Spatiotemporal Dynamics and Trade-Off Analysis of Ecosystem Services in the Caijiachuan Watershed of the Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Vegetation Survey and Sample Collection
2.3. Data Sources for Remote Sensing and Model Inputs
2.3.1. Land Use Data and Classification Approach
2.3.2. Digital Elevation Model (DEM)
2.3.3. Meteorological Data Collection
2.3.4. Evapotranspiration
2.3.5. Soil Parameters
2.4. InVEST Model Assessment
2.4.1. Carbon Storage
2.4.2. Water Yield
- Model Overview
- 2.
- Parameterization Strategy
2.4.3. Soil Retention
- Rainfall erosivity factor (R):
- 2.
- Soil Erodibility Factor (K):
- 3.
- LS Factor—Topographic Index
- 4.
- Cover Management Factor (C):
- 5.
- Support Practice Factor (P)
2.4.4. Habitat Quality Module
2.5. Quantification of Ecosystem Service Trade-Offs
3. Results
3.1. Soil Retention Function Evaluation
3.2. Water Yield Function Evaluation
3.3. Carbon Storage Function Evaluation
3.4. Habitat Quality Evaluation
3.5. Temporal Correlation Patterns of Ecosystem Services
3.6. Pixel-Level Scatter Analysis of Ecosystem Service Relationships
3.7. Temporal Trends of Carbon Storage and Water Yield
4. Discussion
4.1. Spatial Characteristics and Driving Mechanisms of Carbon Storage Increase
4.2. Spatiotemporal Evolution and Driving Factors of Water Yield
4.3. Topographic and Climatic Context of the Trade-Off Between Carbon Storage and Water Yield
4.4. Synergistic Effects of Topographic Heterogeneity and Ecological Patterns
4.5. Ecosystem Service Trade-Offs, Agricultural Adaptation, and Rural Livelihoods
4.6. Interpreting Effect Sizes: Statistical Significance Versus Practical Relevance
5. Conclusions
5.1. Substantial Ecosystem Service Improvements with Pronounced Spatial Heterogeneity
5.2. A Persistent Trade-Off Between Carbon Storage and Water Yield
5.3. Trade-Off Mechanisms Driven by Topography, Climate, and Vegetation Dynamics
5.4. Weak Synergies Among Other Ecosystem Services
5.5. Ecosystem Service Trade-Offs Have Implications for Agricultural Adaptation and Rural Livelihoods
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Andersson, E.; Tengö, M.; McPhearson, T.; Kremer, P. Cultural ecosystem services as a gateway for improving urban sustainability. Ecosyst. Serv. 2015, 12, 165–168. [Google Scholar] [CrossRef]
- García, A.M.; Santé, I.; Loureir, X.; Miranda, D. Green infrastructure spatial planning considering ecosystem services assessment and trade-off analysis. Application at landscape scale in Galicia region (NW Spain). Ecosyst. Serv. 2020, 43, 101115. [Google Scholar] [CrossRef]
- Milanovic, M.; Knapp, S.; Pyšek, P.; Kühn, I. Linking traits of invasive plants with ecosystem services and disservices. Ecosyst. Serv. 2020, 42, 101072. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005.
- Lin, Z.; Wu, T.; Xiao, Y.; Rao, E.; Shi, X.; Ouyang, Z. Protecting biodiversity to support ecosystem services: An analysis of trade-offs and synergies in southwestern China. J. Appl. Ecol. 2022, 59, 1234–1245. [Google Scholar] [CrossRef]
- Qiu, J.; Turner, M.G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed. Proc. Natl. Acad. Sci. USA 2013, 110, 12149–12154. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, P.; Zhao, W.; Liu, R. Vulnerability and its driving factors of grassland ecosystems in different ecological-geographical zones of the Yellow River Basin. Acta Ecol. Sin. 2025, 45, 2298–2310. [Google Scholar]
- An, S.S.; Darboux, F.; Cheng, M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderm 2013, 209, 75–85. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Meli, P.; Ellison, D.; de Barros Ferraz, S.F.; Filoso, S.; Brancalion, P.H.S. Forests’ unique value for water: Hydrological impacts of forest disturbance, conversion, and restoration. Glob. Change Biol. 2024, 30, 123–139. [Google Scholar] [CrossRef]
- Lyu, F.; Tang, J.; Olhnuud, A.; Hao, F.; Gong, C. The impact of large-scale ecological restoration projects on trade-offs/synergies and clusters of ecosystem services. J. Environ. Manag. 2024, 365, 121591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, L.; Yang, Y.; He, X. Revegetation does not decrease water yield in the Loess Plateau of China. Geophys. Res. Lett. 2022, 49, e2022GL098025. [Google Scholar] [CrossRef]
- Wu, G.-L.; Liu, Y.-F.; Cui, Z.; Liu, Y.; Shi, Z.-H.; Yin, R.; Kardol, P. Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis. J. Appl. Ecol. 2020, 57, 875–885. [Google Scholar] [CrossRef]
- National Research Council. Improving Land Change Modeling; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Liu, Y.; Liu, X.; Zhang, B.; Li, M. Spatial characteristics of water conservation function in the hilly region of the Loess Plateau based on the InVEST model. Acta Ecol. Sin. 2020, 40, 6161–6170. [Google Scholar]
- Zhao, Y.; Zhang, J.; Yu, Y.; Cui, Y.; Sun, R.; Li, Y.; Hu, Y. Spatial distribution and morphological characteristics of gullies in the Caijiachuan watershed of western Shanxi Loess area. Trans. Chin. Soc. Agric. Eng. 2022, 38, 151–158. [Google Scholar]
- Wang, X. The Influence of Forest Vegetation on Runoff at Different Spatial Scales in the Loess Plateau. Master’s Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Zhang, X.; Yi, H.; Fan, X.; Liu, B. Stability and variability of long-term streamflow and its components in watersheds under vegetation restoration on the Chinese Loess Plateau. Water Resour. Res. 2022, 58, e14543. [Google Scholar] [CrossRef]
- Fang, J.; Wang, X.; Peng, S. Plant Ecology; Higher Education Press: Beijing, China, 2009. [Google Scholar]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Valle, S.; Pereira, D.J.; Matthews, T.J.; Martin, T.E. Heightened ex-tinction risk due to tropical cyclones in insular biodiversity hotspots. Biol. Conserv. 2025, 307, 111184. [Google Scholar] [CrossRef]
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; FAO Forestry Paper 134; FAO: Rome, Italy, 1997. [Google Scholar]
- Clark, D.A.; Brown, S.; Kicklighter, D.W.; Chambers, J.Q.; Thomlinson, J.R.; Ni, J. Measuring net primary production in forests: Concepts and field methods. Ecol. Appl. 2001, 11, 356–370. [Google Scholar] [CrossRef]
- Santantonio, D.; Hermann, R.K.; Overton, W.S. Root biomass studies in for-est ecosystems anadian. J. For. Res. 1977, 7, 187–192. [Google Scholar]
- Berhongaray, G.; Janssens, I.A.; King, J.S.; Ceulemans, R. Fine root biomass and turnover of two fast-growing poplar genotypes. For. Ecol. Manag. 2013, 299, 28–34. [Google Scholar]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Ann. For. Sci. 2012, 69, 761–772. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Donato, D.C. Protocols for the measurement of shrubland ecosystem carbon stocks. Environ. Manag. 2012, 49, 46–61. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Li, M.; Han, X.; Du, S.; Li, L.J. Profile stock of soil organic carbon and distribution in croplands of Northeast China. Catena 2019, 174, 285–292. [Google Scholar] [CrossRef]
- Cord, A.F.; Bartkowski, B.; Beckmann, M.; Dittrich, A.; Hermans-Neumann, K.; Kaim, A.; Lienhoop, N.; Locher-Krause, K.; Priess, J.; Schröter-Schlaack, C.; et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Mainconcepts, methods and the road ahead. Ecosyst. Serv. 2017, 28, 264–272. [Google Scholar] [CrossRef]
- Yang, Y.; Dou, Y.; Wang, Y.; An, S. Trade-offs and synergies of ecosystem services in a typical small watershed of the hilly-gully region in the Loess Plateau. Acta Ecol. Sin. 2022, 42, 8152–8168. [Google Scholar]
- Shan, C.; Liang, Z.; Han, R.; Hao, W. Effects of Robinia pseudoacacia roots on deep soil moisture in the Loess Plateau. Ying Yong Sheng Tai Xue Bao 2005, 16, 1205–1212. [Google Scholar]
- Zhou, Z.; Wang, Y.; An, Z.; Li, R.; Xu, Y.; Zhang, P.; Yang, Y.; Ting, W. Deep root information “hidden in the dark”: 21 m soil profile study of Robinia pseudoacacia. Catena 2022, 213, 106121. [Google Scholar] [CrossRef]
- Guan, N.; Bi, H.; Song, Y.; Lu, S.; Lin, D.; Han, J. Vegetation restoration is affecting the characteristics and patterns of infiltration in the Loess Plateau. Catena 2024, 243, 108190. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R.; Farquhar, G.D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environ-ments. Geophys. Res. Lett. 2012, 39, L17403. [Google Scholar]
- Zhou, Y.; Zhao, J.; Liu, Y.; Li, Y. Simulation of water yield and its response to land use change in a typical loess hilly watershed based on InVEST model. Acta Ecol. Sin. 2021, 41, 5727–5736. [Google Scholar]
- Dai, E.; Wang, Y. Attribution analysis for water yield service based on the geographical detector method: A case study of the Hengduan Mountain region. J. Geogr. Sci. 2020, 30, 1005–1020. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Petersen, G.A. Soil attribute pre-diction using terrain analysis. Soil Sci. Soc. Am. J. 1991, 55, 443–452. [Google Scholar]
- Desmet, P.J.J.; Govers, G. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J. Soil Water Conserv. 1996, 51, 427–433. [Google Scholar] [CrossRef]
- Liu, B.; Bi, X.; Fu, S. Soil Loss Equation; Science Press: Beijing, China, 2010. [Google Scholar]
- Sharpley, A.N.; Williams, J.R. EPIC—Erosion/Productivity Impact Calculator: 1. Model documentation (Technical Bulletin No. 1768); U.S. Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1990. [Google Scholar]
- Moore, I.D.; Burch, G.J. Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50, 1294–1298. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning (Agriculture Handbook No. 537); U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Liu, B.Y.; Zhang, K.L.; Xu, Q.X.; Wang, Z. Soil loss by water erosion in China: An overview. Soil Tillage Res. 2002, 57, 37–52. [Google Scholar]
- Cai, Q.G. Soil erosion and its control in the Loess Plateau of China. Soil Water Conserv. Res. 2001, 17, 1–10. [Google Scholar]
- Moore, D.S.; McCabe, G.P.; Craig, B.A. Introduction to the Practice of Statistics, 9th ed.; W.H. Freeman and Company: New York, NY, USA, 2017. [Google Scholar]
- Quinkenstein, A.; Jochheim, H.; Gäth, S.; Freese, D. Assessing the carbon sequestration potential of poplar and black locust short rotation coppices on mine reclamation sites in Eastern Germany: Model development and application. Sci. Total Environ. 2016, 542, 161–170. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Fu, B.; Lü, Y.; Chen, L. Soil organic carbon fractions and sequestration across a 150-year secondary forest chronosequence on the Loess Plateau, China. Catena 2015, 133, 303–311. [Google Scholar] [CrossRef]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Change Biol. 2014, 20, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bao, W.K.; Bongers, F.; Chen, B. Drivers of tree carbon storage in subtropical forests. Sci. Total Environ. 2019, 654, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Sun, P.; Caldwell, P.V.; Harper, R.; Liu, S.; Sun, G. Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. J. Hydrol. 2020, 590, 125449. [Google Scholar] [CrossRef]
- Deng, L.; Zhang, L.; Fan, X.; Sun, T.; Fei, K. Effects of rainfall intensity and slope gradient on runoff and sediment yield from hillslopes with weathered granite. Environ. Sci. Pollut. Res. 2019, 26, 32559–32573. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Zhang, J.; Li, X. Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau. J. For. Res. 2021, 33, 529–542. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, B.; Chen, S.; Wang, X.; Ma, X.; Pan, B. Large-Scale Afforestation Enhances Precipitation by Intensifying the Atmospheric Water Cycle Over the Chinese Loess Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036738. [Google Scholar] [CrossRef]
- Gao, G.; Zhang, J.; Liu, Y.; Ning, Z.; Fu, B.; Sivapalan, M. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2017, 21, 4363–4378. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Li, H.; Yan, F.; Jiao, J.; Tang, B.; Zhang, Y. Soil available water and water-holding capacity under different vegetation types in the hilly-gully region of the Loess Plateau. Acta Ecol. Sin. 2018, 38, 3889–3898. [Google Scholar]
- Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 2019, 565, 476–479. [Google Scholar] [CrossRef]
- Li, Y.; Liang, K.; Bai, P.; Feng, A.; Liu, L.; Dong, G. The spatiotemporal variation of reference evapotranspiration and the contribution of its climatic factors in the Loess Plateau, China. Environ. Earth Sci. 2016, 75, 354. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [Google Scholar] [CrossRef]
- Feng, J.; Wang, C.; Gao, J.; Ma, H.; Li, Z.; Hao, Y.; Qiu, X.; Ru, J.; Song, J.; Wan, S. Changes in plant litter and root carbon inputs alter soil respiration in three different forests of a climate transitional region. Agric. For. Meteorol. 2024, 330, 110212. [Google Scholar] [CrossRef]
- Li, B.; Gao, G.; Luo, Y.; Xu, M.; Liu, G.; Fu, B. Carbon stock and sequestration of planted and natural forests along climate gradient in water-limited area: A synthesis in the China’s Loess plateau. Agric. For. Meteorol. 2023, 333, 109419. [Google Scholar] [CrossRef]
- Van de Perre, F.; Willig, M.R.; Presley, S.J.; Andewana, F.B.; Beeckman, H.; Boeckx, P.; Cooleman, S.; Haan, M.D.; Kesel, A.D.; Dessein, S. Reconciling biodiversity and carbon stock conservation in an Afrotropical forest landscape. Sci. Adv. 2018, 4, eaar6603. [Google Scholar] [CrossRef]
- Feng, X.M.; Sun, G.; Fu, B.J.; Su, C.H.; Liu, Y.; Lamparski, H. Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2617–2628. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A review on trade-off analysis of ecosystem services for sustainable land-use management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef]
- Liang, W.; Zhang, W.; Jin, Z.; Yan, J.; Lü, Y.; Li, S.; Yu, Q. Rapid urbanization and agricultural intensification increase regional evaporative water consumption of the Loess Plateau. J. Geophys. Res. Atmos. 2020, 125, e2020JD033380. [Google Scholar] [CrossRef]
LULC | Habitat | Roads | Farmland | Orchards | Silt Dam |
---|---|---|---|---|---|
Grassland | 0.6 | 0.95 | 0.9 | 0.8 | 0.7 |
Platycladus orientalis | 0.5 | 0.8 | 0.7 | 0.6 | 0.5 |
Mixed Cedar–Robinia forest | 0.6 | 0.8 | 0.7 | 0.6 | 0.5 |
Robinia pseudoacacia | 0.6 | 0.8 | 0.7 | 0.6 | 0.5 |
Mixed Robinia–Pine forest | 0.65 | 0.8 | 0.7 | 0.6 | 0.5 |
Cropland | 0.25 | 0.7 | 0.8 | 0.7 | 0.8 |
Shrubland | 0.6 | 0.7 | 0.7 | 0.7 | 0.7 |
Orchard | 0.35 | 0.6 | 0.8 | 0.9 | 0.7 |
Quercus liaotungensis | 0.7 | 0.9 | 0.8 | 0.7 | 0.6 |
Unused land | 0.1 | 0.4 | 0.4 | 0.6 | 0.8 |
Pinus tabuliformis | 0.65 | 0.8 | 0.8 | 0.6 | 0.5 |
Check dam land | 0.5 | 0.8 | 0.8 | 0.8 | 0.95 |
LULC | Habitat | Roads | Farmland | Orchards | Silt Dam |
---|---|---|---|---|---|
Grassland | 0.7 | 0.9 | 0.8 | 0.7 | 0.6 |
Platycladus orientalis | 0.6 | 0.7 | 0.6 | 0.5 | 0.4 |
Mixed Cedar–Robinia forest | 0.7 | 0.7 | 0.6 | 0.5 | 0.4 |
Robinia pseudoacacia | 0.7 | 0.7 | 0.6 | 0.5 | 0.4 |
Mixed Robinia–Pine forest | 0.75 | 0.7 | 0.6 | 0.5 | 0.4 |
Cropland | 0.35 | 0.6 | 0.9 | 0.8 | 0.7 |
Shrubland | 0.75 | 0.6 | 0.6 | 0.6 | 0.6 |
Orchard | 0.55 | 0.5 | 0.7 | 0.9 | 0.6 |
Quercus liaotungensis | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 |
Unused land | 0.2 | 0.3 | 0.3 | 0.5 | 0.7 |
Pinus tabuliformis | 0.75 | 0.7 | 0.6 | 0.5 | 0.4 |
Check dam land | 0.5 | 0.7 | 0.7 | 0.7 | 0.9 |
LULC | Habitat | Roads | Farmland | Orchards | Silt Dam |
---|---|---|---|---|---|
Grassland | 0.8 | 0.8 | 0.7 | 0.6 | 0.5 |
Platycladus orientalis | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 |
Mixed Cedar–Robinia forest | 0.8 | 0.6 | 0.5 | 0.4 | 0.3 |
Robinia pseudoacacia | 0.8 | 0.6 | 0.5 | 0.4 | 0.3 |
Mixed Robinia–Pine forest | 0.85 | 0.6 | 0.5 | 0.4 | 0.3 |
Cropland | 0.45 | 0.5 | 0.8 | 0.7 | 0.6 |
Shrubland | 0.85 | 0.5 | 0.5 | 0.5 | 0.5 |
Orchard | 0.65 | 0.4 | 0.6 | 0.8 | 0.5 |
Quercus liaotungensis | 0.9 | 0.7 | 0.6 | 0.5 | 0.4 |
Unused land | 0.3 | 0.2 | 0.22 | 0.4 | 0.6 |
Pinus tabuliformis | 0.85 | 0.2 | 0.5 | 0.4 | 0.3 |
Check dam land | 0.5 | 0.6 | 0.6 | 0.6 | 0.8 |
Threat | Weight | Max Dist | Decay |
---|---|---|---|
Orchard | 0.7 | 700 | Exponential |
Roads | 0.8 | 2500 | Exponential |
Dam | 0.6 | 2500 | Linear |
Farm | 0.75 | 1500 | Linear |
Threat | Weight | Max Dist | Decay |
---|---|---|---|
Orchard | 0.6 | 1000 | Exponential |
Roads | 0.7 | 1700 | Exponential |
Dam | 0.5 | 800 | Linear |
Farm | 0.6 | 1000 | Linear |
Threat | Weight | Max Dist | Decay |
---|---|---|---|
Orchard | 0.5 | 1500 | Exponential |
Roads | 0.6 | 1000 | Exponential |
Dam | 0.4 | 500 | Linear |
Farm | 0.5 | 500 | Linear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Wei, T.; Zhu, Q.; Bi, H.; Qiu, J.; Zhang, J. Spatiotemporal Dynamics and Trade-Off Analysis of Ecosystem Services in the Caijiachuan Watershed of the Loess Plateau. Agronomy 2025, 15, 1707. https://doi.org/10.3390/agronomy15071707
Song G, Wei T, Zhu Q, Bi H, Qiu J, Zhang J. Spatiotemporal Dynamics and Trade-Off Analysis of Ecosystem Services in the Caijiachuan Watershed of the Loess Plateau. Agronomy. 2025; 15(7):1707. https://doi.org/10.3390/agronomy15071707
Chicago/Turabian StyleSong, Guiyun, Tianxing Wei, Qingke Zhu, Huaxing Bi, Jilong Qiu, and Junkai Zhang. 2025. "Spatiotemporal Dynamics and Trade-Off Analysis of Ecosystem Services in the Caijiachuan Watershed of the Loess Plateau" Agronomy 15, no. 7: 1707. https://doi.org/10.3390/agronomy15071707
APA StyleSong, G., Wei, T., Zhu, Q., Bi, H., Qiu, J., & Zhang, J. (2025). Spatiotemporal Dynamics and Trade-Off Analysis of Ecosystem Services in the Caijiachuan Watershed of the Loess Plateau. Agronomy, 15(7), 1707. https://doi.org/10.3390/agronomy15071707