Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Sources of Species Distribution Data
2.2. Environment Variable Data and Screening
2.3. MaxEnt Model Optimization and Parameter Setting
2.4. Suitable Area Division and Area Calculation
2.5. Temporal and Spatial Evolution of Suitable Areas
3. Results and Analysis
3.1. Species Distribution Sites and Filtering Results of Environmental Variables
3.2. MaxEnt Accuracy Evaluation
3.3. Key Environmental Variables Affecting the Distribution of L. nanum
3.4. Suitable Areas for L. nanum Under Current Climate Conditions
3.5. Suitable Area of L. nanum in Different Climate Scenarios in the Future
3.6. Increasing and Decreasing Trends of Suitable Areas of Leontopodium nanum Under Different Climate Scenarios in the Future
4. Discussion
4.1. Evaluation of MaxEnt Model
4.2. Key Environmental Variables Influencing the Distribution of Leontopodium nanum
4.3. Impact of Climate Change on the Suitable Habitat of Leontopodium nanum
4.4. Elevation and Temperature Suitability and Ecological Adaptation
4.5. Limitations and Prospects of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kantamaneni, K.; Rice, L.; Yenneti, K.; Campos, L.C. Assessing the vulnerability of agriculture systems to climate change in coastal areas: A novel index. Sustainability 2020, 12, 4771. [Google Scholar] [CrossRef]
- Pauls, S.U.; Nowak, C.; Bálint, M.; Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 2013, 22, 925–946. [Google Scholar]
- Barrett, M.A.; Brown, J.L.; Junge, R.E.; Yoder, A.D. Climate change, predictive modeling and lemur health: Assessing impacts of changing climate on health and conservation in Madagascar. Biol. Conserv. 2013, 157, 409–422. [Google Scholar]
- Vaissi, S. Response of Iranian lizards to future climate change by poleward expansion, southern contraction, and elevation shifts. Sci. Rep. 2022, 12, 2348. [Google Scholar]
- Pauchard, A.; Milbau, A.; Albihn, A.; Alexander, J.; Burgess, T.; Daehler, C.; Englund, G.; Essl, F.; Evengård, B.; Greenwood, G.B.; et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: New challenges for ecology and conservation. Biol. Invasions 2016, 18, 345–353. [Google Scholar]
- Surmal, O.; Singh, B.; Musarella, C.M. Understanding species diversity, phenology and environmental implications of different life forms in coniferous forests: A case study from Bhallesa Hills of Pir Panjal Mountain, Western Himalaya, India. Forests 2022, 13, 2050. [Google Scholar] [CrossRef]
- Lavorel, S.; Colloff, M.J.; Mcintyre, S.; Doherty, M.D.; Murphy, H.T.; Metcalfe, D.J.; Williams, R.J.; Wise, R.M.; Williams, K.J. Ecological mechanisms underpinning climate adaptation services. Glob. Change Biol. 2015, 21, 12–31. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Gilg, O.; Kovacs, K.M.; Aars, J.; Fort, J.; Gauthier, G.; Grémillet, D.; Ims, R.A.; Meltofte, H.; Moreau, J.; Post, E.; et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. N. Y. Acad. Sci. 2012, 1249, 166–190. [Google Scholar]
- Schippers, P.; Abarca, E.L.; Verboom, J.; Wamelink, G.W.W.; Vos, C.C.; de Boer, W.F.; Harvey, J.A.; Essens, T.; Grashof-Bokdam, C.J.; WallisDeVries, M.F.; et al. Biodiversity conservation in climate change driven transient communities. Biodivers. Conserv. 2021, 30, 2885–2906. [Google Scholar]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Melo-Merino, S.M.; Reyes-Bonilla, H.; Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol Modell. 2020, 415, 108837. [Google Scholar] [CrossRef]
- Tyack, N.; Dempewolf, H.; Khoury, C.K. The potential of payment for ecosystem services for crop wild relative conservation. Plants 2020, 9, 1305. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Guo, Q.; Xie, N.; Yuan, G.; Liao, M.; Gui, Q.; Ding, G. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: Expansion trend and the main driving factors. BMC Ecol. Evol. 2024, 24, 48. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Zhao, H.; Li, M.; Han, W. Predicting the distribution of the invasive species Leptocybe invasa: Combining MaxEnt and geodetector models. Insects 2021, 12, 92. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Townsend Peterson, A.; Soberon, J.; Villalobos, F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Rocchini, D.; Andreo, V.; Förster, M.; Garzon-Lopez, C.X.; Gutierrez, A.P.; Gillespie, T.W.; Hauffe, H.C.; He, K.S.; Kleinschmit, B.; Mairota, P.; et al. Potential of remote sensing to predict species invasions: A modelling perspective. Prog. Phys. Geogr. 2015, 39, 283–309. [Google Scholar] [CrossRef]
- Ischer, M.; Dubuis, A.; Keller, R.; Vittoz, P. A better understanding of the ecological conditions for Leontopodium alpinum Cassini in the Swiss Alps. Folia Geobot. 2014, 49, 541–558. [Google Scholar] [CrossRef]
- Zheng, M.N.; Jia, A. Responses of leaf traits of Leontopodium nanum toaltitude changes on the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2022, 42, 10305–10316. [Google Scholar]
- Gao, J.X.; Xiang, H.Y.; Li, R.; Wang, J.; Xian, Q. Research progress of the chemical constituents and pharmacological effects of Leontopodium species. Southwest Minzu Univ. 2024, 50, 61–74. [Google Scholar]
- Cho, W.K.; Kim, H.-I.; Kim, S.-Y.; Seo, H.H.; Song, J.; Kim, J.; Shin, D.S.; Jo, Y.; Choi, H.; Lee, J.H.; et al. Anti-aging effects of Leontopodium alpinum (Edelweiss) callus culture extract through transcriptome profiling. Genes 2020, 11, 230. [Google Scholar] [CrossRef]
- Knowles, N.L.B.; Scott, D.; Steiger, R. Climate change and the future of ski tourism in Canada’s western mountains. Tour. Hosp. 2024, 5, 187–202. [Google Scholar] [CrossRef]
- Reddy, N.M.; Saravanan, S. Extreme precipitation indices over India using CMIP6: A special emphasis on the SSP585 scenario. Environ. Sci. Pollut. Res. 2023, 30, 47119–47143. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, R.; Djalante, K.; Ebi, F.; Engelbrecht, J.; Guiot, Y.; et al. Impacts of 1.5 C global warming on natural and human systems. In Global Warming of 1.5 C.: An IPCC Special Report; IPCC Secretariat: Geneva, Switzerland, 2018; pp. 175–311. [Google Scholar]
- Zhang, K.; Yao, L.; Meng, J.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci. Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, G.; He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. 2020, 698, 134141. [Google Scholar] [PubMed]
- Valjarević, A.; Milanović, M.; Gultepe, I.; Filipović DLukić, T. Updated Trewartha climate classification with four climate change scenarios. Geogr. J. 2022, 188, 506–517. [Google Scholar]
- Huang, R.; Du, H.; Wen, Y.; Zhang, C.; Zhang, M.; Lu, H.; Wu, C.; Zhao, B. Predicting the distribution of suitable habitat of the poisonous weed Astragalus variabilis in China under current and future climate conditions. Front. Plant Sci. 2022, 13, 921310. [Google Scholar]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar]
- Wu, T.; Pan, C.; Bian, T.; Wang, Q.; Kou, J.; Zhou, B. Response of a sylvan moss species (Didymodon validus Limpr.) with a narrow distribution range to climate change. Forests 2023, 14, 2227. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112, F2. [Google Scholar] [CrossRef]
- KC, A.; Ghimire, A. High-altitude plants in era of climate change: A case of Nepal Himalayas. In Climate Change Impacts on High-Altitude Ecosystems; Springer: Berlin/Heidelberg, Germany, 2015; pp. 177–187. [Google Scholar]
- Rixen, C.; Wipf, S.; Frei, E.; Stöckli, V. Faster, higher, more? Past, present and future dynamics of alpine and arctic flora under climate change. Alp. Bot. 2014, 124, 77–79. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar]
- Minor, E.S.; Lookingbill, T.R. A multiscale network analysis of protected-area connectivity for mammals in the United States. Conserv. Biol. 2010, 24, 1549–1558. [Google Scholar] [PubMed]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar]
- Li, J.; Pandey, B.; Dakhil, M.A.; Khanal, M.; Pan, K. Precipitation and potential evapotranspiration determine the distribution patterns of threatened plant species in Sichuan Province, China. Sci. Rep. 2022, 12, 22418. [Google Scholar]
- Yang, Y.; Xu, B.; Yu, Q.; Fan, L.; Guo, T.; Fu, D.; Chen, H.; Yan, H.; Shao, F.; Li, X. Distribution pattern and factors influencing spontaneous plant diversity in different wetland habitats. Forests 2022, 13, 1678. [Google Scholar] [CrossRef]
- Scheiter, S.; Higgins, S.I. Impacts of climate change on the vegetation of Africa: An adaptive dynamic vegetation modelling approach. Glob. Change Biol. 2009, 15, 2224–2246. [Google Scholar]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar]
- Hewitt, N.; Klenk, N.; Smith, A.; Bazely, D.; Yan, N.; Wood, S.; MacLellan, J.; Lipsig-Mumme, C.; Henriques, I. Taking stock of the assisted migration debate. Biol. Conserv. 2011, 144, 2560–2572. [Google Scholar]
- Pauli, H.; Gottfried, M.; Reiter, K.; Klettner, C.; Grabherr, G. Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994–2004) at the GLORIA* master site Schrankogel, Tyrol, Austria. Glob. Change Biol. 2007, 13, 147–156. [Google Scholar]
- Ricciardi, A.; Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 2009, 24, 248–253. [Google Scholar] [PubMed]
- Ackerly, D.D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 2003, 164, S165–S184. [Google Scholar]
- Mueller, J.M.; Hellmann, J.J. An assessment of invasion risk from assisted migration. Conserv. Biol. 2008, 22, 562–567. [Google Scholar]
Variable | Name | Percent Contribution |
---|---|---|
W_elev wc2.1_2. 5 | Altitude | 61.1 |
bio9 | Mean temperature of driest quarter | 9.9 |
bio1 | Annual mean temperature | 9 |
t_bs | Topsoil base saturation | 8.5 |
bio3 | Isothermality (BIO2/BIO7) (×100) | 4 |
bio14 | Precipitation of driest month (mm) | 4 |
bio15 | Precipitation seasonality (mm) | 1.5 |
bio18 | Precipitation of warmest quarter (mm) | 0.8 |
t_gravel | Topsoil gravel content | 0.4 |
t_ref_bulk_density | Topsoil reference bulk density | 0.3 |
t_usda_tex_class | Topsoil USDA soil texture classification | 0.1 |
t_texture | Topsoil texture | 0.1 |
bio5 | Maximum temperature of warmest month (°C) | 0.1 |
bio17 | Precipitation of driest quarter (mm) | 0.1 |
bio10 | Mean temperature of warmest quarter (°C) | 0.1 |
t_caco3 | Topsoil calcium carbonate content | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, F.; Lv, L.; Bao, S.; Cai, Z.; Fu, S.; Shi, J. Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions. Agronomy 2025, 15, 1869. https://doi.org/10.3390/agronomy15081869
Li F, Lv L, Bao S, Cai Z, Fu S, Shi J. Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions. Agronomy. 2025; 15(8):1869. https://doi.org/10.3390/agronomy15081869
Chicago/Turabian StyleLi, Fayi, Liangyu Lv, Shancun Bao, Zongcheng Cai, Shouquan Fu, and Jianjun Shi. 2025. "Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions" Agronomy 15, no. 8: 1869. https://doi.org/10.3390/agronomy15081869
APA StyleLi, F., Lv, L., Bao, S., Cai, Z., Fu, S., & Shi, J. (2025). Evaluation and Application of the MaxEnt Model to Quantify L. nanum Habitat Distribution Under Current and Future Climate Conditions. Agronomy, 15(8), 1869. https://doi.org/10.3390/agronomy15081869