Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rhizospheric Soil Sampling
2.3. Determination of Carbon Metabolism Activity of Soil Microbial Communities in the Rhizosphere
2.4. Sample Pretreatment and Inoculation
2.5. Incubation and Measurement
2.6. Data Calculation and Analysis
- Average well color development (AWCD): As an indicator of the overall metabolic activity of microorganisms, it was calculated according to the formula
- 2.
- Shannon–Wiener Diversity Index (H): used to characterize the diversity of carbon-source utilization by microbial communities, calculated according to the formula
- 3.
- Carbon-source utilization classification analysis: The 31 carbon sources were classified into six categories according to their biochemical characteristics for analysis, as follows. Amino acids (10 types): L-arginine, L-asparagine, L-phenylalanine, L-serine, glycine, L-threonine, L-glutamic acid, L-histidine, L-leucine, and L-proline. Carbohydrates (7 types): D-xylose, i-erythritol, D-mannitol, N-acetyl-D-glucosamine, D-cellobiose, α-D-lactose, and D,L-α-glycerol phosphate. Carboxylic acids (6 types): D-galacturonic acid, D-glucosamic acid, γ-hydroxybutyric acid, α-ketobutyric acid, D-malic acid, and pyruvic acid methyl ester. Polymers (4 types): Tween 40, Tween 80, α-cyclodextrin, and glycogen. Amines/amides (2 types): putrescine and phenylethylamine. Miscellaneous (2 types): 2-hydroxybenzoic acid and 4-hydroxybenzoic acid. The average utilization intensity of each carbon-source category was calculated to evaluate the preference of microbial communities for different types of carbon sources [65,66].
2.7. Determination of Soil Physical and Chemical Properties
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Rhizosphere Soils
3.2. Activity and Diversity of Microbial Carbon Metabolism in Rhizosphere Soils
3.3. Utilization Preferences of Specific Carbon Substrates by Soil Microbial Communities in the Rhizosphere
3.4. Relationship Between Metabolic Activity of Soil Microbial Communities in the Rhizosphere and Soil Physicochemical Factors
4. Discussion
4.1. Physico-Chemical Properties of the Rhizosphere Soil
4.2. Carbon Metabolism Activity and Diversity of Soil Microbial Communities in the Rhizosphere
4.3. Relationship Between Soil Properties and Carbon Metabolism Activity of Rhizosphere Microbial Communities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AWCD | average well color development |
CLPP | community-level physiological profiling |
SWC | soil water content (%) |
SOC | soil organic carbon (g/kg) |
TN | total nitrogen (g/kg) |
NO3−-N | nitrate (mg/kg) |
NH4+-N | ammonium (mg/kg) |
TP | total phosphorus (g/kg) |
TK | total potassium (g/kg) |
References
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere Size and Shape: Temporal Dynamics and Spatial Stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Lambers, H.; Mougel, C.; Jaillard, B.; Hinsinger, P. Plant-Microbe-Soil Interactions in the Rhizosphere: An Evolutionary Perspective. Plant Soil 2009, 321, 83–115. [Google Scholar] [CrossRef]
- Wang, Q.; Ding, J.; Zhang, Z.; Liang, C.; Lambers, H.; Zhu, B.; Wang, D.; Wang, J.; Zhang, P.; Li, N.; et al. Rhizosphere as a Hotspot for Microbial Necromass Deposition into the Soil Carbon Pool. J. Ecol. 2025, 113, 168–179. [Google Scholar] [CrossRef]
- Baker, N.R.; Zhalnina, K.; Yuan, M.; Herman, D.; Ceja-Navarro, J.A.; Sasse, J.; Jordan, J.S.; Bowen, B.P.; Wu, L.; Fossum, C.; et al. Nutrient and Moisture Limitations Reveal Keystone Metabolites Linking Rhizosphere Metabolomes and Microbiomes. Proc. Natl. Acad. Sci. USA 2024, 121, e2303439121. [Google Scholar] [CrossRef] [PubMed]
- Cabal, C.; Martínez-García, R.; de Castro Aguilar, A.; Valladares, F.; Pacala, S.W. The Exploitative Segregation of Plant Roots. Science 2020, 370, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. How Plant Root Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef]
- Lu, Y.; Kronzucker, H.J.; Yu, M.; Shabala, S.; Shi, W. Nitrogen-Loss and Carbon-Footprint Reduction by Plant-Rhizosphere Exudates. Trends Plant Sci. 2023, 29, 469–481. [Google Scholar] [CrossRef]
- Panchal, P.; Preece, C.; Peñuelas, J.; Giri, J. Soil Carbon Sequestration by Root Exudates. Trends Plant Sci. 2022, 27, 749–757. [Google Scholar] [CrossRef]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; van der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef]
- Novak, V.; Andeer, P.F.; Bowen, B.P.; Ding, Y.; Zhalnina, K.; Hofmockel, K.S.; Tomaka, C.; Harwood, T.V.; van Winden, M.C.M.; Golini, A.N.; et al. Reproducible Growth of Brachypodium in EcoFAB 2.0 Reveals That Nitrogen Form and Starvation Modulate Root Exudation. Sci. Adv. 2024, 10, eadg7888. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon Input by Roots into the Soil: Quantification of Rhizodeposition from Root to Ecosystem Scale. Glob. Change Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Tripathi, B.M.; Piñeiro, J.; Dang, C.; Brzostek, E.; Morrissey, E.M. Mycorrhiza—Saprotroph Interactions and Carbon Cycling in the Rhizosphere. Glob. Change Biol. 2025, 31, e70173. [Google Scholar] [CrossRef]
- Wiesenbauer, J.; Gorka, S.; Jenab, K.; Schuster, R.; Kumar, N.; Rottensteiner, C.; König, A.; Kraemer, S.; Inselsbacher, E.; Kaiser, C. Preferential Use of Organic Acids over Sugars by Soil Microbes in Simulated Root Exudation. Soil Biol. Biochem. 2025, 203, 109738. [Google Scholar] [CrossRef]
- Delory, B.M.; Callaway, R.M.; Semchenko, M. A Trait-based Framework Linking the Soil Metabolome to Plant–Soil Feedbacks. New Phytol. 2023, 241, 1910–1921. [Google Scholar] [CrossRef]
- Luo, C.; He, Y.; Chen, Y. Rhizosphere Microbiome Regulation: Unlocking the Potential for Plant Growth. Curr. Res. Microb. Sci. 2025, 8, 100322. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.; Zhalnina, K.; Kosina, S.; Northen, T.R.; Sasse, J. The Core Metabolome and Root Exudation Dynamics of Three Phylogenetically Distinct Plant Species. Nat. Commun. 2023, 14, 1649. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Cappelli, S.L.; Shrestha, R.; Gerin, S.; Lohila, A.K.; Heinonsalo, J.; Nelson, D.B.; Kahmen, A.; Duan, P.; Sebag, D.; et al. Plant Diversity Drives Positive Microbial Associations in the Rhizosphere Enhancing Carbon Use Efficiency in Agricultural Soils. Nat. Commun. 2024, 15, 8065. [Google Scholar] [CrossRef]
- Gregory, P.J. Roots, Rhizosphere and Soil: The Route to a Better Understanding of Soil Science? Eur. J. Soil Sci. 2006, 57, 2–12. [Google Scholar] [CrossRef]
- Gunina, A.; Kuzyakov, Y. Sugars in Soil and Sweets for Microorganisms: Review of Origin, Content, Composition and Fate. Soil Biol. Biochem. 2015, 90, 87–100. [Google Scholar] [CrossRef]
- Henneron, L.; Kardol, P.; Wardle, D.A.; Camille, C.; Fontaine, S. Rhizosphere Control of Soil Nitrogen Cycling: A Key Component of Plant Economic Strategies. New Phytol. 2020, 228, nph.16760. [Google Scholar] [CrossRef]
- Hinsinger, P.; Bengough, A.G.; Vetterlein, D.; Young, I.M. Rhizosphere: Biophysics, Biogeochemistry and Ecological Relevance. Plant Soil 2009, 321, 117–152. [Google Scholar] [CrossRef]
- Wu, W.; Chen, G.; Meng, T.; Li, C.; Feng, H.; Si, B.; Siddique, K.H.M. Effect of Different Vegetation Restoration on Soil Properties in the Semi-Arid Loess Plateau of China. Catena 2023, 220, 106630. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; He, J.; Xie, W.; Wang, H.; Zhang, H.; Breecker, D.; Bird, A.; Stevens, T.; Nie, J.; et al. Large-Number Detrital Zircon U-Pb Ages Reveal Global Cooling Caused the Formation of the Chinese Loess Plateau during Late Miocene. Sci. Adv. 2022, 8, eabq2007. [Google Scholar] [CrossRef]
- Chen, H.; Shao, M.; Li, Y. Soil Desiccation in the Loess Plateau of China. Geoderma 2008, 143, 91–100. [Google Scholar] [CrossRef]
- Huang, L.; Shao, M. Advances and Perspectives on Soil Water Research in China’s Loess Plateau. Earth Sci. Rev. 2019, 199, 102962. [Google Scholar] [CrossRef]
- Wang, L.; Ali, G.; Wang, Z. Deep Soil Water Depletion and Soil Organic Carbon and Total Nitrogen Accumulation in a Long-term Alfalfa Pasture. Land Degrad. Dev. 2023, 34, 2164–2176. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Meadows, M.E. Ecological Restoration for Sustainable Development in China. Natl. Sci. Rev. 2023, 10, nwad033. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Liu, B.; Lee, T.M. Integrated Outcomes of Large-Scale Ecological Restoration Projects on Biodiversity–Eco-Environment–Society in China. Geogr. Sustain. 2025, 6, 100243. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Gong, J.; Luo, F.; Pan, Y. Effectiveness and Driving Mechanism of Ecological Restoration Efforts in China from 2009 to 2019. Sci. Total Environ. 2024, 910, 168676. [Google Scholar] [CrossRef]
- Qi, K.; Zhu, J.; Zheng, X.; Wang, G.G.; Li, M. Impacts of the World’s Largest Afforestation Program (Three-North Afforestation Program) on Desertification Control in Sandy Land of China. GIsci Remote Sens. 2023, 60, 2167574. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B.; Liang, L.; Wang, S.; Zhang, H.; Sun, H.; Han, X. Unfolding the Effectiveness of Ecological Restoration Programs in Enhancing Vegetation Carbon Sinks across Different Climate Zones in China. Resour. Conserv. Recycl. 2025, 212, 107974. [Google Scholar] [CrossRef]
- Zhai, J.; Wang, L.; Liu, Y.; Wang, C.; Mao, X. Assessing the Effects of China’s Three-North Shelter Forest Program over 40 Years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Xiao, Y.; Dong, J.; Xing, J.; Tang, F.; Shi, F. Variety-Driven Rhizosphere Microbiome Bestows Differential Salt Tolerance to Alfalfa for Coping with Salinity Stress. Front. Plant Sci. 2023, 14, 1324333. [Google Scholar] [CrossRef] [PubMed]
- Yao, G.; Nie, Z.; Turner, N.C.; Li, F.; Gao, T.; Fang, X.; Scoffoni, C. Combined High Leaf Hydraulic Safety and Efficiency Provides Drought Tolerance in Caragana Species Adapted to Low Mean Annual Precipitation. New Phytol. 2021, 229, 230–244. [Google Scholar] [CrossRef]
- Yuan, Z.-Q.; Yu, K.-L.; Guan, X.-K.; Fang, C.; Li, M.; Shi, X.-Y.; Li, F.-M. Medicago Sativa Improves Soil Carbon Sequestration Following Revegetation of Degraded Arable Land in a Semi-Arid Environment on the Loess Plateau, China. Agric. Ecosyst. Environ. 2016, 232, 93–100. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, J.; Jia, M.; Shi, C. Impacts of Long-Term Abandonment of Alfalfa Plantations on Soil Physicochemical Properties and Plant Diversity in an Agricultural Pastoral Ecotone. Plant Soil 2023, 493, 519–534. [Google Scholar] [CrossRef]
- Li, A.; Wu, Y.; Tai, X.; Cao, S.; Gao, T. Effects of Alfalfa Crop Rotation on Soil Nutrients and Loss of Soil and Nutrients in Semi-Arid Regions. Sustainability 2023, 15, 15164. [Google Scholar] [CrossRef]
- Song, X.; Fang, C.; Yuan, Z.-Q.; Li, F.-M. Long-Term Growth of Alfalfa Increased Soil Organic Matter Accumulation and Nutrient Mineralization in a Semi-Arid Environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Kidwell, K.K.; Austin, D.F.; Osborn, T.C. RFLP Evaluation of Nine Medicago Accessions Representing the Original Germplasm Sources for North American Alfalfa Cultivars. Crop. Sci. 1994, 34, 230–236. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; Jiang, W.; Ji, P.; Li, Y. Metabolomics and Microbiomics Reveal Impacts of Rhizosphere Metabolites on Alfalfa Continuous Cropping. Front. Microbiol. 2022, 13, 833968. [Google Scholar] [CrossRef]
- Li, Y.; Huang, M. Pasture Yield and Soil Water Depletion of Continuous Growing Alfalfa in the Loess Plateau of China. Agric. Ecosyst. Environ. 2008, 124, 24–32. [Google Scholar] [CrossRef]
- Wang, L.; Xie, J.; Luo, Z.; Niu, Y.; Coulter, J.A.; Zhang, R.; Lingling, L. Forage Yield, Water Use Efficiency, and Soil Fertility Response to Alfalfa Growing Age in the Semiarid Loess Plateau of China. Agric. Water Manag. 2021, 243, 106415. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, B.; Chen, S.; Wang, X.; Ma, X.; Pan, B. Large-Scale Afforestation Enhances Precipitation by Intensifying the Atmospheric Water Cycle Over the Chinese Loess Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036738. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, B.; Wang, X.; Chen, S.; Pan, B. Large-Scale Afforestation Over the Loess Plateau in China Contributes to the Local Warming Trend. J. Geophys. Res. Atmos. 2022, 127, e2021JD035730. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Wang, X.; Zhang, Y.; Li, P.; Zhang, X. Ecoenzymatic Stoichiometry and Microbial Nutrient Limitation in Rhizosphere Soil in the Arid Area of the Northern Loess Plateau, China. Soil Biol. Biochem. 2018, 116, 11–21. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Chadwick, D.R.; Ge, T.; Jones, D.L. Competition for Two Sulphur Containing Amino Acids (Cysteine and Methionine) by Soil Microbes and Maize Roots in the Rhizosphere. Biol. Fertil. Soils 2023, 59, 697–704. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, B.; Wu, X.; Li, Y.; Feng, Y.; Wang, S.; Wei, F.; Zhang, L. Vegetation Resilience Does Not Increase Consistently with Greening in China’s Loess Plateau. Commun. Earth Environ. 2023, 4, 336. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, H.; Gao, X.; Qi, Y.; Xu, X. Seasonal Patterns in Water Uptake for Medicago sativa Grown along an Elevation Gradient with Shallow Groundwater Table in Yanchi County of Ningxia, Northwest China. J. Arid. Land 2016, 8, 921–934. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, Y.; Cui, Z.; Fang, Y.; He, H.; Liu, B.-R.; Wu, G.-L. Soil Water Storage Deficit of Alfalfa (Medicago sativa) Grasslands along Ages in Arid Area (China). Field Crops Res. 2018, 221, 1–6. [Google Scholar] [CrossRef]
- de Vries, F.T.; Griffiths, R.I.; Knight, C.G.; Nicolitch, O.; Williams, A. Harnessing Rhizosphere Microbiomes for Drought-Resilient Crop Production. Science 2020, 368, 270–274. [Google Scholar] [CrossRef]
- Holden, N. You Are What You Can Find to Eat: Bacterial Metabolism in the Rhizosphere. Curr. Issues Mol. Biol. 2019, 30, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Schuldt, A.; Ebeling, A.; Eisenhauer, N.; Huang, Y.; Albert, G.; Albracht, C.; Amyntas, A.; Bonkowski, M.; Bruelheide, H.; et al. Plant Diversity Enhances Ecosystem Multifunctionality via Multitrophic Diversity. Nat. Ecol. Evol. 2024, 8, 2037–2047. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, Z.; Cui, Z.; He, H.; Liu, Y. Trade-offs between Forage Crop Productivity and Soil Nutrients for Different Ages of Alfalfa Grassland. Land Degrad. Dev. 2021, 32, 374–386. [Google Scholar] [CrossRef]
- Dang, R.; Liu, J.; Lichtfouse, E.; Zhou, L.; Zhou, M.; Xiao, L. Soil Microbial Carbon Use Efficiency and the Constraints. Ann. Microbiol. 2024, 74, 37. [Google Scholar] [CrossRef]
- Yang, Y.; Gunina, A.; Cheng, H.; Liu, L.; Wang, B.; Dou, Y.; Wang, Y.; Liang, C.; An, S.; Chang, S.X. Unlocking Mechanisms for Soil Organic Matter Accumulation: Carbon Use Efficiency and Microbial Necromass as the Keys. Glob. Change Biol. 2025, 31, e70033. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.L. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization. Soil Biol. Biochem. 1996, 28, 213–221. [Google Scholar] [CrossRef]
- Preston-Mafham, J.; Boddy, L.; Randerson, P.F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles—A Critique. FEMS Microbiol. Ecol. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- Garland, J.L.; Mills, A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar] [CrossRef]
- Insam, H. A New Set of Substrates Proposed for Community Characterization in Environmental Samples. In Microbial Communities; Springer: Berlin/Heidelberg, Germany, 1997; pp. 259–260. [Google Scholar]
- Li, J.H.; Jiao, S.M.; Gao, R.Q.; Bardgett, R.D. Differential Effects of Legume Species on the Recovery of Soil Microbial Communities, and Carbon and Nitrogen Contents, in Abandoned Fields of the Loess Plateau, China. Environ. Manag. 2012, 50, 1193–1203. [Google Scholar] [CrossRef]
- Kenarova, A.; Radeva, G.; Traykov, I.; Boteva, S. Community Level Physiological Profiles of Bacterial Communities Inhabiting Uranium Mining Impacted Sites. Ecotoxicol. Environ. Saf. 2014, 100, 226–232. [Google Scholar] [CrossRef]
- Salomo, S.; Münch, C.; Röske, I. Evaluation of the Metabolic Diversity of Microbial Communities in Four Different Filter Layers of a Constructed Wetland with Vertical Flow by BiologTM Analysis. Water Res. 2009, 43, 4569–4578. [Google Scholar] [CrossRef] [PubMed]
- Derry, A.M.; Staddon, W.J.; Kevan, P.G.; Trevors, J.T. Functional Diversity and Community Structure of Micro-Organisms in Three Arctic Soils as Determined by Sole-Carbon-Source-Utilization. Biodivers. Conserv. 1999, 8, 205–221. [Google Scholar] [CrossRef]
- Gryta, A.; Frąc, M.; Oszust, K. The Application of the Biolog EcoPlate Approach in Ecotoxicological Evaluation of Dairy Sewage Sludge. Appl. Biochem. Biotechnol. 2014, 174, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Koner, S.; Chen, J.-S.; Hsu, B.-M.; Rathod, J.; Huang, S.-W.; Chien, H.-Y.; Hussain, B.; Chan, M.W.Y. Depth-Resolved Microbial Diversity and Functional Profiles of Trichloroethylene-Contaminated Soils for Biolog EcoPlate-Based Biostimulation Strategy. J. Hazard Mater. 2022, 424, 127266. [Google Scholar] [CrossRef]
- Sala, M.M.; Arrieta, J.M.; Boras, J.A.; Duarte, C.M.; Vaqué, D. The Impact of Ice Melting on Bacterioplankton in the Arctic Ocean. Polar. Biol. 2010, 33, 1683–1694. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommer, L.E. Dry Combustion Method Using Medium Temperature Resistance Furnace. In Methods of Soil Analysis; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Imdadullah, M.; Aslam, M.; Altaf, S. Mctest: An R Package for Detection of Collinearity among Regressors. R J. 2016, 8, 495. [Google Scholar] [CrossRef]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic Appl. Soc. Psych. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Forward Selection of Explanatory Variables. Ecology 2008, 89, 2623–2632. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination; Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- Holz, M.; Zarebanadkouki, M.; Kaestner, A.; Kuzyakov, Y.; Carminati, A. Rhizodeposition under Drought Is Controlled by Root Growth Rate and Rhizosphere Water Content. Plant Soil 2018, 423, 429–442. [Google Scholar] [CrossRef]
- Wang, R.; Cavagnaro, T.R.; Jiang, Y.; Keitel, C.; Dijkstra, F.A. Carbon Allocation to the Rhizosphere Is Affected by Drought and Nitrogen Addition. J. Ecol. 2021, 109, 3699–3709. [Google Scholar] [CrossRef]
- Ali, G.; Wang, L.; Wang, Z. Responses of Deep Soil Carbon and Nitrogen Contents to Long-Term Retention of Alfalfa Pasture on Infertile Loess: A Synthesis Study. Agronomy 2023, 13, 1847. [Google Scholar] [CrossRef]
- Louarn, G.; Edouard, S.; Barre, P.; Julier, B.; Gastal, F. The Older the Better? Delayed Complementarity, Overyielding, and Improved Residue Composition in Ageing Alfalfa-Fescue Mixtures. Plant Soil 2024, 499, 553–567. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, L.; Zhang, M.; Cui, Y.; Bai, X.; Song, B.; Zhang, J.; Yu, X. Dynamic Microbial Community Composition, Co-Occurrence Pattern and Assembly in Rhizosphere and Bulk Soils along a Coniferous Plantation Chronosequence. Catena 2023, 223, 106914. [Google Scholar] [CrossRef]
- Jia, J.; de Goede, R.; Li, Y.; Zhang, J.; Wang, G.; Zhang, J.; Creamer, R. Unlocking Soil Health: Are Microbial Functional Genes Effective Indicators? Soil Biol. Biochem. 2025, 204, 109768. [Google Scholar] [CrossRef]
- Tian, P.; Razavi, B.S.; Zhang, X.; Wang, Q.; Blagodatskaya, E. Microbial Growth and Enzyme Kinetics in Rhizosphere Hotspots Are Modulated by Soil Organics and Nutrient Availability. Soil Biol. Biochem. 2020, 141, 107662. [Google Scholar] [CrossRef]
- Chakraborty, S.; Venkataraman, M.; Infante, V.; Pfleger, B.F.; Ané, J.-M. Scripting a New Dialogue between Diazotrophs and Crops. Trends Microbiol 2023, 32, 577–589. [Google Scholar] [CrossRef]
- Taylor, B.N.; Menge, D.N.L. Light Regulates Tropical Symbiotic Nitrogen Fixation More Strongly than Soil Nitrogen. Nat. Plants. 2018, 4, 655–661. [Google Scholar] [CrossRef]
- Yao, Y.; Han, B.; Dong, X.; Zhong, Y.; Niu, S.; Chen, X.; Li, Z. Disentangling the Variability of Symbiotic Nitrogen Fixation Rate and the Controlling Factors. Glob. Change Biol. 2024, 30, e17206. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y.; Xiao, C. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux. Plants 2023, 12, 630. [Google Scholar] [CrossRef]
- Hu, X.; Liu, J.; Liang, A.; Gu, H.; Liu, Z.; Jin, J.; Wang, G. Soil Metagenomics Reveals Reduced Tillage Improves Soil Functional Profiles of Carbon, Nitrogen, and Phosphorus Cycling in Bulk and Rhizosphere Soils. Agric. Ecosyst. Environ. 2025, 379, 109371. [Google Scholar] [CrossRef]
- Cunha, H.F.V.; Andersen, K.M.; Lugli, L.F.; Santana, F.D.; Aleixo, I.F.; Moraes, A.M.; Garcia, S.; Di Ponzio, R.; Mendoza, E.O.; Brum, B.; et al. Direct Evidence for Phosphorus Limitation on Amazon Forest Productivity. Nature 2022, 608, 558–562. [Google Scholar] [CrossRef]
- Hou, E.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global Meta-Analysis Shows Pervasive Phosphorus Limitation of Aboveground Plant Production in Natural Terrestrial Ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation. Plant Cell 2020, 32, 15–41. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Guan, D.-X.; Qiu, L.-X.; Luo, Y.; Liu, F.; Teng, H.H.; Kuzyakov, Y.; Ma, L.Q. Spatial Dynamics of Phosphorus Mobilization by Mycorrhiza. Soil Biol. Biochem. 2025, 206, 109797. [Google Scholar] [CrossRef]
- Ducousso-Détrez, A.; Lahrach, Z.; Fontaine, J.; Lounès-Hadj Sahraoui, A.; Hijri, M. Cultural Techniques Capture Diverse Phosphate-Solubilizing Bacteria in Rock Phosphate-Enriched Habitats. Front. Microbiol. 2024, 15, 1280848. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, H.A.; Saleh-Rastin, N.; Antoun, H. Phosphate Solubilization Activity of Rhizobia Native to Iranian Soils. Plant Soil 2006, 287, 35–41. [Google Scholar] [CrossRef]
- Huang, Y.; Dai, Z.; Lin, J.; Li, D.; Ye, H.; Dahlgren, R.A.; Xu, J. Labile Carbon Facilitated Phosphorus Solubilization as Regulated by Bacterial and Fungal Communities in Zea mays. Soil Biol. Biochem. 2021, 163, 108465. [Google Scholar] [CrossRef]
- Baral, R.; Jagadish, S.V.K.; Hein, N.; Lollato, R.P.; Shanoyan, A.; Giri, A.K.; Kim, J.; Kim, M.; Min, D. Exploring the Impact of Soil Water Variability and Varietal Diversity on Alfalfa Yield, Nutritional Quality, and Farm Profitability. Grassl. Res. 2023, 2, 266–278. [Google Scholar] [CrossRef]
- Chai, Y.N.; Schachtman, D.P. Root Exudates Impact Plant Performance under Abiotic Stress. Trends Plant Sci. 2022, 27, 80–91. [Google Scholar] [CrossRef]
- Hallett, P.D.; Marin, M.; Bending, G.D.; George, T.S.; Collins, C.D.; Otten, W. Building Soil Sustainability from Root–Soil Interface Traits. Trends Plant Sci. 2022, 27, 688–698. [Google Scholar] [CrossRef]
- Staddon, W.; Duchesne, L.; Trevors, J. Microbial Diversity and Community Structure of Postdisturbance Forest Soils as Determined by Sole-Carbon-Source Utilization Patterns. Microb. Ecol. 1997, 34, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Jiang, N.; Sun, D. Dry–Wet Cycles Induce the Decoupling of Carbon and Nitrogen Mineralization at High Temperatures in Semi-Arid Grassland Soil. Soil Biol. Biochem. 2024, 188, 109227. [Google Scholar] [CrossRef]
- Escalas, A.; Hale, L.; Voordeckers, J.W.; Yang, Y.; Firestone, M.K.; Alvarez-Cohen, L.; Zhou, J. Microbial Functional Diversity: From Concepts to Applications. Ecol. Evol. 2019, 9, 12000–12016. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Fierer, N.; Wood, S.A.; Bueno de Mesquita, C.P. How Microbes Can, and Cannot, Be Used to Assess Soil Health. Soil Biol Biochem 2021, 153, 108111. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The Interplay between Microbial Communities and Soil Properties. Nat. Rev. Microbiol. 2023, 22, 226–239. [Google Scholar] [CrossRef]
- Hannula, S.E.; Heinen, R.; Huberty, M.; Steinauer, K.; De Long, J.R.; Jongen, R.; Bezemer, T.M. Persistence of Plant-Mediated Microbial Soil Legacy Effects in Soil and inside Roots. Nat. Commun. 2021, 12, 5686. [Google Scholar] [CrossRef]
- Wang, M.; Ge, A.-H.; Ma, X.; Wang, X.; Xie, Q.; Wang, L.; Song, X.; Jiang, M.; Yang, W.; Murray, J.D.; et al. Dynamic Root Microbiome Sustains Soybean Productivity under Unbalanced Fertilization. Nat. Commun. 2024, 15, 1668. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, J.; He, Q.; Yin, H. Carbon Type and Quantity Regulate Soil Free-Living Nitrogen Fixation through Restructuring Diazotrophic Community. Appl. Soil Ecol. 2024, 202, 105586. [Google Scholar] [CrossRef]
- Carlson, H.K.; Lui, L.M.; Price, M.N.; Kazakov, A.E.; Carr, A.V.; Kuehl, J.V.; Owens, T.K.; Nielsen, T.; Arkin, A.P.; Deutschbauer, A.M. Selective Carbon Sources Influence the End Products of Microbial Nitrate Respiration. ISME J. 2020, 14, 2034–2045. [Google Scholar] [CrossRef]
- Bezemer, T.M.; Lawson, C.S.; Hedlund, K.; Edwards, A.R.; Brook, A.J.; Igual, J.M.; Mortimer, S.R.; van der Putten, W.H. Plant Species and Functional Group Effects on Abiotic and Microbial Soil Properties and Plant–Soil Feedback Responses in Two Grasslands. J. Ecol. 2006, 94, 893–904. [Google Scholar] [CrossRef]
- Kang, L.; Zhao, R.; Wu, K.; Feng, Z.; Zhao, H.; Zhang, S. Distribution Characteristics and Influencing Factors of Soil Biological Indicators in Typical Farmland Soils. Land 2023, 12, 755. [Google Scholar] [CrossRef]
- Jiang, F.; Bennett, J.A.; Crawford, K.M.; Heinze, J.; Pu, X.; Luo, A.; Wang, Z. Global Patterns and Drivers of Plant–Soil Microbe Interactions. Ecol. Lett. 2024, 27, e14364. [Google Scholar] [CrossRef]
- Muhammad, M.; Wahab, A.; Waheed, A.; Hakeem, K.R.; Mohamed, H.I.; Basit, A.; Toor, M.D.; Liu, Y.; Li, L.; Li, W. Navigating Climate Change: Exploring the Dynamics Between Plant–Soil Microbiomes and Their Impact on Plant Growth and Productivity. Glob. Change Biol. 2025, 31, e70057. [Google Scholar] [CrossRef]
- de Vries, F.; Lau, J.; Hawkes, C.; Semchenko, M. Plant–Soil Feedback under Drought: Does History Shape the Future? Trends Ecol. Evol. 2023, 38, 708–718. [Google Scholar] [CrossRef] [PubMed]
- Baldrian, P. The Known and the Unknown in Soil Microbial Ecology. FEMS Microbiol. Ecol. 2019, 95, fiz005. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Gallardo, A. Depolymerization and Mineralization Rates at 12 Mediterranean Sites with Varying Soil N Availability. A Test for the Schimel and Bennett Model. Soil Biol. Biochem. 2011, 43, 693–696. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Wigneron, J.-P.; Gentine, P.; Feldman, A.F.; Makowski, D.; Viovy, N.; Kemanian, A.R.; Goll, D.S.; Stoy, P.C.; et al. Global Critical Soil Moisture Thresholds of Plant Water Stress. Nat. Commun. 2024, 15, 4826. [Google Scholar] [CrossRef]
- Schimel, D.S. Drylands in the Earth System. Science 2010, 327, 418–419. [Google Scholar] [CrossRef]
- Schimel, J.P. Life in Dry Soils: Effects of Drought on Soil Microbial Communities and Processes. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 409–432. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water Balance Creates a Threshold in Soil PH at the Global Scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef] [PubMed]
- Brookshire, E.N.J.; Weaver, T. Long-Term Decline in Grassland Productivity Driven by Increasing Dryness. Nat. Commun. 2015, 6, 7148. [Google Scholar] [CrossRef] [PubMed]
- Homyak, P.M.; Blankinship, J.C.; Slessarev, E.W.; Schaeffer, S.M.; Manzoni, S.; Schimel, J.P. Effects of Altered Dry Season Length and Plant Inputs on Soluble Soil Carbon. Ecology 2018, 99, 2348–2362. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, S.M.; Homyak, P.M.; Boot, C.M.; Roux-Michollet, D.; Schimel, J.P. Soil Carbon and Nitrogen Dynamics throughout the Summer Drought in a California Annual Grassland. Soil Biol. Biochem. 2017, 115, 54–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhou, B.; Yang, Q. Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau. Agronomy 2025, 15, 1602. https://doi.org/10.3390/agronomy15071602
Wang X, Zhou B, Yang Q. Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau. Agronomy. 2025; 15(7):1602. https://doi.org/10.3390/agronomy15071602
Chicago/Turabian StyleWang, Xianzhi, Bingxue Zhou, and Qian Yang. 2025. "Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau" Agronomy 15, no. 7: 1602. https://doi.org/10.3390/agronomy15071602
APA StyleWang, X., Zhou, B., & Yang, Q. (2025). Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau. Agronomy, 15(7), 1602. https://doi.org/10.3390/agronomy15071602