Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Weather Conditions and Crop Phenology
3.2. Full Flowering
3.2.1. Forage Production and Biomass Partitioning
3.2.2. Nitrogen and Phosphorus Concentration and Accumulation
3.3. Maturity
3.3.1. Seed Production and Yield Components
3.3.2. Nitrogen and Phosphorus Concentration and Accumulation
3.4. Weed Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Duc, G.; Bao, S.; Baum, M.; Redden, B.; Sadiki, M.; Suso, M.J.; Vishniakova, M.; Zong, X. Diversity Maintenance and Use of Vicia faba L. Genetic Resources. Field Crops Res. 2010, 115, 270–278. [Google Scholar] [CrossRef]
- Plūduma-Pauniņa, I.; Gaile, Z.; Bankina, B.; Balodis, R. Variety, Sowing Rate and Disease Control Affect Faba Bean Yield Components. Agron. Res. 2019, 17, 621–634. [Google Scholar] [CrossRef]
- Crépon, K.; Marget, P.; Peyronnet, C.; Carrouée, B.; Arese, P.; Duc, G. Nutritional Value of Faba Bean (Vicia faba L.) Seeds for Feed and Food. Field Crops Res. 2010, 115, 329–339. [Google Scholar] [CrossRef]
- Karkanis, A.; Ntatsi, G.; Lepse, L.; Fernández, J.A.; Vågen, I.M.; Rewald, B.; Alsiņa, I.; Kronberga, A.; Balliu, A.; Olle, M. Faba Bean Cultivation–Revealing Novel Managing Practices for More Sustainable and Competitive European Cropping Systems. Front. Plant Sci. 2018, 9, 1115. [Google Scholar] [CrossRef]
- Angeletti, F.G.S.; Mariotti, M.; Tozzi, B.; Pampana, S.; Saia, S. Herbage and Silage Quality Improved More by Mixing Barley and Faba Bean than by N Fertilization or Stage of Harvest. Agronomy 2022, 12, 1790. [Google Scholar] [CrossRef]
- Carr, P.M.; Boss, D.L.; Chen, C.; Dafoe, J.M.; Eberly, J.O.; Fordyce, S.; Hydner, R.M.; Fryer, H.K.; Lachowiec, J.A.; Lamb, P.F. Warm-season Forage Options in Northern Dryland Regions. Agron. J. 2020, 112, 3239–3253. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba Bean in Cropping Systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Mariotti, M.; Andreuccetti, V.; Arduini, I.; Minieri, S.; Pampana, S. Field Bean for Forage and Grain in Short-Season Rainfed Mediterranean Conditions. Ital. J. Agron. 2018, 13, 1112. [Google Scholar] [CrossRef]
- Palmio, A.; Sairanen, A.; Kuoppala, K.; Rinne, M. Milk Production Potential of Whole Crop Faba Bean Silage Compared with Grass Silage and Rapeseed Meal. Livest. Sci. 2022, 259, 104881. [Google Scholar] [CrossRef]
- Pampana, S.; Arduini, I.; Andreuccetti, V.; Mariotti, M. Fine-Tuning N Fertilization for Forage and Grain Production of Barley–Field Bean Intercropping in Mediterranean Environments. Agronomy 2022, 12, 418. [Google Scholar] [CrossRef]
- Gela, T.S.; Khazaei, H.; Podder, R.; Vandenberg, A. Dissection of Genotype-by-environment Interaction and Simultaneous Selection for Grain Yield and Stability in Faba Bean (Vicia faba L.). Agron. J. 2023, 115, 474–488. [Google Scholar] [CrossRef]
- Nendel, C.; Reckling, M.; Debaeke, P.; Schulz, S.; Berg-Mohnicke, M.; Constantin, J.; Fronzek, S.; Hoffmann, M.; Jakšić, S.; Kersebaum, K. Future Area Expansion Outweighs Increasing Drought Risk for Soybean in Europe. Glob. Change Biol. 2023, 29, 1340–1358. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse Weather Conditions for European Wheat Production Will Become More Frequent with Climate Change. Nat. Clim. Change 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Colet, F.; Lindsey, A.J.; Lindsey, L.E. Soybean Planting Date and Sowing Rate Effect on Grain Yield and Profitability. Agron. J. 2023, 115, 2286–2297. [Google Scholar] [CrossRef]
- Köpke, U.; Nemecek, T. Ecological Services of Faba Bean. Field Crops Res. 2010, 115, 217–233. [Google Scholar] [CrossRef]
- Bodner, G.; Kronberga, A.; Lepse, L.; Olle, M.; Vågen, I.M.; Rabante, L.; Fernández, J.A.; Ntatsi, G.; Balliu, A.; Rewald, B. Trait Identification of Faba Bean Ideotypes for Northern European Environments. Eur. J. Agron. 2018, 96, 1–12. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Arduini, I. Response of Cool-Season Grain Legumes to Waterlogging at Flowering. Can. J. Plant Sci. 2016, 96, 597–603. [Google Scholar] [CrossRef]
- Munir, R.; Konnerup, D.; Khan, H.A.; Siddique, K.H.; Colmer, T.D. Sensitivity of Chickpea and Faba Bean to Root-zone Hypoxia, Elevated Ethylene, and Carbon Dioxide. Plant Cell Environ. 2019, 42, 85–97. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Ziegler, K.V.; Kriegner, S.; Kaul, H.-P. Limited Winter Survival and Compensation Mechanisms of Yield Components Constrain Winter Faba Bean Production in Central Europe. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 496–505. [Google Scholar] [CrossRef]
- Moschini, V.; Casella, G.; Vivoli, R.; Vazzana, C.; Martini, A.; Lotti, C.; Migliorini, P. Performance of Organic Grain Legumes in Tuscany. Ital. J. Agron. 2014, 9, 525. [Google Scholar]
- Confalone, A.; Lizaso, J.I.; Ruiz-Nogueira, B.; López-Cedrón, F.-X.; Sau, F. Growth, PAR Use Efficiency, and Yield Components of Field-Grown Vicia faba L. under Different Temperature and Photoperiod Regimes. Field Crops Res. 2010, 115, 140–148. [Google Scholar] [CrossRef]
- López-Bellido, F.; López-Bellido, L.; López-Bellido, R. Competition, Growth and Yield of Faba Bean (Vicia faba L.). Eur. J. Agron. 2005, 23, 359–378. [Google Scholar] [CrossRef]
- Helios, W.; Jama-Rodzeńska, A.; Serafin-Andrzejewska, M.; Kotecki, A.; Kozak, M.; Zarzycki, P.; Kuchar, L. Depth and Sowing Rate as Factors Affecting the Development, Plant Density, Height and Yielding for Two Faba Bean (Vicia faba L. var. minor) Cultivars. Agriculture 2021, 11, 820. [Google Scholar] [CrossRef]
- Pilbeam, C.; Hebblethwaite, P.; Ricketts, H.; Nyongesa, T. Effects of Plant Population Density on Determinate and Indeterminate Forms of Winter Field Beans (Vicia faba) 1. Yield and Yield Components. J. Agric. Sci. 1991, 116, 375–383. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Bernhuber, A.; Kammlander, S.; Wagentristl, H.; Klimek-Kopyra, A.; Bernas, J.; Kaul, H.-P. Effect of Two Sowing Rates on Yield and Yield Components of Winter and Spring Faba Bean. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 496–505. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Arduini, I. Grain Legumes Differ in Nitrogen Accumulation and Remobilisation during Seed Filling. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 66, 127–132. [Google Scholar] [CrossRef]
- Liu, Z.; Xing, Y.; Jin, D.; Liu, Y.; Lu, Y.; Chen, Y.; Chen, D.; Zhang, X. Improved Nitrogen Utilization of Faba Bean (Vicia faba L.) Roots and Plant Physiological Characteristics under the Combined Application of Organic and Inorganic Fertilizers. Agriculture 2022, 12, 1999. [Google Scholar] [CrossRef]
- Pampana, S.; Masoni, A.; Mariotti, M.; Ercoli, L.; Arduini, I. Nitrogen Fixation of Grain Legumes Differs in Response to Nitrogen Fertilisation. Experim. Agric. 2018, 54, 66–82. [Google Scholar] [CrossRef]
- Pampana, S.; Scartazza, A.; Cardelli, R.; Saviozzi, A.; Guglielminetti, L.; Vannacci, G.; Mariotti, M.; Masoni, A.; Arduini, I. Biosolids Differently Affect Seed Yield, Nodule Growth, Nodule-Specific Activity, and Symbiotic Nitrogen Fixation of Field Bean. Crop Pasture Sci. 2017, 68, 735–745. [Google Scholar] [CrossRef]
- Patrick, J.; Stoddard, F. Physiology of Flowering and Grain Filling in Faba Bean. Field Crops Res. 2010, 115, 234–242. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; BBCH Monograph; Julius Kühn-Institut (JKI): Quedlinburg, Germany, 2018. [Google Scholar] [CrossRef]
- Iannucci, A.; Terribile, M.; Martiniello, P. Effects of Temperature and Photoperiod on Flowering Time of Forage Legumes in a Mediterranean Environment. Field Crops Res. 2008, 106, 156–162. [Google Scholar] [CrossRef]
- Freschet, G.T.; Swart, E.M.; Cornelissen, J.H. Integrated Plant Phenotypic Responses to Contrasting Above-and Below-ground Resources: Key Roles of Specific Leaf Area and Root Mass Fraction. New Phytol. 2015, 206, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Bremner, J.M.; Mulvaney, C. Nitrogen—Total. Am. Soc. Agron. Soil Sci. Soc. Am. 1982, 9, 595–624. [Google Scholar]
- Mills, H.; Jones, J.; Wolf, B. Plant Analysis Handbook; Micro–Macro Publishing, Inc.: Athens, GA, USA, 1991; 213p. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; WCB/McGraw-Hill: Boston, MA, USA, 1997; ISBN 0-07-061028-2. [Google Scholar]
- Torado, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Loss, S.P.; Siddique, K.H.M.; Martin, L.D.; Crombie, A. Responses of Faba Bean (Vicia faba L.) to Sowing Rate in South-Western Australia II. Canopy Development, Radiation Absorption and Dry Matter Partitioning. Aust. J. Agric. Res 1998, 49, 999–1008. [Google Scholar]
- Acay, U.; Bicer, B.T. Effect of plant density and shading applications on yield and yield components in faba bean (Vicia faba L.) varieties. MAS J. Appl. Sci. 2024, 9, 13–27. [Google Scholar]
- Klippenstein, S.R.; Khazaei, H.; Vandenberg, A.; Schoenau, J. Nitrogen and Phosphorus Uptake and Nitrogen Fixation Estimation of Faba Bean in Western Canada. Agron. J. 2022, 114, 811–824. [Google Scholar] [CrossRef]
- Postma, J.A.; Hecht, V.L.; Hikosaka, K.; Nord, E.A.; Pons, T.L.; Poorter, H. Dividing the Pie: A Quantitative Review on Plant Density Responses. Plant Cell Environ. 2021, 44, 1072–1094. [Google Scholar] [CrossRef]
- Barilli, E.; Luna, P.; Flores, F.; Rubiales, D. Agronomic Performance of Faba Bean in Mediterranean Environments. Agronomy 2025, 15, 412. [Google Scholar] [CrossRef]
- Sufar, E.K.; Hasanaliyeva, G.; Wang, J.; Leifert, H.; Shotton, P.; Bilsborrow, P.; Rempelos, L.; Volakakis, N.; Leifert, C. Effect of Climate, Crop Protection, and Fertilization on Disease Severity, Growth, and Grain Yield Parameters of Faba Beans (Vicia faba L.) in Northern Britain: Results from the Long-Term NFSC Trials. Agronomy 2024, 14, 422. [Google Scholar] [CrossRef]
- Neugschwandtner, R.; Ziegler, K.; Kriegner, S.; Wagentristl, H.; Kaul, H.-P. Nitrogen Yield and Nitrogen Fixation of Winter Faba Beans. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 658–666. [Google Scholar] [CrossRef]
- Manschadi, A.; Sauerborn, J.; Stützel, H.; Göbel, W.; Saxena, M.C. Simulation of Faba Bean (Vicia faba L.) Growth and Development under Mediterranean Conditions: Model Adaptation and Evaluation. Eur. J. Agron. 1998, 9, 273–293. [Google Scholar] [CrossRef]
- Karges, K.; Bellingrath-Kimura, S.D.; Watson, C.A.; Stoddard, F.L.; Halwani, M.; Reckling, M. Agro-Economic Prospects for Expanding Soybean Production beyond Its Current Northerly Limit in Europe. Eur. J. Agron. 2022, 133, 126415. [Google Scholar]
- Masoni, A.; Ercoli, L.; Mariotti, M.; Arduini, I. Post-Anthesis Accumulation and Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Soil Type. Eur. J. Agron. 2007, 26, 179–186. [Google Scholar] [CrossRef]
- Cordeau, S.; Smith, R.G.; Gallandt, E.R.; Brown, B.; Salon, P.; Di Tommaso, A.; Ryan, M.R. Timing of Tillage as a Driver of Weed Communities. Weed Sci. 2017, 65, 504–514. [Google Scholar] [CrossRef]
- Khan, H.; Paull, J.; Siddique, K.; Stoddard, F. Faba Bean Breeding for Drought-Affected Environments: A Physiological and Agronomic Perspective. Field Crops Res. 2010, 115, 279–286. [Google Scholar] [CrossRef]
- Manning, B.K.; Adhikari, K.N.; Trethowan, R. Impact of Sowing Time, Genotype, Environment and Maturity on Biomass and Yield Components in Faba Bean (Vicia faba). Crop Pasture Sci. 2020, 71, 147–154. [Google Scholar] [CrossRef]
- Serafin-Andrzejewska, M.; Jama-Rodzeńska, A.; Helios, W.; Kotecki, A.; Kozak, M.; Białkowska, M.; Bárta, J.; Bártová, V. Accumulation of Minerals in Faba Bean Seeds and Straw in Relation to Sowing Density. Agriculture 2023, 13, 147. [Google Scholar] [CrossRef]
- Lake, L.; Godoy-Kutchartt, D.E.; Calderini, D.F.; Verrell, A.; Sadras, V.O. Yield Determination and the Critical Period of Faba Bean (Vicia faba L.). Field Crops Res. 2019, 241, 107575. [Google Scholar] [CrossRef]
Stage | BBCH Code | Year I | Year II | Year III |
---|---|---|---|---|
Sowing | 0 | 26 October 2017 | 11 December 2018 | 12 February 2020 |
Full flowering | 65 | 19 April 2018 | 26 April 2019 | 14 May 2020 |
Maturity | 97 | 15 June 2018 | 29 June 2019 | 30 June 2020 |
Year | Sowing Rate | Dry Biomass | |||
---|---|---|---|---|---|
Forage | Stems | Leaves | Reproductive Structures | ||
g m−2 | |||||
I | S60 | 764.5 bc | 522.8 b | 184.6 ab | 57.1 ab |
S100 | 1164.3 a | 795.1 a | 270.5 a | 98.7 ab | |
II | S60 | 572.5 c | 307.7 c | 229.1 b | 35.7 b |
S100 | 1061.1 ab | 629.1 ab | 366.0 a | 66.0 ab | |
III | S60 | 624.3 c | 277.3 c | 236.3 b | 110.7 a |
S100 | 659.3 c | 287.2 c | 248.1 b | 124.0 a |
Year | Sowing Rate | Crop Height | Weight of Single Stem | Number of Stems | Specific Stem Length |
---|---|---|---|---|---|
cm | g stem−1 | n m−2 | cm g−1 | ||
I | S60 | 142.7 ab | 6.2 a | 89.4 ab | 23.1 b |
S100 | 156.4 a | 7.0 a | 114.3 a | 22.4 b | |
II | S60 | 107.4 c | 4.2 bc | 72.8 b | 25.4 b |
S100 | 135.0 b | 5.7 ab | 112.5 a | 23.9 b | |
III | S60 | 110.8 c | 3.9 c | 83.3 b | 29.3 ab |
S100 | 100.1 c | 2.9 c | 112.5 a | 35.1 a |
Year | Total Nodes | Sterile Nodes | Fertile Nodes | ||
---|---|---|---|---|---|
Basal | Terminal | ||||
n stem−1 | % of Total | ||||
I | 30.7 a | 8.6 a | 12.0 a | 10.1 a | 33.0 a |
II | 28.0 a | 8.2 a | 10.3 a | 9.5 a | 34.0 a |
III | 20.1 b | 7.6 b | 7.8 b | 4.7 b | 23.3 b |
Fertilization | Number | Dry Biomass | Mass Fraction | |||||
---|---|---|---|---|---|---|---|---|
Stems | Forage | Stems | Leaves | Reproductive Structures | Stems | Leaves | Reproductive Structures | |
n m−2 | g m−2 | g g−1 | ||||||
N0 | 86.9 b | 743.0 b | 428.1 b | 233.4 b | 88.5 a | 0.55 b | 0.33 a | 0.12 a |
N120 | 104.9 a | 882.8 a | 511.6 a | 278.1 a | 83.7 a | 0.58 a | 0.33 a | 0.09 b |
Effect | Nitrogen Concentration | |||
---|---|---|---|---|
Forage | Stems | Leaves | Reproductive Structures | |
Year | ||||
I | 22.8 b | 12.6 a | 44.5 a | 45.0 a |
III | 29.0 a | 12.9 a | 41.9 b | 40.9 b |
Fertilization | ||||
N0 | n.r. | 12.3 a | 37.0 b | 49.2 b |
N120 | n.r. | 13.1 a | 41.8 a | 52.1 a |
Fertilization | Nitrogen Accumulation | Phosphorus Accumulation | ||||||
---|---|---|---|---|---|---|---|---|
Forage | Stems | Leaves | Reproductive Structures | Forage | Stems | Leaves | Reproductive Structures | |
g m−2 | ||||||||
N0 | 17.9 b | 5.3 b | 8.6 b | 4.0 a | 1.9 b | 0.9 b | 0.6 b | 0.4 a |
N120 | 22.6 a | 6.7 a | 11.6 a | 4.3 a | 2.5 a | 1.2 a | 0.8 a | 0.5 a |
Year | Dry Biomass | Mean Seed Weight | ||
---|---|---|---|---|
Seeds | Residues | Shoots | ||
g m−2 | mg | |||
I | 346.6 b | 1240.1 b | 1586.7 b | 283.7 b |
II | 415.0 a | 1618.5 a | 2033.5 a | 343.5 a |
III | 188.7 c | 599.9 c | 788.6 c | 238.0 c |
Effect | Number of Stems | Residues per Stem | Number of Pods | Podding Nodes |
---|---|---|---|---|
n m−2 | g stem−1 | n stem−1 | % of Fertile | |
Year | ||||
Year I | 106.0 a | 11.7 b | 4.2 a | 41.2 b |
Year II | 99.2 a | 16.3 a | 4.8 a | 48.5 b |
Year III | 104.7 a | 5.7 c | 4.0 a | 90.8 a |
Sowing rate | ||||
S60 | 85.7 b | 12.6 a | 4.8 a | 58.3 a |
S100 | 120.8 a | 9.9 b | 3.8 b | 48.8 b |
Nitrogen Concentration | Phosphorus Concentration | Nitrogen Accumulation | Phosphorus Accumulation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Seeds | Residues | Shoots | Seeds | Residues | Shoots | Seeds | Residues | Shoots | Seeds | Residues | Shoots |
mg g−1 | g N m−2 | g P m−2 | ||||||||||
I | 40.7 b | 15.4 b | 20.9 b | 5.9 a | 1.9 a | 2.8 a | 14.1 a | 19.1 a | 33.2 a | 2.0 a | 2.4 a | 4.4 a |
III | 43.4 a | 20.2 a | 25.8 a | 4.1 b | 1.9 a | 2.4 a | 8.2 b | 12.1 b | 20.3 b | 0.8 b | 1.1 b | 1.9 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pampana, S.; Angeletti, F.G.S.; Mariotti, M.; Esnarriaga, D.N.; Arduini, I. Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate. Agronomy 2025, 15, 1660. https://doi.org/10.3390/agronomy15071660
Pampana S, Angeletti FGS, Mariotti M, Esnarriaga DN, Arduini I. Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate. Agronomy. 2025; 15(7):1660. https://doi.org/10.3390/agronomy15071660
Chicago/Turabian StylePampana, Silvia, Francesco G. S. Angeletti, Marco Mariotti, Dayana N. Esnarriaga, and Iduna Arduini. 2025. "Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate" Agronomy 15, no. 7: 1660. https://doi.org/10.3390/agronomy15071660
APA StylePampana, S., Angeletti, F. G. S., Mariotti, M., Esnarriaga, D. N., & Arduini, I. (2025). Forage and Seed Production of Field Bean Respond Differently to Nitrogen Fertilization and Sowing Rate. Agronomy, 15(7), 1660. https://doi.org/10.3390/agronomy15071660