577492 | 0.489715572 | 0.179 |
21 | 6 | 250 | 0.5433225 | 0.520406568 | 0.044 |
18 | 2 | 150 | 0.55214725 | 0.473355529 | 0.166 |
22 | 10 | 320 | 0.5678868 | 0.565510594 | 0.004 |
Parameter | Value |
---|---|
Poisson’s ratio of rapeseed | 0.28 |
Rapeseed density/(kg·m−3) | 749, 779, 801 |
The shear modulus of rapeseed/Pa | 1.1 × 107 |
Poisson’s ratio of Q235 steel | 0.304 |
Density of Q235 steel/(kg·m−3) | 7850 |
Shear modulus of Q235 steel/Pa | 7 × 1010 |
The static friction coefficient between rapeseed and Q235 steel | 0.25 |
The rolling friction coefficient between rapeseed and Q235 steel | 0.08 |
The normal stiffness between rapeseed and Q235 steel (N·m−1) | 1.56 × 105 |
The tangential stiffness between rapeseed and Q235 steel (N·m−1) | 9.36 × 104 |
Test Number | X1 | X2 | X3 | Simulative Value Hs/mm | Measured Value Hr/mm | RD% |
---|---|---|---|---|---|---|
1 | 350 (0) | 2 (−1) | 10 (−1) | 158.807 | 158.33 | 0.3012695 |
2 | 350 (0) | 6 (0) | 20 (0) | 115.268 | 114.66 | 0.530263387 |
3 | 550 (+1) | 6 (0) | 10 (−1) | 191.415 | 191.73 | −0.164293538 |
4 | 150 (−1) | 6 (0) | 10 (−1) | 63.8349 | 64.23 | −0.615133115 |
5 | 550 (+1) | 6 (0) | 30 (+1) | 163.115 | 162.13 | 0.607537162 |
6 | 150 (−1) | 10 (+1) | 20 (0) | 46.8695 | 46.67 | 0.427469466 |
7 | 150 (−1) | 6 (0) | 30 (+1) | 44.385 | 44.33 | 0.124069479 |
8 | 550 (+1) | 10 (+1) | 20 (0) | 175.639 | 174.23 | 0.808701142 |
9 | 350 (0) | 10 (+1) | 30 (+1) | 100.402 | 101.17 | −0.759118316 |
10 | 350 (0) | 6 (0) | 20 (0) | 115.225 | 116.33 | −0.949883951 |
11 | 350 (0) | 2 (−1) | 30 (+1) | 102.724 | 103.12 | −0.384018619 |
12 | 350 (0) | 6 (0) | 20 (0) | 108.492 | 107.93 | 0.520707866 |
13 | 350 (0) | 10 (+1) | 10 (−1) | 145.796 | 145.13 | 0.458898918 |
14 | 350 (0) | 6 (0) | 20 (0) | 115.249 | 115.93 | −0.587423445 |
15 | 350 (0) | 6 (0) | 20 (0) | 115.289 | 116.34 | −0.903386625 |
16 | 550 (+1) | 2 (−1) | 20 (0) | 179.135 | 180.01 | −0.486084106 |
17 | 150 (−1) | 2 (−1) | 20 (0) | 57.1785 | 56.65 | 0.932921447 |
Category | Item | Value/Methods |
---|---|---|
Mesh Quality | Orthogonal quality | 0.25 |
Skewness | 0.53 | |
Jacobian ratio | 0.38 | |
Boundary Conditions | Fixed support | Q235 steel bottom |
Gravitational acceleration | −Z, 9.81 m/s2 | |
Pre-impact velocity | 1.71464 m/s | |
Solver Settings | End time | 0.005 s |
Time step control | Automatic time step adaptation | |
Contact algorithm | Penalty/Node-based | |
Hourglass control | Khoury |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhang, H.; Li, Z.; Zeng, Z.; Zhang, X.; Gong, L.; Li, B. Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed. Agronomy 2025, 15, 1872. https://doi.org/10.3390/agronomy15081872
Liu C, Zhang H, Li Z, Zeng Z, Zhang X, Gong L, Li B. Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed. Agronomy. 2025; 15(8):1872. https://doi.org/10.3390/agronomy15081872
Chicago/Turabian StyleLiu, Chuandong, Haoping Zhang, Zebao Li, Zhiheng Zeng, Xuefeng Zhang, Lian Gong, and Bin Li. 2025. "Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed" Agronomy 15, no. 8: 1872. https://doi.org/10.3390/agronomy15081872
APA StyleLiu, C., Zhang, H., Li, Z., Zeng, Z., Zhang, X., Gong, L., & Li, B. (2025). Experimental and Numerical Study on the Restitution Coefficient and the Corresponding Elastic Collision Recovery Mechanism of Rapeseed. Agronomy, 15(8), 1872. https://doi.org/10.3390/agronomy15081872