Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops
Abstract
1. Introduction
2. Materials and Methods
2.1. Whitefly Colony
2.2. Identification of the Biotype of B. tabaci and Presence of Endosymbiont Group
2.3. Determination of Thermal Requirements in Different Hosts
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging Virus Diseases Transmitted by Whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Wakil, W.; Eleftheriadou, N.; Ghazanfar, M.U.; El-Shafie, H.; Simmons, A.M.; Dimase, M.; Smith, H.A.; Chandler, D. Integrated Management System of the Whitefly Bemisia tabaci: A Review. Entomologia 2024, 44, 1117–1133. [Google Scholar] [CrossRef]
- Boykin, L.M.; Bell, C.D.; Evans, G.; Small, I.; De Barro, P.J. Is Agriculture Driving the Diversification of the Bemisia tabaci Species Complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, Diversification and Biogeographic Evidence Revealed. BMC Evol. Biol. 2013, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- De Barro, P.J.; Liu, S.-S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A Statement of Species Status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef]
- Jiu, M.; Hu, J.; Wang, L.-J.; Dong, J.-F.; Song, Y.-Q.; Sun, H.-Z. Cryptic Species Identification and Composition of Bemisia tabaci (Hemiptera: Aleyrodidae) Complex in Henan Province, China. J. Insect Sci. 2017, 17, 78. [Google Scholar] [CrossRef]
- Lee, W.; Park, J.; Lee, G.-S.; Lee, S.; Akimoto, S. Taxonomic Status of the Bemisia tabaci Complex (Hemiptera: Aleyrodidae) and Reassessment of the Number of Its Constituent Species. PLoS ONE 2013, 8, e63817. [Google Scholar] [CrossRef]
- MacLeod, N.; Canty, R.J.; Polaszek, A. Morphology-Based Identification of Bemisia tabaci Cryptic Species Puparia via Embedded Group-Contrast Convolution Neural Network Analysis. Syst. Biol. 2022, 71, 1095–1109. [Google Scholar] [CrossRef]
- Mugerwa, H.; Seal, S.; Wang, H.-L.; Patel, M.V.; Kabaalu, R.; Omongo, C.A.; Alicai, T.; Tairo, F.; Ndunguru, J.; Sseruwagi, P.; et al. African Ancestry of New World, Bemisia tabaci-Whitefly Species. Sci. Rep. 2018, 8, 2734. [Google Scholar] [CrossRef]
- Wan, F.-H.; Yang, N.-W. Invasion and Management of Agricultural Alien Insects in China. Annu. Rev. Entomol. 2016, 61, 77–98. [Google Scholar] [CrossRef]
- Brazil Soybean Area, Yield and Production. Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=BR&crop=Soybean (accessed on 24 June 2025).
- Companhia Nacional de Abastecimento (CONAB). Boletim da Safra de Grãos—9o Levantamento—Safra 2024/25; Grãos; Conab: Brasília, Brazil, 2025; p. 135. [Google Scholar]
- Filho, A.B.; Inoue-Nagata, A.K.; Bassanezi, R.B.; Belasque, J.; Amorim, L.; Macedo, M.A.; Barbosa, J.C.; Willocquet, L.; Savary, S. The Importance of Primary Inoculum and Area-Wide Disease Management to Crop Health and Food Security. Food Sec. 2016, 8, 221–238. [Google Scholar] [CrossRef]
- Ferreira Rodrigues, R.H.; Silva, L.B.; Silva, M.C.F.; Lopes, J.W.B.; Araujo Lima, E.; Sobreira Barbosa, R.; Oliveira Almeida, L.F. Population Fluctuation and Distribution of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) in Soybean Crops. Front. Agron. 2022, 4, 958498. [Google Scholar] [CrossRef]
- Watanabe, L.F.M.; Bello, V.H.; De Marchi, B.R.; Silva, F.B.d.; Fusco, L.M.; Sartori, M.M.P.; Pavan, M.A.; Krause-Sakate, R. Performance and Competitive Displacement of Bemisia tabaci MEAM1 and MED Cryptic Species on Different Host Plants. Crop Prot. 2019, 124, 104860. [Google Scholar] [CrossRef]
- Fernandes, D.S.; Okuma, D.; Pantoja-Gomez, L.M.; Cuenca, A.; Corrêa, A.S. Bemisia tabaci MEAM1 Still Remains the Dominant Species in Open Field Crops in Brazil. Braz. J. Biol. 2022, 84, e256949. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Ghanim, M.; Xu, Y.; Pinheiro, P.V. Interactions between Common Bean Viruses and Their Whitefly Vector. Viruses 2024, 16, 1567. [Google Scholar] [CrossRef]
- Bevilaqua, J.G.; Padilha, G.; Pozebon, H.; Marques, R.P.; Cargnelutti Filho, A.; Ramon, P.C.; Boeni, L.; Castilhos, L.B.; Da Luz, G.R.; Brum, A.L.S.D.S.; et al. A Sustainable Approach to Control Whitefly on Soybean: Integrating Entomopathogenic Fungi with Insecticides. Crop Prot. 2023, 164, 106145. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide Resistance and Its Management in Bemisia tabaci Species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Dai, T.M.; Wang, Y.S.; Liu, W.X.; Lü, Z.C.; Wan, F.H. Thermal Discrimination and Transgenerational Temperature Response in Bemisia tabaci Mediterranean (Hemiptera: Aleyrodidae): Putative Involvement of the Thermo-Sensitive Receptor BtTRPA. Environ. Entomol. 2018, 47, 204–209. [Google Scholar] [CrossRef]
- Pan, H.; Preisser, E.L.; Chu, D.; Wang, S.; Wu, Q.; Carrière, Y.; Zhou, X.; Zhang, Y. Insecticides Promote Viral Outbreaks by Altering Herbivore Competition. Ecol. Appl. 2015, 25, 1585–1595. [Google Scholar] [CrossRef]
- Yang, K.; Yuan, M.-Y.; Liu, Y.; Guo, C.-L.; Liu, T.-X.; Zhang, Y.-J.; Chu, D. First Evidence for Thermal Tolerance Benefits of the Bacterial Symbiont Cardinium in an Invasive Whitefly, Bemisia tabaci. Pest Manag. Sci. 2021, 77, 5021–5031. [Google Scholar] [CrossRef]
- Bello, V.H.; da Silva, F.B.; Watanabe, L.F.M.; Vicentin, E.; Muller, C.; de Freitas Bueno, R.C.O.; Santos, J.C.; De Marchi, B.R.; Nogueira, A.M.; Yuki, V.A.; et al. Detection of Bemisia tabaci Mediterranean Cryptic Species on Soybean in São Paulo and Paraná States (Brazil) and Interaction of Cowpea Mild Mottle Virus with Whiteflies. Plant Pathol. 2021, 70, 1508–1520. [Google Scholar] [CrossRef]
- Tang, X.-T.; Cai, L.; Shen, Y.; Xu, L.-L.; Du, Y.-Z. Competitive Displacement between Bemisia tabaci MEAM1 and MED and Evidence for Multiple Invasions of MED. Insects 2019, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, X.-N.; Lu, M.-X.; Du, Y.-Z. Transcriptional Profiling of MED Exposed to Thermal Stress and Verification of HSP70 Expression. Entomol. Res. 2021, 51, 251–262. [Google Scholar] [CrossRef]
- Xiao, N.; Pan, L.-L.; Zhang, C.-R.; Shan, H.-W.; Liu, S.-S. Differential Tolerance Capacity to Unfavourable Low and High Temperatures between Two Invasive Whiteflies. Sci. Rep. 2016, 6, 24306. [Google Scholar] [CrossRef]
- Chu, D.; Tao, Y.; Zhang, Y.; Wan, F.; Brown, J.K. Effects of Host, Temperature and Relative Humidity on Competitive Displacement of Two Invasive Bemisia tabaci Biotypes [Q and B]. Insect Sci. 2012, 19, 595–603. [Google Scholar] [CrossRef]
- Bonato, O.; Lurette, A.; Vidal, C.; Fargues, J. Modelling Temperature-Dependent Bionomics of Bemisia tabaci (Q-Biotype). Physiol. Entomol. 2007, 32, 50–55. [Google Scholar] [CrossRef]
- Muñiz, M.; Nombela, G. Differential Variation in Development of the B- and Q-Biotypes of Bemisia tabaci (Homoptera: Aleyrodidae) on Sweet Pepper at Constant Temperatures. Environ. Entomol. 2001, 30, 720–727. [Google Scholar] [CrossRef]
- Nuno, M.M.S.A.; Cividanes, F.J. Exigências Térmicas de Bemisia tabaci (Genn.) Biótipo B (Hemiptera: Aleyrodidae). Neotrop. Entomol. 2002, 31, 359–363. [Google Scholar] [CrossRef]
- Xue, Y.; Lin, C.; Wang, Y.; Liu, W.; Wan, F.; Zhang, Y.; Ji, L. Predicting Climate Change Effects on the Potential Distribution of Two Invasive Cryptic Species of the Bemisia tabaci Species Complex in China. Insects 2022, 13, 1081. [Google Scholar] [CrossRef]
- Guo, C.; Zhu, Y.; Zhang, Y.; Keller, M.A.; Liu, T.-X.; Chu, D. Invasion Biology and Management of Sweetpotato Whitefly (Hemiptera: Aleyrodidae) in China. J. Integr. Pest Manag. 2021, 12, 2. [Google Scholar] [CrossRef]
- Alvarez, D.d.L.; Hayashida, R.; Cavallaro, M.C.; Santos, D.M.; Santos, L.M.; Müller, C.; Watanabe, L.F.M.; Bello, V.H.; Krause-Sakate, R.; Hoback, W.W.; et al. Susceptibility of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Mediterranean Populations Found in São Paulo, Brazil to 11 Insecticides and Characterization of Their Endosymbionts. Insects 2024, 15, 670. [Google Scholar] [CrossRef]
- Ghanim, M.; Kontsedalov, S. Susceptibility to Insecticides in the Q Biotype of Bemisia tabaci Is Correlated with Bacterial Symbiont Densities. Pest Manag. Sci. 2009, 65, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Moraes, L.A.d.; Muller, C.; Bueno, R.C.O.d.F.; Santos, A.; Bello, V.H.; De Marchi, B.R.; Watanabe, L.F.M.; Marubayashi, J.M.; Santos, B.R.; Yuki, V.A.; et al. Distribution and Phylogenetics of Whiteflies and Their Endosymbiont Relationships after the Mediterranean Species Invasion in Brazil. Sci. Rep. 2018, 8, 14589. [Google Scholar] [CrossRef] [PubMed]
- Milenovic, M.; Ghanim, M.; Hoffmann, L.; Rapisarda, C. Whitefly Endosymbionts: IPM Opportunity or Tilting at Windmills? J. Pest Sci. 2022, 95, 543–566. [Google Scholar] [CrossRef]
- Shah, S.H.J.; Malik, A.H.; Zhang, B.; Bao, Y.; Qazi, J. Metagenomic Analysis of Relative Abundance and Diversity of Bacterial Microbiota in Bemisia tabaci Infesting Cotton Crop in Pakistan. Infect. Genet. Evol. 2020, 84, 104381. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Pérez, D.; Hernández-Zepeda, C.; Chaidez-Quiroz, C.; Pérez-Brito, D.d.l.C.; González-Gómez, J.-P.; Minero-García, Y.; Rosiles-González, G.; Carrillo-Jovel, V.H.; Moreno-Valenzuela, O.A. Composition of the Whiteflies Microbiome in Populations with and without Insecticide Applications in Yucatan Mexico. Biologia 2024, 79, 2569–2579. [Google Scholar] [CrossRef]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. Biotechniques 1991, 10, 506–513. [Google Scholar] [CrossRef]
- Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Ann. Entomol. Soc. Am. 1994, 87, 651–701. [Google Scholar] [CrossRef]
- Bosco, D.; Loria, A.; Sartor, C.; Cenis, J.L. PCR-RFLP Identification of Bemisia tabaci Biotypes in the Mediterranean Basin. Phytoparasitica 2006, 34, 243–251. [Google Scholar] [CrossRef]
- Marubayashi, J.M.; Kliot, A.; Yuki, V.A.; Rezende, J.A.M.; Krause-Sakate, R.; Pavan, M.A.; Ghanim, M. Diversity and Localization of Bacterial Endosymbionts from Whitefly Species Collected in Brazil. PLoS ONE 2014, 9, e108363. [Google Scholar] [CrossRef]
- Haddad, M.L.; Parra, J.R.P. Métodos para Estimar os Limites Térmicos e a Faixa Ótima de Desenvolvimento das Diferentes Fases do Ciclo Evolutivo dos Insetos; Agricultura e Desenvolvimento; Escola Superior de Agricultura “Luiz de Queiroz”: Piracicaba, Brazil, 1984; 14p. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Mantel, N. Propriety of the Mantel—Haenszel Variance for the Log Rank Test. Biometrika 1985, 72, 471–472. [Google Scholar] [CrossRef]
- Tsagkarakou, A.; Tsigenopoulos, C.S.; Gorman, K.; Lagnel, J.; Bedford, I.D. Biotype Status and Genetic Polymorphism of the Whitefly Bemisia Tabaci (Hemiptera: Aleyrodidae) in Greece: Mitochondrial DNA and Microsatellites. Bull. Entomol. Res. 2007, 97, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.D.; Hemming, D.; Baker, R.; Everatt, M.; Eyre, D.; Korycinska, A. A Novel Approach for Exploring Climatic Factors Limiting Current Pest Distributions: A Case Study of Bemisia tabaci in North-West Europe and Assessment of Potential Future Establishment in the United Kingdom under Climate Change. PLoS ONE 2019, 14, e0221057. [Google Scholar] [CrossRef] [PubMed]
- Enkegaard, A. The Poinsettia Strain of the Cotton Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae), Biological and Demographic Parameters on Poinsettia (Euphorbia Pulcherrima) in Relation to Temperature. Bull. Entomol. Res. 1993, 83, 535–546. [Google Scholar] [CrossRef]
- Chen, G.; Klinkhamer, P.G.L.; Escobar-Bravo, R.; Leiss, K.A. Type VI Glandular Trichome Density and Their Derived Volatiles Are Differently Induced by Jasmonic Acid in Developing and Fully Developed Tomato Leaves: Implications for Thrips Resistance. Plant Sci. 2018, 276, 87–98. [Google Scholar] [CrossRef]
- Glas, J.J.; Schimmel, B.C.J.; Alba, J.M.; Escobar-Bravo, R.; Schuurink, R.C.; Kant, M.R. Plant Glandular Trichomes as Targets for Breeding or Engineering of Resistance to Herbivores. Int. J. Mol. Sci. 2012, 13, 17077–17103. [Google Scholar] [CrossRef]
- Harrison, E.L.; Arce Cubas, L.; Gray, J.E.; Hepworth, C. The Influence of Stomatal Morphology and Distribution on Photosynthetic Gas Exchange. Plant J. 2020, 101, 768–779. [Google Scholar] [CrossRef]
- Lin, P.-A.; Chen, Y.; Ponce, G.; Acevedo, F.E.; Lynch, J.P.; Anderson, C.T.; Ali, J.G.; Felton, G.W. Stomata-Mediated Interactions between Plants, Herbivores, and the Environment. Trends Plant Sci. 2022, 27, 287–300. [Google Scholar] [CrossRef]
- Brazilian Climate Data. Available online: https://clima.inmet.gov.br (accessed on 20 April 2023).
- Brumin, M.; Kontsedalov, S.; Ghanim, M. Rickettsia Influences Thermotolerance in the Whitefly Bemisia tabaci B Biotype: Rickettsia Influence on Thermotolerance. Insect Sci. 2011, 18, 57–66. [Google Scholar] [CrossRef]
- Su, Q.; Xie, W.; Wang, S.; Wu, Q.; Liu, B.; Fang, Y.; Xu, B.; Zhang, Y. The Endosymbiont Hamiltonella Increases the Growth Rate of Its Host Bemisia tabaci during Periods of Nutritional Stress. PLoS ONE 2014, 9, e89002. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, K.; Wang, J.; Chu, D. Cardinium Infection Alters Cotton Defense and Detoxification Metabolism of Its Whitefly Host. Insect Sci. 2023, 30, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Shan, H.-W.; Liu, S.-S. The Costs and Benefits of Two Secondary Symbionts in a Whitefly Host Shape Their Differential Prevalence in the Field. Front. Microbiol. 2021, 12, 739521. [Google Scholar] [CrossRef] [PubMed]
- Spano, D.; Armiento, M.; Aslam, M.F.; Bacciu, V.; Bigano, A.; Bosello, F.; Breil, M.; Buonocore, M.; Butenschön, M.; Cadau, M.; et al. G20 Climate Risk Atlas. Impacts, Policy and Economics in the G20 2021. Available online: https://www.cmcc.it/g20. (accessed on 22 May 2025).
- Malecha, A.; Manes, S.; Vale, M.M. Climate Change and Biodiversity in Brazil: What We Know, What We Don’t, and Paris Agreement’s Risk Reduction Potential. Perspect. Ecol. Conserv. 2025, 23, 77–84. [Google Scholar] [CrossRef]
- Elbaz, M.; Weiser, M.; Morin, S. Asymmetry in Thermal Tolerance Trade-offs between the B and Q Sibling Species of Bemisia tabaci (Hemiptera: Aleyrodidae). J. Evol. Biol. 2011, 24, 1099–1109. [Google Scholar] [CrossRef]
- Lima, F.F.D.; Alves, L.R.A. Portfolio Theory Approach to Plan Areas for Growing Cotton, Soybean, and Corn in Mato Grosso, Brazil. Rev. Econ. Sociol. Rural 2023, 61, e258224. [Google Scholar] [CrossRef]
- Stratton, A.E.; Wittman, H.; Blesh, J. Diversification Supports Farm Income and Improved Working Conditions during Agroecological Transitions in Southern Brazil. Agron. Sustain. Dev. 2021, 41, 35. [Google Scholar] [CrossRef]
- Rivas, M.; Vidal, R.; Neitzke, R.S.; Priori, D.; Almeida, N.; Antunes, I.F.; Galván, G.A.; Barbieri, R.L. Diversity of Vegetable Landraces in the Pampa Biome of Brazil and Uruguay: Utilization and Conservation Strategies. Front. Plant Sci. 2023, 14, 1232589. [Google Scholar] [CrossRef]
- Quintão, F.C.S.; Dias Da Silva Furtado, J.; Mendes Diniz Tripode, B.; Miranda, J.E. Inseticidas para controle do bicudo do algodoeiro—Eficiência, período residual e perdas por escorrimento. In Pesquisa e Inovação nas Ciências que Alimentam o Mundo; Agrárias; Editora Artemis: Curitiba, Brazil, 2020; Volume IV, pp. 55–65. ISBN 978-65-87396-25-5. [Google Scholar]
- Horowitz, A.R.; Ishaaya, I. Dynamics of Biotypes B and Q of the Whitefly Bemisia tabaci and Its Impact on Insecticide Resistance. Pest Manag. Sci. 2014, 70, 1568–1572. [Google Scholar] [CrossRef]
- Abubakar, M.; Koul, B.; Chandrashekar, K.; Raut, A.; Yadav, D. Whitefly (Bemisia tabaci) Management (WFM) Strategies for Sustainable Agriculture: A Review. Agriculture 2022, 12, 1317. [Google Scholar] [CrossRef]
- Zandi-Sohani, N.; Shishehbor, P. Temperature Effects on the Development and Fecundity of Encarsia Acaudaleyrodis (Hymenoptera: Aphelinidae), a Parasitoid of Bemisia tabaci (Homoptera: Aleyrodidae) on Cucumber. BioControl 2011, 56, 257–263. [Google Scholar] [CrossRef]
Species | Endosymbionts (%) | |||||
---|---|---|---|---|---|---|
Hamiltonella | Rickettsia | Wolbachia | Cardinium | Arsenophonus | Fristchea | |
Bemisia tabaci MED | 80 | 0 | 0 | 20 | 0 | 0 |
Treatments | 20 °C | % | 23 °C | % | 26 °C | % | 29 °C | % | 32 °C | % | 35 °C | % |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soybean | 4.17 ± 0.95 aBC | 20.8 | 10.83 ± 2.17 aAB | 54.2 | 13.17 ± 1.89 aA | 65.8 | 9.33 ± 2.28 bAB | 46.7 | 10.50 ± 2.64 abAB | 52.5 | 2.00 ± 0.52 bcC | 10.0 |
Common Bean | 7.67 ± 2.42 aA | 38.3 | 12.67 ± 1.65 aA | 63.3 | 11.17 ± 1.64 aA | 55.8 | 11.00 ± 1.88 abA | 55.0 | 9.00 ± 1.92 bA | 45.0 | 0.00 ± 0.00 cB | 0.0 |
Cotton | 6.50 ± 2.77 aC | 32.5 | 15.67 ± 0.42 aA | 78.3 | 17.00 ± 2.16 aA | 85.0 | 17.67 ± 1.23 aA | 88.3 | 14.67 ± 2.01 abAB | 73.3 | 7.83 ± 1.40 abBC | 39.2 |
Bell pepper | 4.50 ± 0.72 aB | 22.5 | 11.83 ± 1.08 aA | 59.2 | 16.17 ± 1.54 aA | 80.8 | 16.33 ± 1.09 abA | 81.7 | 17.50 ± 1.09 aA | 87.5 | 10.33 ± 2.25 aAB | 51.7 |
Tomato | 7.67 ± 2.42 aB | 38.3 | 14.33 ± 1.33 aAB | 71.7 | 15.83 ± 1.94 aA | 79.2 | 15.00 ± 1.75 abAB | 75.0 | 12.00 ± 2.83 abAB | 60.0 | 11.17 ± 2.52 aAB | 55.8 |
F (host; temperature; hostxtemperature) | 11.20; 24.34; 1.79 | |||||||||||
p (host; temperature; hostxtemperature) | <0.001; <0.001; 0.026 | |||||||||||
DF residuals | 150 |
Host | Tb (°C) | Thermal Constant (K) |
---|---|---|
Soybean | 9.81 | 384.62 |
Common Bean | 10.00 | 370.37 |
Cotton | 10.37 | 370.37 |
Bell Pepper | 11.17 | 333.33 |
Tomato | 9.89 | 370.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez, D.d.L.; Hayashida, R.; Santos, D.M.; Silva, F.B.d.; Müller, C.; Krause-Sakate, R.; Hoback, W.W.; Oliveira, R.C.d. Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops. Agronomy 2025, 15, 1622. https://doi.org/10.3390/agronomy15071622
Alvarez DdL, Hayashida R, Santos DM, Silva FBd, Müller C, Krause-Sakate R, Hoback WW, Oliveira RCd. Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops. Agronomy. 2025; 15(7):1622. https://doi.org/10.3390/agronomy15071622
Chicago/Turabian StyleAlvarez, Daniel de Lima, Rafael Hayashida, Daniel Mariano Santos, Felipe Barreto da Silva, Cristiane Müller, Renate Krause-Sakate, William Wyatt Hoback, and Regiane Cristina de Oliveira. 2025. "Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops" Agronomy 15, no. 7: 1622. https://doi.org/10.3390/agronomy15071622
APA StyleAlvarez, D. d. L., Hayashida, R., Santos, D. M., Silva, F. B. d., Müller, C., Krause-Sakate, R., Hoback, W. W., & Oliveira, R. C. d. (2025). Thermal Tolerance and Host Plant Suitability of Bemisia tabaci MED (Gennadius) in Brazilian Legume Crops. Agronomy, 15(7), 1622. https://doi.org/10.3390/agronomy15071622