Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato
Abstract
1. Introduction
2. Materials and Methods
2.1. Green Synthesis and Characterization of Gold Nanoparticles (AuNPs)
2.2. Mites Rearing
2.3. In Vitro Evaluation of AuNPs on T. urticae and P. persimilis
2.4. Repellency Effects of AuNPs on T. urticae and P. persimilis
2.5. Greenhouse Evaluation of AuNPs Against T. urticae and Their Effects on Tomato
2.6. Statistical Analysis
3. Results and Discussion
3.1. EDX and TEM Characterization of AuNPs
3.2. In-Vitro Susceptibility of AuNPs to T. urticae
3.3. In-Vitro Susceptibility of AuNPs to P. persimilis
3.4. Selectivity Ratio (SR) Based on Adult LC50 Values
3.5. Repellency of AuNPs on T. urticae
3.6. Repellency of AuNPs on P. persimilis
3.7. Efficacy of AuNPs Against T. urticae in Tomato Under Greenhouse Conditions
- Egg Stage
- Larval Stage
- Protonymph Stage
- Deutonymph Stage
- Adult Stage
3.8. Effect of AuNPs on Tomato Under Greenhouse Conditions
3.8.1. Continuous Agronomic Variables
- Chlorophyll Content
- Plant Height
- °Brix
3.8.2. Harvest Agronomic Variables
- Fruits per Plant
- Polar Diameter
- Equatorial Diameter
- Peduncle Length
- Fruit Weight
- Fruit Hardness
- Degrees Brix (°Bx)
- Total Dissolved Solids (TDS)
- pH
- Fresh and Dry Weight of Leaf Area
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CABI Compendium. Tetranychus urticae (two-Spotted Spider Mite). 2021. Available online: https://doi.org/10.1079/cabicompendium.53366 (accessed on 9 July 2025).
- Van Leeuwen, T.; Vontas, J.; Tsagkarakou, A.; Dermauw, W.; Tirry, L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 2010, 40, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Ilias, A.; Vontas, J.; Tsagkarakou, A. Global distribution and origin of target site insecticide resistance mutations in Tetranychus urticae. Insect Biochem. Mol. Biol. 2014, 48, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, T.; Tirry, L.; Yamamoto, A.; Nauen, R. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pestic. Biochem. Phsyiol. 2015, 121, 12–21. [Google Scholar] [CrossRef]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database. Michigan State University. 2024. Available online: http://www.pesticideresistance.org (accessed on 10 July 2025).
- Bolland, H.R.; Gutierrez, J.; Flechtmann, C.H.W. World Catalogue of the Spider Mite Family (Acari: Tetranychidae); K. Brill: Leiden, The Netherlands, 1998; 392p. [Google Scholar]
- Ximénez, E.M.G.; Castañera, P.; Ortego, F. Drought stress in tomato increases the performance of adapted and non-adapted strains of Tetranychus urticae. J. Insect Physiol. 2017, 96, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.E.; Arnaiz, A.; Rosa, D.I.; González, M.P.; Romero, H.G.; Ojeda, M.D.A.; Garcia, A.; Contreras, E.; Martinez, M.; Diaz, I. Plant Defenses Against Tetranychus urticae: Mind the Gaps. Plants 2020, 9, 464. [Google Scholar] [CrossRef]
- Hossain, S.; Haque, M.M.; Nader, N. Control of two spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) by some selected chemicals. Univ. J. Zool. Rajshahi Univ. 2006, 25, 15–18. [Google Scholar] [CrossRef]
- Attia, S.; Grissa, K.L.; Lognay, G.; Bitume, E.; Hance, T.; Mailleux, A.C. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides: Biological approaches to control Tetranychus urticae. J. Pest Sci. 2013, 86, 361–386. [Google Scholar] [CrossRef]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Herrera, P.A.M.; Mena, P.Y.M.; Mesa, C.N.C. Management alternatives for Tetranychus urticae Koch (Acari: Tetranychidae) in the Carica papaya L. Hybrid Tainung-1. Rev. Colomb. De Cienc. Hortícolas 2018, 12, 561–573. [Google Scholar] [CrossRef]
- Jakubowska, M.; Dobosz, R.; Zawada, D.; Kowalska, J. A Review of Crop Protection Methods against the Twospotted Spider Mite-Tetranychus urticae Koch (Acari: Tetranychidae)—With Special Reference to Alternative Methods. Agriculture 2022, 12, 898. [Google Scholar] [CrossRef]
- Chakravarthy, A.K. (Ed.) Innovative Pest Management Approaches for the 21st Century; Springer Nature: Singapore, 2020; pp. 201–391. [Google Scholar] [CrossRef]
- Yousef, H.A.; Fahmy, H.M.; Arafa, F.N.; Allah, M.Y.A.; Tawfik, Y.M.; Halwany, K.; El-Ashmanty, B.A.; Al-Anany, F.S.; Mohamed, M.A.; Bassily, M.E. Nanotechnology in pest management: Advantages, applications, and challenges. Int. J. Trop. Insect. Sci. 2023, 43, 1387–1399. [Google Scholar] [CrossRef]
- Rincón, R.A.; Rodríguez, D.; Coy, B.E. Botanicals against Tetranychus urticae Koch under laboratory conditions: A survey of alternatives for controlling pest mites. Plants 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed]
- Golec, J.R.; Hoge, B.; Walgenbach, J.F. Effect of biopesticides on different Tetranychus urticae Koch (Acari: Tetranychidae) life stages. Crop. Prot. 2020, 128, 105015. [Google Scholar] [CrossRef]
- Bhullar, M.B.; Heikal, H.M.; Kaur, P.; Kaur, R. Efficacy of natural products and biorationals against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) infesting brinjal (Solanum melongena L.) under protected cultivation. Int. J. Acarol. 2021, 47, 677–683. [Google Scholar] [CrossRef]
- Pavan, A.M.; Da-Costa, T.; Marques, A.J.; Ethur, E.M.; Buhl, B.; Soares, G.L.G.; Ferla, N.J. The use of essential oils as an alternative for the control of Tetranychus urticae (Acari: Tetranychidae). Crop. Prot. 2024, 184, 106862. [Google Scholar] [CrossRef]
- Herdt, R.W. Biotechnology in agriculture. Annu. Rev. Environ. Resour. 2006, 31, 265–295. [Google Scholar] [CrossRef]
- Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Musarrat, J. Understanding the role of nanomaterials in agriculture. Microbial Inoculants in Sustainable Agricultural Productivity. Funct. Appl. 2016, 2, 271–288. [Google Scholar] [CrossRef]
- Khot, L.R.; Sankaran, S.; Maja, J.M.; Ehsani, R.; Schuster, E.W. Applications of nanomaterials in agricultural production and crop protection: A review. Crop Prot. 2012, 35, 64–70. [Google Scholar] [CrossRef]
- Kaphle, A.; Navya, P.N.; Umapathi, A.; Daima, H.K. Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environ. Chem. Lett. 2018, 16, 43–58. [Google Scholar] [CrossRef]
- Singh, R.P. Application of nanomaterials toward development of nanobiosensors and their utility in agriculture. In Nanotechnology: An Agricultural Paradigm; Springer: Singapore, 2017; pp. 293–303. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Recent Developments in the Application of Nanomaterials in Agroecosystems. Nanomaterials 2020, 10, 2411. [Google Scholar] [CrossRef]
- Adetuyi, B.O.; Olajide, P.A.; Omowumi, O.S.; Adetunji, C.O. Application of Plant-Based Nanobiopesticides as Disinfectant. Handb. Agric. Biotechnol. 2024, 1, 63. [Google Scholar] [CrossRef]
- Hadri, S.H.; Afzaal, A.; Saeed, L.; Arshad, A.; Nazeer, S.; Akram, M. Recent Advances in the Development of Nanoparticle Based Fertilizers for Different Kinds of Crops: A Review. Biocatal. Agric. Biotechnol. 2024, 58, 103194. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, F.; Jia, W.; Jiang, Y.; Wu, X.; Song, S.; Shen, H.; Shen, J. Nanomaterials and Nanotechnology in Agricultural Pesticide Delivery: A Review. Langmuir 2024, 40, 18806–18820. [Google Scholar] [CrossRef] [PubMed]
- Nie, D.; Li, J.; Xie, Q.; Ai, L.; Zhu, C.; Wu, Y.; Gui, Q.; Zhang, L.; Tan, W. Nanoparticles: A Potential and Effective Method to Control Insect-Borne Diseases. Bioinorg. Chem. Appl. 2023, 2023, 5898160. [Google Scholar] [CrossRef]
- Kazemi, S.; Hosseingholian, A.; Gohari, S.D.; Feirahi, F.; Moammeri, F.; Mesbahian, G.; Moghaddam, Z.S.; Ren, Q. Recent advances in green synthesized nanoparticles: From production to application. Mater. Today Sustain. 2023, 24, 100500. [Google Scholar] [CrossRef]
- Osman, A.I.; Zhang, Y.; Farghali, M.; Rashwan, A.K.; Eltaweil, A.S.; Abd El-Monaem, E.M.; Yap, P.S. Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environ. Chem. Lett. 2024, 22, 841–887. [Google Scholar] [CrossRef]
- Castillo, H.L.; Alfaro, A.K.; Ugalde, A.J.; Vega, F.L.; Montes de Oca, V.G.; Vega, B.J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef]
- Mondéjar-López, M.; García-Simarro, M.P.; Navarro-Simarro, P.; Gómez-Gómez, L.; Ahrazem, O.; Niza, E. A review on the encapsulation of “eco-friendly” compounds in natural polymer-based nanoparticles as next generation nano-agrochemicals for sustainable agriculture and crop management. Int. J. Biol. Macromol. 2024, 280, 136030. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, P.; Zhang, P.; Adeel, M.; Shakoor, N.; Li, Y.; Rui, Y. Green synthesis of metal-based nanoparticles for sustainable agriculture. Environ. Pollut. 2022, 309, 119755. [Google Scholar] [CrossRef]
- Hemalatha, M.; Hilli, J.S.; Chandrashekhar, S.S.; Vijayakumar, A.G.; Reddy, U.G.; Tippannavar, P.S. Application of green synthesized Ag and Cu nanoparticles for the control of bruchids and their impact on seed quality and yield in greengram. Heliyon 2024, 10, e31551. [Google Scholar] [CrossRef]
- Abd El-Wahab, R.A. Research Article Biosynthesized Silver Nanoparticles (AgNPs) by the Two-spotted Spider Mite Tetranychus urticae Against the Cotton Leafworm (Spodoptera littoralis). Trends Appl. Sci. Res. 2020, 15, 103–109. [Google Scholar] [CrossRef]
- Emam, H.; Ibrahim, M.S.; Ibrahim, M.; El-Sayed, S. Greenhouse and laboratory evaluation of the efficiency of green silicon dioxide nanoparticles against Tetranychus urticae (Koch). Arab. Univ. J. Agric. Sci. 2021, 29, 901–912. [Google Scholar] [CrossRef]
- Ahmed, S.; Mateen, A.; Abdullah, S.; Bashir, M.H. Efficacy of green synthesized silver nanoparticles against Tetranychus urticae Koch (Acari: Tetranychidae). Pak. J. Agric. Sci. 2022, 59, 635–642. [Google Scholar] [CrossRef]
- Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 2018, 25, 12329–12341. [Google Scholar] [CrossRef]
- Saranya, S.; Selvi, A.; Babujanarthanam, R.; Rajasekar, A.; Madhavan, J. Insecticidal activity of nanoparticles and mechanism of action. In Model Organisms to Study Biological Activities and Toxicity of Nanoparticles; Springer: Singapore, 2020; pp. 243–266. [Google Scholar] [CrossRef]
- Shahzad, K.; Manzoor, F. Nanoformulations and their mode of action in insects: A review of biological interactions. Drug Chem. Toxicol. 2021, 44, 1–11. [Google Scholar] [CrossRef]
- Côa, F.; Bortolozzo, L.S.; Petry, R.; Da Silva, G.H.; Martins, C.H.Z.; de Medeiros, A.M.Z.; Sabino, C.M.S.; Costa, R.S.; Khan, L.U.; Delite, F.S.; et al. Environmental toxicity of nanopesticides against non-target organisms: The state of the art. In Nanopesticides: From Research and Development to Mechanisms of Action and Sustainable Use in Agriculture; Springer Nature: Cham, Switzerland, 2020; pp. 227–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Goss, G.G. Nanotechnology in agriculture: Comparison of the toxicity between conventional and nano-based agrochemicals on non-target aquatic species. J. Hazard. Mater. 2022, 439, 129559. [Google Scholar] [CrossRef] [PubMed]
- Neira, V.A.A.; Meléndez, O.H.I.; García, L.J.I.; Sanchez, V.S.; Cruz, H.M.A.; Rodríguez, G.J.G.; Ramírez, B.S.N. Green synthesis of silver nanoparticles using pecan nut (Carya illinoinensis) shell extracts and evaluation of their antimicrobial activity. Antibiotics 2022, 11, 1150. [Google Scholar] [CrossRef]
- Abou-Setta, M.M.; Childers, C.C. A modified leaf arena technique for rearing phytoseiid or tetranychid mite for biological studies. Fla. Entomol. 1987, 70, 245–248. [Google Scholar] [CrossRef]
- IRAC Susceptibility Test Methods Series Version: 3 (June 2009) (Method No: 004). 2009. Available online: https://www.irac-online.org (accessed on 9 July 2025).
- Busuulwa, A.; Revynthi, A.M.; Liburd, O.E.; Lahiri, S. Residual effect of commonly used fungicides in strawberries on Amblyseius swirskii, Neoseiulus cucumeris, and Neoseiulus californicus (Mesostigmata: Phytoseiidae). Exp. Appl. Acarol. 2024, 93, 253–272. [Google Scholar] [CrossRef]
- Landeros, F.J.; Chacón, H.J.C.; Couoh, C.J.G.; Cerna, C.E.; Ochoa, F.Y.M.; Badii, Z.M.H. Efecto de concentraciones subletales de flufenoxuron sobre parámetros poblacionales de Tetranychus urticae Koch (Acari: Tetranychidae). Acta Zoológica Mex. (n.s.) 2014, 30, 491–499. Available online: https://www.scielo.org.mx/pdf/azm/v30n3/v30n3a3.pdf (accessed on 9 July 2025). [CrossRef]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Bacci, L.; Picanço, M.C.; Rosado, J.F.; Silva, G.A.; Crespo, A.L.B.; Pereira, E.J.G.; Martins, J.C. Conservation of natural enemies in Brassica crops: Comparative selectivity of insecticides in the management of Brevicoryne brassicae (Hemiptera: Sternorrhyncha: Aphididae). Appl. Entomol. Zool. 2009, 44, 103–113. [Google Scholar] [CrossRef]
- Metcalf, R.L. Development of selective and biodegradable pesticides. In Pest Control Strategies for the Future; Natural Academic of Sciences: Washington, DC, USA, 1972; pp. 137–156. [Google Scholar]
- Mazzonetto, F.; Vendramim, J.D. Efeito de pós de origem vegetal sobre Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae) em feijão armazenado. Neotrop. Entomol. 2003, 32, 145–149. [Google Scholar] [CrossRef]
- Aslan, I.; Özbek, H.; Çalmaşur, Ö.; Şahin, F. Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crops Prod. 2004, 19, 167–173. [Google Scholar] [CrossRef]
- Ataide, J.O.; Destefani, D.F.; Garcia, H.F.; Huver, A.; Bolsoni Zago, H.; Menini, L. Acaricidal activity and repellency of commercial essential oils on Tetranychus urticae in vitro and protected cultivation. Agron. Colomb. 2021, 39, 226–233. [Google Scholar] [CrossRef]
- Ortiz, C.; Silva, G.; Moya, E.; Fischer, S.; Urbina, A.; Rodríguez, J.C. Variación estacional de la repelencia de los aceites esenciales de Monimiaceae sobre Sitophilus zeamais Motschulsky (Curculionidae). Chil. J. Agric. Anim. Sci. 2017, 33, 221–230. [Google Scholar] [CrossRef]
- Díaz, Á.A.R.; Herrera, I.d.R.M.; Chávez, E.C.; Fuentes, Y.M.O.; Uribe, L.A.A.; Flores, J.L. Comportamiento poblacional de Tetranychus urticae Koch. (Acari: Tetranychidae) en variedades de tomate. Rev. Mex. De Cienc. Agrícolas 2018, 9, 961–969. [Google Scholar] [CrossRef]
- Finney, D. Probit Analysis; Cambridge University Press: New York, NY, USA, 1971. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Orsiere, T.; De Meo, M.; Thill, A.; Zeyons, O.; Proux, O.; Masion, A.; Chaurand, P.; Spalla, O.; et al. CeO2 Nanoparticles Induce DNA Damage towards Human Dermal Fibroblasts in Vitro. Nanotoxicology 2009, 3, 161–171. [Google Scholar] [CrossRef]
- Chan, H.; Král, P. Nanoparticles Self-Assembly within Lipid Bilayers. ACS Omega 2018, 3, 10631–10637. [Google Scholar] [CrossRef]
- Soni, N.; Prakash, S. Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol. Res. 2012, 110, 175–184. [Google Scholar] [CrossRef]
- Small, T.; Ochoa, Z.M.A.; Gallello, G.; Ribera, A.; Romero, F.M.; Torreblanca, A.; Garcerá, M.D. Gold-nanoparticles ingestion disrupts reproduction and development in the German cockroach. Sci. Total Environ. 2016, 565, 882–888. [Google Scholar] [CrossRef]
- Sundararajan, B.; Ranjitha, K.B.D. Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. (GMS) 2017, 43, 187–196. [Google Scholar] [CrossRef]
- Benelli, G. Gold nanoparticles—Against parasites and insect vectors. Acta Trop. 2018, 178, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Benelli, G.; Panneerselvam, C.; Subramaniam, J.; Jeyalalitha, T.; Dinesh, D.; Nicoletti, M.; Hwang, J.-S.; Suresh, U.; Madhiyazhagan, P. Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp. Parasitol. 2015, 153, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lallawmawma, H.; Sathishkumar, G.; Sarathbabu, S.; Ghatak, S.; Sivaramakrishnan, S.; Gurusubramanian, G.; Kumar, N.S. Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culex quinquefasciatus Say (Diptera: Culicidae). Environ. Sci. Pollut. Res. 2015, 22, 17753–17768. [Google Scholar] [CrossRef]
- El-Ashram, S.; Kheirallah, D.A.M.; El-Samad, L.M.; Toto, N.A. Relative expression of microRNAs, apoptosis, and ultrastructure anomalies induced by gold nanoparticles in Trachyderma hispida (Coleoptera: Tenebrionidae). PLoS ONE 2020, 15, 24–37. [Google Scholar] [CrossRef]
- Raliya, R.; Saha, D.; Chadha, T.S.; Raman, B.; Biswas, P. Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci. Rep. 2017, 7, 44–71. [Google Scholar] [CrossRef] [PubMed]
- Sahayaraj, K.; Madasamy, M.; Radhika, S.A. Insecticidal activity of bio-silver and gold nanoparticles against Pericallia ricini Fab. (Lepidoptera: Archidae). J. Biopestic. 2016, 9, 63–72. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Miresmailli, S.; Isman, M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014, 19, 29–35. [Google Scholar] [CrossRef]
- de Rodríguez, D.J.; Gaytán-Sánchez, N.; Rodríguez-García, R.; Hernández-Castillo, F.; Díaz-Jiménez, L.; Villarreal-Quintanilla, J.; Flores-López, M.; Carrillo-Lomelí, D.; Peña-Ramos, F. Antifungal activity of Juglans spp. and Carya sp. ethanol extracts against Fusarium oxysporum on tomato under greenhouse conditions. Ind. Crops Prod. 2019, 138, 111442. [Google Scholar] [CrossRef]
- Osorio, E.; Flores, M.; Hernández, D.; Ventura, J.; Rodríguez, R.; Aguilar, C.N. Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya Illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Ind. Crops Prod. 2010, 31, 153–157. [Google Scholar] [CrossRef]
- Frezza, C.; Sciubba, F.; Giampaoli, O.; De Salvador, F.R.; Lucarini, M.; Engel, P.; Patriarca, A.; Spagnoli, M.; Gianferri, R.; Delfini, M.; et al. Comparison of the metabolic profile of pecan nuts cultivars [Carya illinoinensis (Wangenh.) K. Koch] by NMR spectroscopy. Nat. Prod. Res. 2023, 39, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, F.; Hu, T.; Zhou, C.H. Lipidomic analyses of five Carya illinoinensis cultivars. Food Sci. Nutr. 2023, 11, 6336–6348. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.V.; Anderson, C.W.N.; Rodriguez, L.M. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J. Environ. Manag. 2012, 111, 249–257. [Google Scholar] [CrossRef]
- Wang, X.; Xie, H.; Wang, P.; Yin, H. Nanoparticles in Plants: Uptake, Transport and Physiological Activity in Leaf and Root. Materials 2023, 16, 3097. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A. Engineered Gold Nanoparticles and Plant Adaptation Potential. Nanoscale Res. Lett. 2016, 11, 400. [Google Scholar] [CrossRef]
- Sharma, M.M.M.; Kapoor, D.; Loyal, A.; Kumar, R.; Sharma, P.; Husen, A. Effect of Gold Nanoparticles on Seed Germination, Plant Growth, and Plant Protection. In Plant Response to Gold Nanoparticles; Husen, A., Ed.; Smart Nanomaterials Technology; Springer Nature: Singapore, 2024. [Google Scholar] [CrossRef]
- Kant, M.R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B.C.J.; Villarroel, C.A.; Ataide, L.M.S.; Dermauw, W.; Glas, J.J.; et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann. Bot. 2015, 115, 1015–1051. [Google Scholar] [CrossRef]
- Santamaria, M.E.; Arnaiz, A.; Velasco, A.B.; Grbic, V.; Diaz, I.; Martinez, M. Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci. Rep. 2018, 8, 9432. [Google Scholar] [CrossRef]
- Iida, J.; Desaki, Y.; Hata, K.; Uemura, T.; Yasuno, A.; Islam, M.; Maffei, M.E.; Ozawa, R.; Nakajima, T.; Galis, I.; et al. Tetranins: New putative spider mite elicitors of host plant defense. New Phytol. 2019, 224, 875–885. [Google Scholar] [CrossRef]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461–462, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.F.; Rylott, E.L.; Anderson, C.W.N.; Bruce, N.C. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold. PLoS ONE 2014, 9, e93793. [Google Scholar] [CrossRef] [PubMed]
- Belal, R.; Gad, A. Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the hemocytes of Bombyx mori larvae. Sci. Rep. 2023, 13, 3520. [Google Scholar] [CrossRef]
- Arafat, E.A.; El-Sayed, D.S.; Hussein, H.K.; Flaven-Pouchon, J.; Moussian, B.; El-Samad, L.M.; El Wakil, A.; Hassan, M.A. Entomotherapeutic Role of Periplaneta americana Extract in Alleviating Aluminum Oxide Nanoparticles-Induced Testicular Oxidative Impairment in Migratory Locusts (Locusta migratoria) as an Ecotoxicological Model. Antioxidants 2023, 12, 653. [Google Scholar] [CrossRef]
- Khan, I.; Khalid, S.; Idrees, K. Nanoparticles: Properties, ap-plications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Enea, M.; Pereira, E.; Peixoto de Almeida, M.; Araújo, A.M.; Bastos Md, L.; Carmo, H. Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. Nanomaterials 2020, 10, 995. [Google Scholar] [CrossRef] [PubMed]
- Ivlieva, A.L.; Petritskaya, E.N.; Rogatkin, D.A.; Zinicovscaia, I.; Yushin, N.; Grozdov, D. Impact of Chronic Oral Administration of Gold Nanoparticles on Cognitive Abilities of Mice. Int. J. Mol. Sci. 2023, 24, 8962. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Martínez, W.d.J.; Vázquez-Lira, J.C. Una revisión de nanopartículas de oro: Características fisicoquímicas y su respuesta celular en macrófagos. Mundo Nano. Rev. Interdiscip. En Nanociencias Y Nanotecnología 2024, 17, e69801. [Google Scholar] [CrossRef]
- Judy, J.D.; Unrine, J.M.; Rao, W.; Wirick, S.; Bertsch, P.M. Bioavailability of gold nanomaterials to plants: Importance of particle size and surface coating. Environ. Sci. Technol. 2012, 46, 8467–8474. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–330. [Google Scholar] [CrossRef]
- Ferrari, E.; Barbero, F.; Busquets, F.M.; Franz, W.M.; Köhler, H.-R.; Puntes, V.; Kemmerling, B. Growth-Promoting Gold Nanoparticles Decrease Stress Responses in Arabidopsis Seedlings. Nanomaterials 2021, 11, 3161. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sinilal, B.; Starnes, D.L.; Sanagala, R.; Krishnamurthy, S.; Sahi, S.V. Role of Fe-responsive genes in bioreduction and transport of ionic gold to roots of Arabidopsis thaliana during synthesis of gold nanoparticles. Plant Physiol. Biochem. PPB 2014, 84, 189–196. [Google Scholar] [CrossRef]
- Shabnam, N.; Pardha-Saradhi, P.; Sharmila, P. Phenolics Impart Au3+-Stress Tolerance to Cowpea by Generating Nanoparticles. PLoS ONE 2014, 9, e85242. [Google Scholar] [CrossRef]
- Bekkara, F.; Jay, M.; Viricel, M.R.; Rome, S. Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 1998, 203, 27–36. [Google Scholar] [CrossRef]
- El-Moneim, D.A.; Dawood, M.F.A.; Moursi, Y.S.; Farghaly, A.A.; Afifi, M.; Sallam, A. Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol. Environ. Eng. 2021, 6, 21. [Google Scholar] [CrossRef]
- Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut. 2009, 197, 143–148. [Google Scholar] [CrossRef]
- Husen, A.; Iqbal, M.; Aref, I.M. Growth, water status and leaf characteristics of Brassica carinata under drought stress and rehydration conditions. Braz. J. Bot. 2014, 37, 217–227. [Google Scholar] [CrossRef]
- Gunjan, B.; Zaidi, M.G.H.; Sandeep, A. Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J. Plant Biochem. Physiol. 2014, 2, 133. [Google Scholar] [CrossRef]
- Beattie, I.R.; Haverkamp, R.G. Silver and gold nanoparticles in plants: Sites for the reduction to metal. Metallomics 2011, 3, 628. [Google Scholar] [CrossRef]
- Feichtmeier, N.S.; Walther, P.; Leopold, K. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ. Sci. Pollut. Res. Int. 2015, 22, 8549–8558. [Google Scholar] [CrossRef]
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.-P.; Lutts, S. Tomato Fruit Development and Metabolism. Front. Plant Sci. 2019, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, V.L.; Pereira, A.M.; Siqueira, J.A.; Pereira, A.S.; Silva, V.F.; Costa, L.C.; Araújo, W.L. Exogenous ethylene reduces growth via alterations in central metabolism and cell wall composition in tomato (Solanum lycopersicum). J. Plant Physiol. 2021, 263, 153460. [Google Scholar] [CrossRef] [PubMed]
- Venzhik, Y.V.; Moshkov, I.E.; Dykman, L.A. Gold Nanoparticles in Plant Physiology: Principal Effects and Prospects of Application. Russ. J. Plant Physiol. 2021, 68, 401–412. [Google Scholar] [CrossRef]
Repellency Index (RI) Value | Category |
---|---|
≥1.0 | No repellency |
0.76–0.99 | Weak repellency |
0.51–0.75 | Moderate repellency |
0.26–0.50 | High repellency |
0.0–0.25 | Very high repellency |
AuNPs Concentration (mg L−1) | Hatching Inhibition (%) | Mortality (%) | |||
---|---|---|---|---|---|
Eggs | Larva | Protonymph | Deutonymph | Adult | |
75 | 25.0 ± 1.5 d | 55.0 ± 1.7 d | 37.0 ± 1.0 d | 35.7 ±2.1 d | 31.3 ± 1.5 d |
100 | 33.0 ± 2.5 c | 73.0 ± 2.0 c | 56.0 ± 1.0 c | 50.0 ± 1.0 c | 47.3 ± 2.5 c |
150 | 40.0 ± 1.5 b | 85.3 ± 0.6 b | 85.0 ± 1.0 b | 80.0 ± 1.0 b | 63.0 ± 2.6 b |
175 | 46.3 ± 1.5 a | 98.0 ± 1.5 a | 96.0 ± 0.6 a | 93.3 ± 1.5 a | 73.7 ± 3.2 a |
gl | 3 | 3 | 3 | 3 | 3 |
F value | 166.6 | 203.5 | 1091 | 975 | 275.5 |
Pr(>F) | 1.47 × 10−7 | 5.66 × 10−8 | 1.53 × 10−11 | 7.08 × 10−14 | 1.32 × 10−8 |
LSD | 3.88 | 6.82 | 4.41 | 2.55 | 6.02 |
CV | 5.96 | 4.823 | 3.54 | 2.16 | 6.15 |
Stage | Treatments | LC50 (mg L−1) | Fiducial Limits | LC95 (mg L−1) | Fiducial Limits | Slope ± SE | χ2 | p |
---|---|---|---|---|---|---|---|---|
Egg | AuNPs | 162 | 143–180 | 614 | 521–763 | 2.85 ± 0.154 | 26.4 | 0.0148 |
Atzingao® | 2801 | 2550–3012 | 7300 | 6520–8555 | 3.98 ± 0.216 | 47.1 | 0.00025 | |
Larva | AuNPs | 60.5 | 52.9–67.0 | 207 | 176–260 | 3.08 ± 0.195 | 27.2 | 0.0116 |
Protonymph | AuNPs | 83.8 | 77.6–89.7 | 211 | 189–245 | 4.10 ± 0.179 | 51.1 | 0.00005 |
Deutonymph | AuNPs | 94.5 | 88.4–100 | 205 | 185–235 | 4.89 ± 0.283 | 16.0 | 0.0988 |
Adult | AuNPs | 112 | 96.2–124 | 290 | 248–375 | 3.97 ± 0.284 | 27.8 | 0.00194 |
Phorate™ | 18.8 | 15.6–22.0 | 80.1 | 64.6–108 | 2.04 ± 0.114 | 35.1 | 0.000827 |
Stage | AuNPs (mg L−1) | LT50 (h) | Fiducial Limits | LT90 (h) | Fiducial Limits | Slope ± SE | χ2 | p |
---|---|---|---|---|---|---|---|---|
Larva | 100 | 36.8 | 35.1–38.5 | 69.1 | 64.9–74.5 | 4.68 ± 0.187 | 23.2 | 0.109 |
200 | 24.8 | 23.5–26.0 | 42.9 | 40.4–46.3 | 5.40 ± 0.304 | 27.2 | 0.0395 | |
300 | 13.4 | 11.4–15.0 | 31.2 | 27.3–38.1 | 3.49 ± 0.187 | 73.3 | 2.61 × 10−9 | |
Protonymph | 100 | 43.5 | 40.2–46.9 | 136 | 117–165 | 2.59 ± 0.133 | 38.8 | 0.00701 |
200 | 32.7 | 29.2–35.9 | 101 | 88.6–121. | 2.61 ± 0.135 | 46.6 | 0.000677 | |
300 | 24.8 | 23.7–25.8 | 43.6 | 41.3–46.5 | 5.24 ± 0.312 | 6.56 | 0.766 | |
Deutonymph | 100 | 43.8 | 39.8–47.9 | 141 | 118–180 | 2.53 ± 0.132 | 53.4 | 0.0000698 |
200 | 32.8 | 28.3–36.8 | 101 | 85.5–127 | 2.63 ± 0.135 | 75.4 | 2.33 × 10−8 | |
300 | 24.7 | 23.2–26.0 | 51.7 | 48.6–55.6 | 3.98 ± 0.229 | 5.90 | 0.950 | |
Adult | 100 | 42.4 | 37.8–46.9 | 135 | 111–178. | 2.56 ± 0.132 | 70.5 | 0.0000001 |
200 | 34.1 | 30.1–37.8 | 103 | 88.9 127. | 2.66 ± 0.135 | 61.9 | 0.00000363 | |
300 | 24.9 | 23.6–26.2 | 49.7 | 47.0–53.2 | 4.27 ± 0.237 | 8.58 | 0.804 | |
Phorate™ (80 mg L−1) | 4.31 | 3.97–4.63 | 12.0 | 11.0–13.4 | 2.87 ± 0.148 | 10.3 | 0.508 |
Treatments | LC50 (mg L−1) | Fiducial Limits | LC95 (mg L−1) | Fiducial Limits | Slope ± SE | χ2 | p |
---|---|---|---|---|---|---|---|
AuNPs | 107 | 89.2–120 | 215 | 192–257 | 4.20 ± 0.281 | 40.2 | 0.0000336 |
Phorate™ | 15.7 | 12.8–18.3 | 65.3 | 51.9–91.2 | 2.07 ± 0.139 | 21.9 | 0.0155 |
Treatments | LT50 (h) | Fiducial Limits | LT90 (h) | Fiducial Limits | Slope ± SE | χ2 | p |
---|---|---|---|---|---|---|---|
AuNPs (100 mg L−1) | 40.1 | 35.1–44.8 | 105 | 88.1–136. | 3.06 ± 0.138 | 116 | 1.68 × 10−15 |
AuNPs (200 mg L−1) | 36.4 | 33.0–39.6 | 93.5 | 82.6–110. | 3.13 ± 0.140 | 61.7 | 0.00000387 |
AuNPs (300 mg L−1) | 23.4 | 22.2–24.6 | 45.7 | 43.6–48.2 | 4.42 ± 0.216 | 5.12 | 0.999 |
Phorate™ (80 mg L−1) | 4.06 | 3.74–4.38 | 11.2 | 10.3–12.4 | 2.90 ± 0.151 | 10.8 | 0.458 |
Treatments | T. urticae (LC50 mg L−1) | P. persimilis (LC50 mg L−1) | SR = LC50 Predator/LC50 Pest | Interpretation * |
---|---|---|---|---|
AuNPs | 112 | 107 | 0.95 | Selective for the pest |
Phorate™ | 4.31 | 15.7 | 3.64 | Selective for the natural enemy |
Treatments | 2 h/RI 1 | 4 h/RI | 6 h/RI | 12 h/RI | 24 h/RI | 48 h/RI | 72 h/RI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LC10 (53.2 mg L−1) | 28.0 ± 8.0 c | 0.64 M | 38.7 ± 6.1 c | 0.56 M | 42.6 ± 2.3 d | 0.56 M | 41.3 ± 2.3 c | 0.56 M | 36.0 ± 4.0 b | 0.64 M | 24 ± 4.0 d | 0.8 W | 21.3 ± 2.3 c | 0.8 W |
LC20 (68.6 mg L−1) | 36.0 ± 4.0 bc | 0.68 M | 52.0 ± 4.0 b | 0.52 M | 54.6 ± 2.3 c | 0.44 M | 46.6 ± 8.3 c | 0.44 H | 41.3 ± 12 b | 0.44 H | 34.6 ± 2.3 c | 0.64 M | 30.6 ± 10.0 bc | 0.72 M |
LC30 (82.5 mg L−1) | 52.0 ± 20.7 b | 0.60 M | 52.0 ± 6.9 b | 0.44 H | 58.6 ± 2.3 b | 0.4 H | 56.0 ± 4.0 b | 0.4 H | 46.6 ± 4.6 b | 0.56 M | 42.6 ± 2.3 b | 0.6 M | 37.3 ± 8.3 b | 0.6 M |
eBioluzion Plus VO™ (150 mg L−1) | 74.6 ± 4.6 a | 0.28 H | 82.7 ± 4.6 a | 0.2 VH | 86.6 ± 2.3 a | 0.16 VH | 85.3 ± 2.3 a | 0.12 VH | 86.9 ± 2.3 a | 0.12 VH | 80.0 ± 4.0 a | 0.24 VH | 78.6 ± 15.1 a | 0.28 H |
Control (water + DSS 2) | 6.6 ± 11.5 d | 1 NR | 6.6 ± 11.5 d | 0.98 W | 0 ± 0 e | 1 W | 0 ± 0 d | 1 W | 1.3 ± 2.3 c | 0.96 W | 0 ± 0 e | 1 NR | 0.66 ± 1.1 d | 0.97 W |
gl | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |||||||
F value | 14.7 | 44.2 | 700.4 | 147.9 | 65.2 | 300.8 | 91.6 | |||||||
Pr(>F) | 0.00034 | 2.52 × 10−6 | 3.41 × 10−12 | 7.52 × 10−9 | 4.01× 10−7 | 2.27 × 10−10 | 7.78 × 10−8 | |||||||
LSD | 21.0 | 13.0 | 3.7 | 8.0 | 11.8 | 5.3 | 9.4 | |||||||
CV | 29.2 | 15.4 | 4.2 | 9.5 | 15.4 | 8.1 | 15.4 |
Treatments | 2 h/RI 1 | 4 h/RI | 6 h/RI | 12 h/RI | 24 h/RI | 48 h/RI | 72 h/RI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LC10 (52.8 mg L−1) | 34.0 ± 6.1 c | 0.64 M | 50.6 ± 12.2 b | 0.52 M | 62.6 ± 6.1 c | 0.44 H | 70.6 ± 2.3 c | 0.28 H | 53.3 ± 6.1 b | 0.52 M | 52.0 ± 4.0 b | 0.52 M | 37.3 ± 2.3 c | 0.64 M |
LC20 (67.2 mg L−1) | 40.0 ± 4.0 c | 0.56 M | 56.0 ± 10.6 b | 0.36 H | 72.0 ± 4.0 b | 0.28 H | 78.6 ± 2.3 b | 0.2 VH | 52.0 ± 4.0 c | 0.48 H | 52.0 ± 4.0 b | 0.48 H | 40.0 ± 4.0 bc | 0.6 M |
LC30 (80.0 mg L−1) | 54.7 ± 6.1 b | 0.52 M | 61.3 ± 2.3 b | 0.40 H | 73.3 ± 6.1 b | 0.32 VH | 81.3 ± 2.3 b | 0.2 VH | 61.3 ± 2.30 c | 0.4 VH | 44.0 ± 4.0 c | 0.56 M | 44.0 ± 4.0 b | 0.52 M |
eBioluzion Plus VO™ (150 mg L−1) | 84.0 ± 4.0 a | 0.2 VH | 92.0 ± 4.0 a | 0.08 VH | 100.0 ± 0.0 a | 0 VH | 100.0 ± 0.0 a | 0 VH | 94.6 ± 4.6 a | 0 VH | 82.6 ± 4.6 a | 0.2 VH | 82.6 ± 4.6 a | 0.2 VH |
Control (water + DSS 2) | 0 ± 0 d | 1 NR | 0 ± 0 c | 1 NR | 0 ± 0 d | 0.9 NR | 1.3 ± 2.3 d | 1.0 NR | 1.3 ± 2.3 d | 1.0 NR | 1.3 ± 2.3 d | 1 NR | 1.3 ± 2.3 d | 0.96 W |
gl | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |||||||
F value | 131.6 | 58.5 | 228.1 | 101 2 | 196.7 | 171.5 | 44.5 | |||||||
Pr(>F) | 1.33 × 10−8 | 6.71 × 10−7 | 8.9 × 10− 10 | 5.45 × 10−13 | 1.85 × 10−9 | 3.63 × 10−9 | 2.44 × 10−6 | |||||||
LSD | 8.4 | 13.7 | 7.7 | 3.7 | 7.5 | 7.0 | 12.7 | |||||||
CV | 10.8 | 14.4 | 6.9 | 3.1 | 5.9 | 8.3 | 17.8 |
Treatment (mg L−1) | Pre Sampling Average (in 2) | 10 DA1A * | 20 DA1A | 30 DA1A | ||||
---|---|---|---|---|---|---|---|---|
Average (in 2) | Efficacy (%) 2 | Average (in 2) | Efficacy (%) | Average (in 2) | Efficacy (%) | |||
Egg | AuNPs 300 | 0.70 ± 0.53 a 1 | 0.75 ± 0.50 b | 63 | 1.50 ± 0.58 b | 68 | 1.17 ± 0.35 b | 72 |
AuNPs 500 | 0.65 ± 0.46 a | 0.75 ± 0.50 b | 63 | 1.25 ± 0.50 b | 73 | 1.05 ± 0.10 b | 75 | |
AuNPs 750 | 0.67 ± 0.45 a | 0.75 ±0.50 b | 63 | 0.75 ± 0.50 b | 84 | 0.85 ± 0.12 b | 80 | |
AuNPs 1000 | 0.75 ± 0.51 a | 0.75 ± 0.50 b | 63 | 0.75 ± 0.50 b | 84 | 0.67 ± 0.46 b | 84 | |
Phorate™ 60 | 0.64 ± 0.42 a | 0.65 ± 0.45 b | 68 | 1.32 ± 1.0 b | 71 | 1.40 ± 0.97 b | 66 | |
Untreated | 0.75 ± 0.51 a | 2.00 ± 0.0 a | - | 4.62 ± 0.49 a | - | 4.17 ± 0.39 a | - | |
gl | 5 | 5 | 5 | 5 | ||||
F value | 0.019 | 5.393 | 21.47 | 28.25 | ||||
Pr(>F) | 0.89 | 0.00333 | 5.20 × 10−7 | 6.32 × 10−8 | ||||
Larva | AuNPs 300 | 0.72 ± 0.55 a | 1.02 ± 0.05 ab | 32 | 0.55 ± 0.10 b | 46 | 0.45 ± 0.06 b | 57 |
AuNPs 500 | 0.62 ± 0.43 a | 1.00 ± 0.0 ab | 33 | 0.54 ± 0.12 b | 48 | 0.47 ± 0.09 b | 55 | |
AuNPs 750 | 0.75 ± 0.53 a | 0.80 ± 0.54 ab | 47 | 0.35 ± 0.04 bc | 65 | 0.35 ± 0.06 bc | 67 | |
AuNPs 1000 | 0.65 ± 0.46 a | 0.415 ± 0.28 bc | 72 | 0.22 ± 0.15 c | 79 | 0.22 ± 0.15 c | 79 | |
Phorate™ 60 | 0.82 ± 0.57 a | 0.00 ± 0.00 c | 100 | 0.37 ± 0.25 bc | 63 | 0.37 ± 0.25 bc | 64 | |
Untreated | 0.70 ± 0.48 a | 1.50 ± 1.00 a | 1.02 ± 0.2 a | 1.05 ± 0.10 a | ||||
gl | 5 | 5 | 5 | 5 | ||||
F value | 0.081 | 4.78 | 12.02 | 17.86 | ||||
Pr(>F) | 0.994 | 0.00592 | 3.19 × 10−5 | 2.03 × 10−6 | ||||
Protonymph | AuNPs 300 | 0.66 ± 0.45 a | 0.75 ± 0.5 ab | 25 | 0.52 ± 0.09 b | 62 | 0.50 ± 0.14 b | 60 |
AuNPs 500 | 0.64 ± 0.44 a | 0.45 ± 0.33 bc | 55 | 0.45 ± 0.33 b | 67 | 0.49 ± 0.06 b | 61 | |
AuNPs 750 | 0.57 ± 0.38 a | 0.41 ± 0.27 bcd | 59 | 0.45 ± 0.31 b | 67 | 0.46 ± 0.05 b | 63 | |
AuNPs 1000 | 0.67 ± 0.45 a | 0.31 ± 0.22 cd | 69 | 0.00 ± 0.00 c | 100 | 0.17 ± 0.21 c | 86 | |
Phorate™ 60 | 0.60 ± 0.40 a | 0.00 ± 0.00 d | 100 | 0.00 ± 0.00 c | 100 | 0.00 ± 0.00 c | 100 | |
Untreated | 0.62 ± 0.42 a | 1.00 ± 0.0 a | 1.37 ± 0.47 a | 1.25 ± 0.29 a | ||||
gl | 5 | 5 | - | 5 | - | 5 | - | |
F value | 0.033 | 5.99 | - | 13.64 | - | 28.95 | - | |
Pr(>F) | 0.999 | 0.00197 | - | 1.36 × 10−5 | - | 5.23 × 10−8 | - | |
Deutonymph | AuNPs 300 | 0.85 ± 0.57 a | 1.05 ± 0.10 b | 62 | 0.55 ± 0.04 b | 71 | 0.52 ± 0.05 b | 72 |
AuNPs 500 | 0.60 ± 0.41 a | 1.02 ± 0.05 b | 63 | 0.55 ± 0.04 b | 71 | 0.52 ± 0.12 b | 74 | |
AuNPs 750 | 0.75 ± 0.53 a | 0.80 ± 0.31 b | 71 | 0.50 ± 0.35 b | 74 | 0.50 ± 0.08 b | 79 | |
AuNPs 1000 | 0.63 ± 0.42 a | 0.00 ± 0.0 c | 100 | 0.00 ± 0.00 c | 100 | 0.17 ± 0.20 c | 84 | |
Phorate™ 60 | 0.60 ± 0.41 a | 0.00 ± 0.0 c | 100 | 0.57 ± 0.05 b | 70 | 0.57 ± 0.05 b | 72 | |
Untreated | 0.70 ± 0.47 a | 2.75 ± 0.5 a | 1.90 ± 0.20 a | 2.02 ± 0.05 a | ||||
gl | 5 | 5 | 5 | 5 | ||||
F value | 0.174 | 67.3 | 56.39 | 142 | ||||
Pr(>F) | 0.969 | 5.16 × 10−11 | 2.29 × 10−10 | 8.21 × 10−14 | ||||
Adult | AuNPs 300 | 0.37 ± 0.26 a | 0.90 ± 0.20 b | 72 | 1.25 ± 0.50 b | 65 | 0.92 ± 0.09 b | 72 |
AuNPs 500 | 0.45 ± 0.31 a | 0.75 ± 0.50 b | 77 | 1.00 ± 0.82 b | 72 | 0.85 ± 0.13 b | 74 | |
AuNPs 750 | 0.38 ± 0.26 a | 0.75 ± 0.20 b | 77 | 0.50 ± 0.57 b | 86 | 0.67 ± 0.09 bc | 79 | |
AuNPs 1000 | 0.27 ± 0.19 a | 0.37 ± 0.25 b | 88 | 0.64 ± 0.06 b | 82 | 0.52 ± 0.05 c | 84 | |
Phorate ™ 60 | 0.30 ± 0.24 a | 0.46 ± 0.04 b | 87 | 0.92 ± 0.37 b | 74 | 0.92 ± 0.38 b | 72 | |
Untreated | 0.35 ± 0.23 a | 3.25 ± 0.95 a | 3.55 ± 0.46 a | 3.25 ± 0.21 a | ||||
gl | 5 | 5 | - | 5 | - | 5 | - | |
F value | 0.246 | 21.31 | - | 18.93 | - | 111.9 | - | |
Pr(>F) | 0.937 | 5.50 × 10−7 | - | 1.32 × 10−6 | - | 6.56 × 10−13 | - |
Parameter | Treatments (mg L−1) | Pre Sampling | 10 DA1A * | 20 DA1A | 30 DA1A |
---|---|---|---|---|---|
Chlorophyll (SPAD units) | AuNPs 300 | 49.27 ± 4.3 a | 50.20 ± 3.8 ab | 47.83 ± 2.6 ab | 36.67 ± 2.9 b |
AuNPs 500 | 54.87 ± 3.2 a | 53.93 ± 1.3 ab | 51.27 ± 1.7 ab | 49.17 ± 1.10 a | |
AuNPs 750 | 49.77 ± 4.9 a | 51.20 ± 5.1 ab | 50.60 ± 0.4 ab | 49.33 ± 2.0 a | |
AuNPs 1000 | 50.27 ± 3.2 a | 55.77 ± 0.9 a | 56.30 ± 7.3 a | 49.67 ± 2.5 a | |
Phorate™ 60 | 53.83 ± 1.3 a | 49.50 ± 4.6 b | 43.57 ± 10.4 b | 50.50 ± 1.8 a | |
Untreated | 55.00 ± 4.3 a | 50.30 ± 1.5 ab | 51.33 ± 1.1 ab | 33.33 ± 2.9 b | |
gl | 5 | 5 | 5 | 5 | |
F value | 1.547 | 1.652 | |||
Pr(>F) | 0.248 | 0.22 | |||
Plant height (cm) | AuNPs 300 | 28.67 ± 1.1 a | 34.33 ± 1.5 b | 41.00 ± 1.7 ab | 41.0 ± 1.7 ab |
AuNPs 500 | 30.0 ± 1.0 a | 37.00 ± 1.7 ab | 38.0 ± 2.0 c | 39.0 ± 1.0 b | |
AuNPs 750 | 30.67 ± 1.5 a | 36.00 ± 1.7 ab | 42.33 ± 2.3 a | 42.33 ± 2.3 ab | |
AuNPs 1000 | 28.67 ± 1.1 a | 36.00 ± 1.7 ab | 39.3 ± 0.5 bc | 40.00 ± 1.0 ab | |
Phorate™ 60 | 29.33 ± 1.5 a | 36.67 ± 2.3 ab | 40.0 ± 1.0 abc | 41.0 ± 0.0 ab | |
Untreated | 30.33 ± 1.1 a | 37.67 ± 1.5 a | 41.0 ± 1.0 ab | 41.3 ± 0.58 ab | |
gl | |||||
F value | 1.359 | 1.239 | 2.805 | 2.225 | |
Pr(>F) | 0.306 | 0.35 | 0.0665 | 0.119 | |
Degree Brix (°Bx) | AuNPs 300 | 7.33 ± 0.6 a | 6.00 ± 0.0 d | 9.0 ± 0.0 d | 9.0 ± 0.0 b |
AuNPs 500 | 7.50 ± 0.9 a | 6.50 ± 0.0 c | 11.0 ± 0.0 c | 10.60 ± 0.6 a | |
AuNPs 750 | 6.67 ± 0.3 a | 6.50 ± 0.0 c | 10.9 ± 0.2 c | 10.3 ± 0.6 a | |
AuNPs 1000 | 7.00 ± 0.0 a | 6.90 ± 0.2 b | 12.0 ± 0.0 b | 10.50 ± 0.0 a | |
Phorate™ 60 | 6.83 ± 0.3 a | 7.50 ± 0.0 a | 13.0 ± 0.0 a | 9.00 ± 0.0 b | |
Untreated | 7.16 ± 0.8 a | 6.66 ± 0.3 bc | 9.0 ± 0.0 d | 9.00 ± 0.0 b | |
gl | 5 | 5 | 5 | 5 | |
F value | 0.955 | 39.65 | 1537 | 18.52 | |
Pr(>F) | 0.482 | 4.7 × 10−7 | 2 × 10−16 | 2.86 × 10−5 |
Treatments | Fruit/Plant | Fruit | Fresh Weight of Leaf Area (g) | Dry Weight of Leaf Area (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Polar Diameter (cm) | Equatorial Diameter (cm) | Peduncle (cm) | Fruit Weight (g) | Hardness (kg/cm2) | Degrees Brix (°Bx) | TDS (mg L−1) | pH | ||||
AuNPs 300 mg L−1 | 5.5 ± 0.5 c 1 | 7.5 ± 1.0 ab | 5.8 ± 0.7 bc | 0.95 ± 0.1 a | 74.9 ± 5.9 b | 2.46 ± 0.1 b | 6.0 ± 0.0 ab | 1373.5 ± 126 c | 3.4 ± 0.21 d | 389 ± 3.7 ab | 94.9 ± 0.9 bc |
AuNPs 500 mg L−1 | 6.3 ± 1.1 bc | 8.2 ± 0.3 a | 6.9 ± 0.2 a | 0.96 ± 0.4 a | 80.0 ± 4.1 ab | 2.46 ± 0.1 b | 5.8 ± 0.3 b | 1140.0 ± 141 d | 3.6 ± 0.21 d | 225 ± 10.2 d | 74.6 ± 3.4 e |
AuNPs 750 mg L−1 | 7.6 ± 0.6 b | 7.4 ± 0.7 ab | 5.5 ± 0.2 c | 0.84 ± 0.07 a | 55.4 ± 2.0 c | 2.83 ± 0.2 a | 5.7 ± 0.3 b | 1160.0 ± 40 d | 4.3 ± 0.29 c | 399 ± 7.9 a | 88.6 ± 1.8 d |
AuNPs 1000 mg L−1 | 11.6 ± 1.5 a | 6.8 ± 0.9 b | 5.6 ± 0.9 c | 0.93 ± 0.1 a | 54.6 ± 2.7 c | 2.90 ± 0.1 a | 5.2 ± 0.3 c | 1079.3 ± 26.1 d | 4.7 ± 0.21 bc | 407 ± 13.2 a | 116.2 ± 3.8 a |
Phorate™ (60 mg L−1) | 5.6 ± 0.6 c | 8.2 ± 0.7 a | 6.5 ± 0.3 ab | 1.20 ± 0.2 a | 82.4 ± 3.3 a | 2.30 ± 0.1 b | 6.3 ± 0.3 a | 2128.0 ± 158 a | 5.0 ± 0.33 b | 352 ± 16.2 c | 90.2 ± 4.1 cd |
Untreated | 3.3 ± 0.6 d | 6.5 ± 0.5 b | 5.6 ± 0.4 c | 1.16 ± 0.3 a | 54.5 ± 2.4 c | 2.30 ± 0.1 b | 6.3 ± 0.2 a | 1588.7 ± 83 b | 7.2 ± 0.20 a | 372 ± 12.0 b | 97.9 ± 3.1 b |
gl | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
F value | 28.98 | 0.07 | 3.63 | 1.02 | 41.49 | 11.36 | 8.48 | 40.74 | 92.47 | 107.1 | 58.68 |
Pr(>F) | 2.65 × 10−6 | 2.77 | 0.031 | 0.45 | 3.65 × 10−7 | 0.001 | 0.001 | 4.04 × 10−7 | 3.72 × 10−9 | 1.58 × 10−9 | 5.13 × 10− 8 |
LSD | 1.61 | 1.2 p | 0.91 | 0.42 | 6.46 | 0.23 | 0.47 | 192.31 | 0.44 | 20.08 | 5.48 |
CV | 13.52 | 9.71 | 8.61 | 23.49 | 5.42 | 5.15 | 4.47 | 7.66 | 5.23 | 3.16 | 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ontiveros-Guerra, J.G.; Ramírez-Barrón, S.N.; Aguirre-Uribe, L.A.; Chacón-Hernández, J.C.; Sánchez-Vega, M.; Cerna-Chávez, E.; García-López, J.I.; Neira-Vielma, A.A.; Meléndez-Ortiz, H.I.; Hernández-Juárez, A. Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato. Agronomy 2025, 15, 1684. https://doi.org/10.3390/agronomy15071684
Ontiveros-Guerra JG, Ramírez-Barrón SN, Aguirre-Uribe LA, Chacón-Hernández JC, Sánchez-Vega M, Cerna-Chávez E, García-López JI, Neira-Vielma AA, Meléndez-Ortiz HI, Hernández-Juárez A. Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato. Agronomy. 2025; 15(7):1684. https://doi.org/10.3390/agronomy15071684
Chicago/Turabian StyleOntiveros-Guerra, José Guadalupe, Sonia Noemí Ramírez-Barrón, Luis Alberto Aguirre-Uribe, Julio Cesar Chacón-Hernández, Miriam Sánchez-Vega, Ernesto Cerna-Chávez, Josué Israel García-López, Alberto Antonio Neira-Vielma, Héctor Iván Meléndez-Ortiz, and Agustín Hernández-Juárez. 2025. "Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato" Agronomy 15, no. 7: 1684. https://doi.org/10.3390/agronomy15071684
APA StyleOntiveros-Guerra, J. G., Ramírez-Barrón, S. N., Aguirre-Uribe, L. A., Chacón-Hernández, J. C., Sánchez-Vega, M., Cerna-Chávez, E., García-López, J. I., Neira-Vielma, A. A., Meléndez-Ortiz, H. I., & Hernández-Juárez, A. (2025). Effect of Gold Nanoparticles Against Tetranychus urticae and Phytoseiulus persimilis in Tomato. Agronomy, 15(7), 1684. https://doi.org/10.3390/agronomy15071684