Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Obtaining Root Lesion Nematode Suspensions
2.3. Determination of Mortality Through Direct Contact Bioassays
2.4. Determination of Motility Inhibition Through Direct Contact Bioassays
2.5. Assessment of Environmental Benefit
2.6. Estimation of Safety to Human Health
- -
- the FDA medium daily dose (FDAMDD), that provides an estimate of the toxic dose threshold of chemicals in humans;
- -
- the hERG blockers, related to the voltage-gated potassium channel encoded by hERG whose blockade may cause illness or even death;
- -
- hematotoxicity, which refers to adverse effects of chemicals on blood-forming organs;
- -
- carcinogenicity, related to the ability to damage the genome or disrupt cellular metabolic processes;
- -
- RPMI-8226 immunotoxicity, which helps determine the toxicity of compounds to a type of multiple myeloma cell line;
- -
- genotoxicity, which refers to the ability of harmful substances to damage genetic information in cells;
- -
- respiratory toxicity, which has become the main cause of drug withdrawal;
- -
- A549 cytotoxicity, which helps determine the toxicity of compounds to a human non-small cell lung cancer cell line;
- -
- human hepatotoxicity, for compounds demonstrating adverse liver reactions;
- -
- drug-induced liver injury (DILI), for compounds that have well known associations with liver injury and have a significant number (>10) of independent clinical reports of hepatotoxicity;
- -
- drug-induced nephrotoxicity, which refers to the harmful effects that occur in the kidneys;
- -
- Hek293 cytotoxicity, which helps determine the toxicity of compounds to human embryonic kidney cells;
- -
- AMES toxicity, which determines a mutagenic effect that has a close relationship with the carcinogenicity;
- -
- skin sensitization, for potential adverse effects for dermally applied products;
- -
- eye irritation, which assesses the potential to affect cornea and conjunctiva tissues;
- -
- drug-induced neurotoxicity, for compounds that can harm both the central nervous system and the peripheral nervous system;
- -
- ototoxicity, for compounds that have the potential to harm the inner ear by either damaging the ear’s structures directly or the related nervous system.
2.7. Data Treatment and Statistical Analysis
3. Results
3.1. Nematotoxic Activity
3.2. Potential Environmental Safety
3.3. Toxicity to Mammals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
BAF | Bioaccumulation factor |
BCF | Bioconcentration factor |
DMDS | Dimethyl disulphide |
DMS | Dimethyl sulphide |
ECHA | European Chemicals Agency |
EO | Essential oil |
PED | Predicted environmental distribution |
PPDB | Pesticide Properties Database |
PPN | Plant-parasitic nematode |
RLN | Root lesion nematode |
T2D | trans-2-decenal |
T2U | trans-2-undecenal |
TCA | trans-cinnamaldehyde |
References
- Jones, M.G.K.; Fosu-Nyarko, J. Molecular Biology of Root Lesion Nematodes (Pratylenchus spp.) and Their Interaction with Host Plants. Ann. Appl. Biol. 2014, 164, 163–181. [Google Scholar] [CrossRef]
- Castillo, P.; Vovlas, N. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, Pathogenicity and Management; Brill: Leiden, The Netherlands, 2007; Volume 6, ISBN 9789004155640. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 Plant-Parasitic Nematodes in Molecular Plant Pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- MacGuidwin, A.E.; Rouse, D.I. Role of Pratylenchus penetrans in the Potato Early Dying Disease of Russet Burbank Potato. Phytopathology 1990, 80, 1077. [Google Scholar] [CrossRef]
- Viketoft, M.; Flöhr, A.; Englund, J.-E.; Kardell, J.; Edin, E. Additive Effect of the Root-Lesion Nematode Pratylenchus penetrans and the Fungus Rhizoctonia Solani on Potato Yield and Damage. J. Plant Dis. Prot. 2020, 127, 821–829. [Google Scholar] [CrossRef]
- Barbosa, P.; Faria, J.M.S.; Cavaco, T.; Figueiredo, A.C.; Mota, M.; Vicente, C.S.L. Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans. Plants 2024, 13, 726. [Google Scholar] [CrossRef]
- Olthof, T.H.A.; Townshend, J.L. Effect of Oxamyl Treatment of Potato Seed Pieces on Pratylenchus penetrans and Yield. J. Nematol. 1991, 23, 699–705. [Google Scholar]
- Cavaco, T.; Faria, J.M.S. Phytochemical Volatiles as Potential Bionematicides with Safer Ecotoxicological Properties. Toxics 2024, 12, 406. [Google Scholar] [CrossRef]
- Taylor, G.E.; Schaller, K.B.; Geddes, J.D.; Gustin, M.S.; Lorson, G.B.; Miller, G.C. Microbial Ecology, Toxicology and Chemical Fate of Methyl Isothiocyanate in Riparian Soils from the Upper Sacramento River. Environ. Toxicol. Chem. 1996, 15, 1694–1701. [Google Scholar] [CrossRef]
- Goldman, L.R.; Beller, M.; Oregon, H.; Jackson, R.J. Aldicarb Food Poisonings in California, 1985–1988: Toxicity Estimates for Humans. Arch. Environ. Health 1990, 45, 141–147. [Google Scholar] [CrossRef]
- European Comission. EU Pesticides Database. Available online: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en (accessed on 29 March 2025).
- Liu, Y.; Zhang, W.; Wang, Y.; Liu, H.; Zhang, S.; Ji, X.; Qiao, K. Oxidative Stress, Intestinal Damage, and Cell Apoptosis: Toxicity Induced by Fluopyram in Caenorhabditis Elegans. Chemosphere 2022, 286, 131830. [Google Scholar] [CrossRef]
- Schleker, A.S.S.; Rist, M.; Matera, C.; Damijonaitis, A.; Collienne, U.; Matsuoka, K.; Habash, S.S.; Twelker, K.; Gutbrod, O.; Saalwächter, C.; et al. Mode of Action of Fluopyram in Plant-Parasitic Nematodes. Sci. Rep. 2022, 12, 11954. [Google Scholar] [CrossRef] [PubMed]
- Oka, Y.; Koltai, H.; Bar-Eyal, M.; Mor, M.; Sharon, E.; Chet, I.; Spiegel, Y. New Strategies for the Control of Plant-Parasitic Nematodes. Pest Manag. Sci. 2000, 56, 983–988. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus Essential Oil as a Natural Pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The Development, Regulation and Use of Biopesticides for Integrated Pest Management. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Sarri, K.; Mourouzidou, S.; Ntalli, N.; Monokrousos, N. Recent Advances and Developments in the Nematicidal Activity of Essential Oils and Their Components against Root-Knot Nematodes. Agronomy 2024, 14, 213. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Vieira, P.; Vicente, C.S.L.; Figueiredo, A.C.; Mota, M. Phytochemicals as Biopesticides against the Pinewood Nematode Bursaphelenchus xylophilus: A Review on Essential Oils and Their Volatiles. Plants 2021, 10, 2614. [Google Scholar] [CrossRef]
- Coosemans, J. Dimethyl Disulphide (DMDS): A Potential Novel Nematicide and Soil Disinfectant. Acta Hortic. 2005, 698, 57–64. [Google Scholar] [CrossRef]
- Gómez-Tenorio, M.A.; Zanón, M.J.; de Cara, M.; Lupión, B.; Tello, J.C. Efficacy of Dimethyl Disulfide (DMDS) against Meloidogyne Sp. and Three Formae Speciales of Fusarium Oxysporum under Controlled Conditions. Crop Prot. 2015, 78, 263–269. [Google Scholar] [CrossRef]
- Jardim, I.N.; Oliveira, D.F.; Silva, G.H.; Campos, V.P.; de Souza, P.E. (E)-Cinnamaldehyde from the Essential Oil of Cinnamomum Cassia Controls Meloidogyne Incognita in Soybean Plants. J. Pest Sci. 2018, 91, 479–487. [Google Scholar] [CrossRef]
- Oka, Y. Nematicidal Activity of Essential Oil Components against the Root-Knot Nematode Meloidogyne Javanica. Nematology 2001, 3, 159–164. [Google Scholar] [CrossRef]
- D’Addabbo, T.; Laquale, S.; Veronico, P.; Avato, P.; Argentieri, M.P. Nematicidal Activity of the Essential Oil from Cinnamomum Cassia and (E)-Cinnamaldehyde against Phytoparasitic Nematodes. J. Pest Sci. 2024, 98, 521–533. [Google Scholar] [CrossRef]
- Oro, V.; Krnjajic, S.; Tabakovic, M.; Stanojevic, J.S.; Ilic-Stojanovic, S. Nematicidal Activity of Essential Oils on a Psychrophilic Panagrolaimus sp. (Nematoda: Panagrolaimidae). Plants 2020, 9, 1588. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Song, B. An Natural Nematicidal Active Compounds: Recent Research Progress and Outlook. J. Integr. Agric. 2021, 20, 2015–2031. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Barbosa, P.; Figueiredo, A.C.; Mota, M.; Vicente, C.S.L. In Vivo and In Vitro Infection of Potato Roots with Plant Parasitic Nematodes for the Assessment of Induced Structural Changes. JoVE 2025, 216, e67756. [Google Scholar] [CrossRef]
- Coyne, D.; Adewuyi, O.; Mbiru, E. Protocol for In Vitro Culturing of Lesion Nematodes Radopholus Similis and Pratylenchus spp. on Carrot Disc on Carrot Discs; International Institute of Tropical Agriculture (IITA): Ibadan, Niger, 2014; Volume 15. [Google Scholar]
- Figueiredo, J.; Vieira, P.; Abrantes, I.; Esteves, I. Commercial Potato Cultivars Exhibit Distinct Susceptibility to the Root Lesion Nematode Pratylenchus penetrans. Horticulturae 2022, 8, 244. [Google Scholar] [CrossRef]
- Kadlecová, A.; Hendrychová, R.; Jirsa, T.; Čermák, V.; Huang, M.; Grundler, F.M.W.; Schleker, A.S.S. Advanced Screening Methods for Assessing Motility and Hatching in Plant-Parasitic Nematodes. Plant Methods 2024, 20, 108. [Google Scholar] [CrossRef]
- Parnis, J.M.; Mackay, D. Multimedia Environmental Models, 3rd ed.; Parnis, J.M., Mackay, D., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367809829. [Google Scholar]
- Trent University Level I Model. Available online: https://www.trentu.ca/cemc/resources-and-models/level-i-model (accessed on 29 March 2024).
- National Library of Medicine PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 29 March 2024).
- University of Hertfordshire PPDB: Pesticide Properties DataBase. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/ (accessed on 29 March 2024).
- US EPA. Estimation Programs Interface SuiteTM for Microsoft® Windows, v 4.11; US EPA: Washington, DC, USA, 2023. [Google Scholar]
- Arnot, J.A.; Gobas, F.A.P.C. A Generic QSAR for Assessing the Bioaccumulation Potential of Organic Chemicals in Aquatic Food Webs. QSAR Comb. Sci. 2003, 22, 337–345. [Google Scholar] [CrossRef]
- ECHA European Chemicals Agency. Available online: https://echa.europa.eu/pt/home (accessed on 29 March 2023).
- Computational Biology & Drug Design Group. ADMETlab 3.0. Available online: https://admetlab3.scbdd.com/ (accessed on 29 March 2024).
- Kong, J.O.; Lee, S.M.; Moon, Y.S.; Lee, S.G.; Ahn, Y.J. Nematicidal Activity of Plant Essential Oils against Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). J. Asia. Pac. Entomol. 2006, 9, 173–178. [Google Scholar] [CrossRef]
- Mackay, D.; Di Guardo, A.; Paterson, S.; Cowan, C.E. Evaluating the Environmental Fate of a Variety of Types of Chemicals Using the EQC Model. Environ. Toxicol. Chem. 1996, 15, 1627–1637. [Google Scholar] [CrossRef]
- CCTE, EPA (2022). Toxicity Estimation Software Tool (TEST). The United States Environmental Protection Agency’s Center for Computational Toxicology and Exposure. Software. Available online: https://epa.figshare.com/articles/software/Toxicity_Estimation_Software_Tool_TEST_/21379365/3 (accessed on 29 March 2024). [CrossRef]
- Computational Biology & Drug Design Group. ADMETlab3.0 Explanation. Available online: https://admetlab3.scbdd.com/explanation/#/ (accessed on 29 March 2024).
- Seo, S.-M.; Kim, J.; Kim, E.; Park, H.-M.; Kim, Y.-J.; Park, I.-K. Structure−Activity Relationship of Aliphatic Compounds for Nematicidal Activity against Pine Wood Nematode (Bursaphelenchus xylophilus). J. Agric. Food Chem. 2010, 58, 1823–1827. [Google Scholar] [CrossRef]
- Ntalli, N.; Ratajczak, M.; Oplos, C.; Menkissoglu-Spiroudi, U.; Adamski, Z. Acetic Acid, 2-Undecanone, and (E)-2-Decenal Ultrastructural Malformations on Meloidogyne Incognita. J. Nematol. 2016, 48, 248–260. [Google Scholar] [CrossRef]
- Dutta, A.; Mandal, A.; Kundu, A.; Malik, M.; Chaudhary, A.; Khan, M.R.; Shanmugam, V.; Rao, U.; Saha, S.; Patanjali, N.; et al. Deciphering the Behavioral Response of Meloidogyne Incognita and Fusarium Oxysporum Toward Mustard Essential Oil. Front. Plant Sci. 2021, 12, 714730. [Google Scholar] [CrossRef]
- Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, M.P.; Terra, W.C.; Lopez, L.E.; de Souza, J.T. Plant Volatiles Reduce the Viability of the Root-Knot Nematode Meloidogyne Incognita Either Directly or When Retained in Water. Plant Dis. 2018, 102, 2170–2179. [Google Scholar] [CrossRef]
- Zhai, Y.; Shao, Z.; Cai, M.; Zheng, L.; Li, G.; Huang, D.; Cheng, W.; Thomashow, L.S.; Weller, D.M.; Yu, Z.; et al. Multiple Modes of Nematode Control by Volatiles of Pseudomonas Putida 1A00316 from Antarctic Soil against Meloidogyne Incognita. Front. Microbiol. 2018, 9, 253. [Google Scholar] [CrossRef]
- da Silva, J.C.P.; Campos, V.P.; Barros, A.F.; Pedroso, L.A.; Silva, M.d.F.; de Souza, J.T.; Pedroso, M.P.; de Medeiros, F.H.V. Performance of Volatiles Emitted from Different Plant Species against Juveniles and Eggs of Meloidogyne Incognita. Crop Prot. 2019, 116, 196–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Dong, F.; Liu, X.; Wu, X.; Zheng, Y. Response of Microbial Community to a New Fungicide Fluopyram in the Silty-Loam Agricultural Soil. Ecotoxicol. Environ. Saf. 2014, 108, 273–280. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, Y.; Zhang, S.; Lu, H.; Liang, X.; Wang, L.; Wang, M.; Zhang, C. Residue Behavior and Dietary Risk Assessment of Fluopyram in Cowpea and Determination in Nine Foodstuffs. Front. Environ. Sci. 2023, 11, 1105524. [Google Scholar] [CrossRef]
- Kondera, E.; Bojarski, B.; Ługowska, K.; Kot, B.; Witeska, M. Hematological and Hematopoietic Effects of Bactericidal Doses of Trans-Cinnamaldehyde and Thyme Oil on Cyprinus Carpio Juveniles. Front. Physiol. 2021, 12, 771243. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ávila, A.; Romero-González, R.; Garrido Frenich, A. Degradation Study of the Trans-Cinnamaldehyde and Limonene Biopesticides and Their Metabolites in Cucumber by GC and UHPLC-HRMS: Laboratory and Greenhouse Studies. Food Chem. 2024, 442, 138443. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM Fragrance Ingredient Safety Assessment, 2-Decenal, CAS Registry Number 3913-71-1. Food Chem. Toxicol. 2022, 163, 112958. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Botelho, D.; Bruze, M.; Burton, G.A.; Buschmann, J.; Cancellieri, M.A.; Dagli, M.L.; Date, M.; Dekant, W.; et al. RIFM Fragrance Ingredient Safety Assessment, Undecenal, CAS Registry Number 1337-83-3. Food Chem. Toxicol. 2022, 163, 113052. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Q.X.; Song, B. Chemical Nematicides: Recent Research Progress and Outlook. J. Agric. Food Chem. 2020, 68, 12175–12188. [Google Scholar] [CrossRef]
- GHS (United Nations). Globally Harmonized System of Classification and Labelling of Chemicals (GHS) (4th Edition). Available online: http://digitallibrary.un.org/record/660120 (accessed on 29 March 2025).
- Rouquié, D.; Tinwell, H.; Blanck, O.; Schorsch, F.; Geter, D.; Wason, S.; Bars, R. Thyroid Tumor Formation in the Male Mouse Induced by Fluopyram Is Mediated by Activation of Hepatic CAR/PXR Nuclear Receptors. Regul. Toxicol. Pharmacol. 2014, 70, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G. Acute Toxicity Studies with Oxamyl. Fundam. Appl. Toxicol. 1986, 6, 423–429. [Google Scholar] [CrossRef]
- Hooth, M.J.; Sills, R.C.; Burka, L.T.; Haseman, J.K.; Witt, K.L.; Orzech, D.P.; Fuciarelli, A.F.; Graves, S.W.; Johnson, J.D.; Bucher, J.R. Toxicology and Carcinogenesis Studies of Microencapsulated Trans-Cinnamaldehyde in Rats and Mice. Food Chem. Toxicol. 2004, 42, 1757–1768. [Google Scholar] [CrossRef]
Physicochemical Parameters | DMS | DMDS | TCA | T2D | T2U | Oxamyl | Fluopyram |
---|---|---|---|---|---|---|---|
CAS number | 624-92-0 | 75-18-3 | 104-55-2 | 3913-81-3 | 2463-77-6 | 023135-22-0 | 658066-35-4 |
Molecular mass (g/mol) | 94.2 | 62.1 | 132.2 | 154.3 | 168.3 | 219.3 | 396.7 |
Melting point (°C) | −84.7 | −98.3 | −7.5 | −8.9 | 2.1 * | 101.0 | 117.5 |
Vapor pressure (Pa) | 3813.0 | 6.7 × 104 | 3.8 | 1.2 × 104 * | 6.0 * | 0.03 | 1.2 × 10−6 |
Solubility in water (mg/L) | 3000.0 | 2.2 × 104 | 1420.0 | 97.9 * | 22.3 * | 2.8 × 105 | 16.0 |
Henry’s law Constant (Pa/m3/mol) | 122.6 | 163.1 | 0.3 | 18.3 * | 45.7 * | 2.4 × 10−5 | 3.0 × 10−5 |
LogKow (unitless) | 1.8 | 0.8 | 1.9 | 3.6 * | 4.0 * | −0.5 | 3.3 |
Koc (unitless) | 40 | 6.3 | 37.0 | 65.7 * | 119.7 * | 8.0 | 698.0 |
Predicted Environmental Distribution (%) | Persistence (h) | Volatilization 1 (Half-Life, h) | |||||
---|---|---|---|---|---|---|---|
Allelochemicals | Air | Water | Soil | Sediment | Model River | Model Lake | |
Dimethyl sulphide | 97.0 | 2.9 | 0.0 | 0.0 | 97.6 | 1.5 | 97.3 |
Dimethyl disulphide | 95.8 | 3.9 | 0.3 | 0.0 | 136.0 | 0.8 | 74.9 |
trans-Cinnamaldehyde | 6.2 | 86.7 | 6.9 | 0.2 | 408.0 | 191.3 | 2183.0 |
trans-2-Decenal | 76.4 | 20.6 | 2.9 | 0.1 | 316.0 | 5.3 | 161.8 |
trans-2-Undecenal | 87.9 | 9.5 | 2.5 | 0.1 | 329.0 | 4.3 | 155.6 |
Pesticides | |||||||
Oxamyl | 0.0 | 98.3 | 1.7 | 0.0 | 1150.0 | 152,400.0 | 1,663,000.0 |
Fluopyram | 0.0 | 0.8 | 96.9 | 2.2 | 9790.0 | 1,272,000.0 | 13,880,000.0 |
BAF | BCF | Biotransformation | |
---|---|---|---|
Allelochemicals | (L/kg FW) | (L/kg FW) | (Half-Life in Days) |
Dimethyl sulphide | 1.7 | 1.7 | 0.1 |
Dimethyl disulphide | 1.0 | 1.0 | 0.1 |
trans-Cinnamaldehyde | 1.8 | 1.8 | 0.1 |
trans-2-Decenal | 203.2 | 203.2 | 1.1 |
trans-2-Undecenal | 400.6 | 401.1 | 1.5 |
Pesticides | |||
Oxamyl | 0.9 | 0.9 | 0.01 |
Fluopyram | 61.8 | 61.8 | 0.4 |
Predicted Removal in Wastewater Treatment 1 (%) | ||||
---|---|---|---|---|
Allelochemicals | Total Removal | Biodegradation | Sludge Adsorption | Release to the Air |
Dimethyl sulphide | 34.5 | 0.1 | 1.3 | 33.2 |
Dimethyl disulphide | 99.4 | 0.0 | 0.3 | 99.5 |
trans-Cinnamaldehyde | 2.1 | 0.1 | 1.8 | 0.2 |
trans-2-Decenal | 20.7 | 0.2 | 13.5 | 7.0 |
trans-2-Undecenal | 38.0 | 0.3 | 30.3 | 7.4 |
Pesticides | ||||
Oxamyl | 1.9 | 0.1 | 1.8 | 0.0 |
Fluopyram | 5.7 | 0.1 | 5.6 | 0.0 |
Fish | Algae | Invertebrates 9 | |
---|---|---|---|
Allelochemicals | LC50 96h (mg/L) | EC50 96h (mg/L) | LC50 48h (mg/L) |
Dimethyl sulphide | 213.0 1 | 113.7 5 | 81.0 |
Dimethyl disulphide | 0.97 1 | 6.7 6 | 1.8 |
trans-Cinnamaldehyde | >20 2 | 31.6 7 | 3.2 |
trans-2-Decenal | 0.16 4 | 4.4 4 | 4.8 4 |
trans-2-Undecenal | 0.2 4 | 2.3 4 | 2.1 4 |
Pesticides | |||
Oxamyl | 3.1 1 | 0.9 5 | 0.3 |
Fluopyram | 1.0 3 | >1.1 8 | >100 |
Oral | Dermal | |
---|---|---|
Allelochemicals | LD50 (mg/kg) | LD50 (mg/kg) |
Dimethyl sulphide | 2000 1 | 5000 2 |
Dimethyl disulphide | 190 1 | 2000 2 |
trans-Cinnamaldehyde | >2250 1 | >5000 2 |
trans-2-Decenal | 5000 1 | 3400 2 |
trans-2-Undecenal | 8165 3 | 4 |
Pesticides | ||
Oxamyl | 3 1 | 5000 1 |
Fluopyram | >2000 1 | 2000 1 |
Allelochemicals | Pesticides | ||||||
---|---|---|---|---|---|---|---|
Predicted Toxicity Endpoint 1 | DMS | DMDS | TCA | T2D | T2U | Oxamyl | Fluopyram |
FDA medium daily dose (FDAMDD) | 0.105 | 0.087 | 0.231 | 0.217 | 0.234 | 0.007 | 0.610 |
hERG blockers | 0.701 | 0.997 | 0.252 | 0.155 | 0.152 | 0.743 | 0.424 |
Hematotoxicity | 0.534 | 0.443 | 0.751 | 0.417 | 0.385 | 0.959 | 0.066 |
Carcinogenicity | 0.061 | 0.114 | 0.324 | 0.254 | 0.267 | 0.252 | 0.843 |
RPMI-8226 immunotoxicity | 0.996 | 1.000 | 0.955 | 0.905 | 0.922 | 0.993 | 0.215 |
Genotoxicity | 0.624 | 0.165 | 0.399 | 0.423 | 0.425 | 0.563 | 0.036 |
Respiratory toxicity | 0.997 | 0.999 | 0.997 | 0.996 | 0.996 | 0.019 | 0.663 |
A549 cytotoxicity | 0.784 | 0.985 | 0.478 | 0.822 | 0.839 | 0.671 | 0.872 |
Human hepatotoxicity | 0.283 | 0.121 | 0.637 | 0.501 | 0.501 | 0.225 | 0.841 |
Drug-induced liver injury (DILI) | 0.200 | 0.040 | 0.401 | 0.224 | 0.204 | 0.920 | 0.785 |
Drug-induced nephrotoxicity | 0.255 | 0.050 | 0.868 | 0.356 | 0.318 | 0.562 | 0.848 |
Hek293 cytotoxicity | 0.097 | 0.008 | 0.155 | 0.132 | 0.128 | 0.342 | 0.813 |
AMES mutagenicity | 0.462 | 0.162 | 0.092 | 0.230 | 0.227 | 0.453 | 0.373 |
Skin sensitization | 0.025 | 0.025 | 0.481 | 0.004 | 0.002 | 1.000 | 0.999 |
Eye irritation | 0.035 | 0.009 | 0.047 | 0.057 | 0.057 | 0.011 | 0.064 |
Drug-induced neurotoxicity | 0.055 | 0.123 | 0.082 | 0.221 | 0.262 | 0.013 | 0.776 |
Ototoxicity | 0.121 | 0.068 | 0.111 | 0.147 | 0.149 | 0.044 | 0.680 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, G.; Barbosa, P.; Vicente, C.S.L.; Faria, J.M.S. Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals. Agronomy 2025, 15, 1605. https://doi.org/10.3390/agronomy15071605
Pereira G, Barbosa P, Vicente CSL, Faria JMS. Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals. Agronomy. 2025; 15(7):1605. https://doi.org/10.3390/agronomy15071605
Chicago/Turabian StylePereira, Gonçalo, Pedro Barbosa, Cláudia S. L. Vicente, and Jorge M. S. Faria. 2025. "Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals" Agronomy 15, no. 7: 1605. https://doi.org/10.3390/agronomy15071605
APA StylePereira, G., Barbosa, P., Vicente, C. S. L., & Faria, J. M. S. (2025). Eco-Friendly Management of Root Lesion Nematodes Using Volatile Allelochemicals. Agronomy, 15(7), 1605. https://doi.org/10.3390/agronomy15071605