Belowground Biomass Carbon Density in Xinjiang Grasslands: Spatiotemporal Variability and Dominant Drivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Calculation of BGB Carbon Density
2.4. Methods of Data Analysis
2.4.1. Trend Analysis
2.4.2. Pettitt Test
2.4.3. Random Forest
2.4.4. Partial Correlation Analysis
3. Results
3.1. Estimation and Characterization of AGB and BGB Carbon Density
3.2. Temporal and Spatial Variations and Change Points of BGB Carbon Density
3.3. Environmental Factors Influencing Spatial Differences in BGB Carbon Density
4. Discussion
4.1. High Proportion and Increasing Trend of BGB Carbon Density
4.2. Nonlinear Coupling Relationship Between BGB Carbon Density and Precipitation
4.3. Limitations and Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Mu, S.; Sun, Z.; Gang, C.; Li, J.; Padarian, J.; Groisman, P.; Chen, J.; Li, S. Grassland carbon sequestration ability in China: A new perspective from terrestrial aridity zones. Rangel. Ecol. Manag. 2016, 69, 84–94. [Google Scholar] [CrossRef]
- Lin, M.; Hou, L.; Qi, Z.; Wan, L. Impacts of climate change and human activities on vegetation NDVI in China’s Mu Us Sandy Land during 2000–2019. Ecol. Indic. 2022, 142, 109164. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, X.; Zhao, X.; Ma, J.; Medina-Roldán, E. Effects of rainfall manipulation and nitrogen addition on plant biomass allocation in a semiarid sandy grassland. Sci. Rep. 2020, 10, 9026. [Google Scholar] [CrossRef]
- Li, H.; Yang, B.; Meng, Y.; Liu, K.; Wang, S.; Wang, D.; Zhang, H.; Huang, Y.; Liu, X.; Li, D. Relationship between carbon pool changes and environmental changes in arid and semi-arid steppe—A two decades study in Inner Mongolia, China. Sci. Total Environ. 2023, 893, 164930. [Google Scholar] [CrossRef]
- Anav, A.; Friedlingstein, P.; Beer, C.; Ciais, P.; Harper, A.; Jones, C.; Murray-Tortarolo, G.; Papale, D.; Parazoo, N.C.; Peylin, P. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 2015, 53, 785–818. [Google Scholar] [CrossRef]
- Peng, J.; Jiang, H.; Liu, Q.; Green, S.M.; Quine, T.A.; Liu, H.; Qiu, S.; Liu, Y.; Meersmans, J. Human activity vs. climate change: Distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. 2021, 769, 144297. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. B Biol. Sci. 2007, 274, 2753–2759. [Google Scholar] [CrossRef]
- Fokeng, R.M.; Fogwe, Z.N. Landsat NDVI-based vegetation degradation dynamics and its response to rainfall variability and anthropogenic stressors in Southern Bui Plateau, Cameroon. Geosyst. Geoenviron. 2022, 1, 100075. [Google Scholar] [CrossRef]
- Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm. Ecol. Indic. 2019, 102, 479–487. [Google Scholar] [CrossRef]
- Jaman, M.S.; Wu, H.; Yu, Q.; Tan, Q.; Zhang, Y.; Dam, Q.K.; Muraina, T.O.; Xu, C.; Jing, M.; Jia, X. Contrasting responses of plant above and belowground biomass carbon pools to extreme drought in six grasslands spanning an aridity gradient. Plant Soil 2022, 473, 167–180. [Google Scholar] [CrossRef]
- Titlyanova, A.; Romanova, I.; Kosykh, N.; Mironycheva-Tokareva, N. Pattern and process in above-ground and below-ground components of grassland ecosystems. J. Veg. Sci. 1999, 10, 307–320. [Google Scholar] [CrossRef]
- Fan, J.; Zhong, H.; Harris, W.; Yu, G.; Wang, S.; Hu, Z.; Yue, Y. Carbon storage in the grasslands of China based on field measurements of above-and below-ground biomass. Clim. Change 2008, 86, 375–396. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Gao, M.; Dong, J. The use of random forest to identify climate and human interference on vegetation coverage changes in southwest China. Ecol. Indic. 2022, 144, 109463. [Google Scholar] [CrossRef]
- Tariq, A.; Graciano, C.; Sardans, J.; Zeng, F.; Hughes, A.C.; Ahmed, Z.; Ullah, A.; Ali, S.; Gao, Y.; Peñuelas, J. Plant root mechanisms and their effects on carbon and nutrient accumulation in desert ecosystems under changes in land use and climate. New Phytol. 2024, 242, 916–934. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Yang, X.; Song, C.; Zhang, W.; Sun, W.; Wang, G. Distinct environmental controls on above-and below-ground net primary productivity in Northern China’s grasslands. Ecol. Indic. 2024, 167, 112717. [Google Scholar] [CrossRef]
- Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Liu, M.; Xue, X.; Zhai, D. Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. J. Arid Land 2016, 8, 773–786. [Google Scholar] [CrossRef]
- Jin, H.; Fan, C.; Zhu, H.; Zhang, Y.; Xiao, R.; Yang, Z. Responses of plant biomass allocation to changed precipitation timing in a semi-arid steppe. Plant Soil 2024, 510, 1–12. [Google Scholar] [CrossRef]
- Jaman, M.S.; Yu, Q.; Xu, C.; Jamil, M.; Ke, Y.; Yang, T.; Knapp, A.K.; Wilkins, K.; Collins, S.L.; Griffin-Nolan, R.J. Chronic drought decreased organic carbon content in topsoil greater than intense drought across grasslands in Northern China. Geoderma 2024, 443, 116832. [Google Scholar] [CrossRef]
- Fay, P.A.; Carlisle, J.D.; Knapp, A.K.; Blair, J.M.; Collins, S.L. Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia 2003, 137, 245–251. [Google Scholar] [CrossRef]
- Liu, X.; Sun, G.; Fu, Z.; Ciais, P.; Feng, X.; Li, J.; Fu, B. Compound droughts slow down the greening of the Earth. Glob. Change Biol. 2023, 29, 3072–3084. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yuan, X.; Jing, C.; Hamdi, R.; Ochege, F.U.; Dong, P.; Shao, Y.; Qin, X. The decreased cloud cover dominated the rapid spring temperature rise in arid Central Asia over the period 1980–2014. Geophys. Res. Lett. 2024, 51, e2023GL107523. [Google Scholar] [CrossRef]
- Chai, H.; Ou, Y.; Chen, X.; Cheng, W.; Zhou, C. A new schema of Xinjiang geomorphologic regionalization. Arid. Land Geogr. 2009, 32, 95–106. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Liu, J.; Zhao, X.; Zhang, W.; Li, F. Geomorphology-based classification of ground substrate texture in Xinjiang. Geoscience 2024, 38, 706–717. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ziegel, E.R. The elements of statistical learning. Technometrics 2003, 45, 267–268. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Dong, P.; Jing, C.; Wang, G.; Shao, Y.; Gao, Y. The Estimation of Grassland Aboveground Biomass and Analysis of Its Response to Climatic Factors Using a Random Forest Algorithm in Xinjiang, China. Plants 2024, 13, 548. [Google Scholar] [CrossRef]
- Dong, P.; Jing, C.; Wang, G.; Shao, Y. Characteristics of biomass and root-shoot ratio of different grassland types in Xinjiang. J. Xinjiang Agric. Univ. 2023, 46, 352–358. [Google Scholar] [CrossRef]
- Iversen, C.M.; McCormack, M.L. Filling gaps in our understanding of belowground plant traits across the world: An introduction to a Virtual Issue. New Phytol. 2021, 231, 2097–2103. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Chen, X.; Tian, X.; Wang, X.; Luo, G. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 2014, 9, e93566. [Google Scholar] [CrossRef]
- Ma, W.; Yang, Y.; He, J.; Zeng, H.; Fang, J. Above-and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Sci. China Ser. C-Life Sci. 2008, 51, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Mo, L.; Crowther, T.W.; Maynard, D.S.; van den Hoogen, J.; Stocker, B.D.; Terrer, C.; Zohner, C.M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 2021, 5, 1110–1122. [Google Scholar] [CrossRef]
- Ding, L.; Li, Z.; Shen, B.; Wang, X.; Xu, D.; Yan, R.; Yan, Y.; Xin, X.; Xiao, J.; Li, M. Spatial patterns and driving factors of aboveground and belowground biomass over the eastern Eurasian steppe. Sci. Total Environ. 2022, 803, 149700. [Google Scholar] [CrossRef]
- Luo, T.; Brown, S.; Pan, Y.; Shi, P.; Ouyang, H.; Yu, Z.; Zhu, H. Root biomass along subtropical to alpine gradients: Global implication from Tibetan transect studies. For. Ecol. Manag. 2005, 206, 349–363. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Q.; Woolway, R.I.; Xu, L.; Ma, H.; Yang, Z. Warm-wetting and/or warm-drying tendency over Xinjiang, China? J. Hydrol. 2025, 660, 133417. [Google Scholar] [CrossRef]
- Zhang, Y.; Wuriliga; Ding, Y.; Li, F.; Zhang, Y.; Su, M.; Li, S.; Liu, L. Effectiveness of grassland protection and pastoral area development under the grassland ecological conservation subsidy and reward policy. Agriculture 2022, 12, 1177. [Google Scholar] [CrossRef]
- Zhu, L.; Sun, S.; Li, Y.; Liu, X.; Hu, K. Effects of climate change and anthropogenic activity on the vegetation greening in the Liaohe River Basin of northeastern China. Ecol. Indic. 2023, 148, 110105. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, D.; Chen, X.; Zhang, Y.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Xu, J.; Ji, Y.; Du, X.; Gao, J. Precipitation dominates the allocation strategy of above-and belowground biomass in plants on macro scales. Plants 2023, 12, 2843. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Han, G.; Xing, Q.; Xia, J.; Sun, B.; Li, X.; Yu, J.; Li, D.; Song, W. Changes in plant biomass induced by soil moisture variability drive interannual variation in the net ecosystem CO2 exchange over a reclaimed coastal wetland. Agric. For. Meteorol. 2019, 264, 138–148. [Google Scholar] [CrossRef]
- Du, Y.; Wang, Y.; Su, F.; Jiang, J.; Wang, C.; Yu, M.; Yan, J. The response of soil respiration to precipitation change is asymmetric and differs between grasslands and forests. Glob. Change Biol. 2020, 26, 6015–6024. [Google Scholar] [CrossRef] [PubMed]
- Jiao, A.; Wang, Z.; Deng, X.; Ling, H.; Chen, F. Eco-hydrological response of water conveyance in the mainstream of the tarim river, China. Water 2022, 14, 2622. [Google Scholar] [CrossRef]
- Xu, J.; Jiao, A.; Deng, M.; Ling, H. Changes in ecosystem carbon sequestration and influencing factors from a’Past-Future’perspective: A case study of the Tarim River. Ecol. Indic. 2024, 169, 112861. [Google Scholar] [CrossRef]
- Zhang, B.; Cadotte, M.W.; Chen, S.; Tan, X.; You, C.; Ren, T.; Chen, M.; Wang, S.; Li, W.; Chu, C.; et al. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 2019, 100, e02828. [Google Scholar] [CrossRef]
- Brouillette, L.C.; Mason, C.M.; Shirk, R.Y.; Donovan, L.A. Adaptive differentiation of traits related to resource use in a desert annual along a resource gradient. New Phytol. 2014, 201, 1316–1327. [Google Scholar] [CrossRef]
Categories | Datasets | Indicators | Temporal Range | Spatial Scale | Data Source |
---|---|---|---|---|---|
Modeling Data | NTPDC | TEM and PRE | 2000–2023 | 1000 m | http://www.resdc.cn/ (accessed on 5 April 2024) |
MODIS | NDVI, EVI, GPP, LAI, and ET | 2000–2023 | 500 m | https://search.earthdata.nasa.gov/ (accessed on 20 April 2023) | |
Driving Factors Data | CRU | TEM, PRE, and PET | 2000–2023 | 0.5° | https://crudata.uea.ac.uk/ (accessed on 20 May 2024) |
FLDAS | SMC, RF, SRATE, SAT, SDSR, SSHF, SH, SHF, and ST | 2000–2023 | 0.1° | https://disc.gsfc.nasa.gov/ (accessed on 8 May 2024) |
Grassland Type | R/S | Proportion of BGB to Total Biomass |
---|---|---|
Temperate Meadow Steppe | 20.50 | 95.4% |
Temperate Steppe | 23.10 | 95.9% |
Temperate Desert Steppe | 16.36 | 94.3% |
Alpine Steppe | 40.40 | 97.6% |
Temperate Steppe Desert | 35.32 | 97.3% |
Temperate Desert | 37.21 | 97.4% |
Lowland Meadow | 13.00 | 92.9% |
Montane Meadow | 10.55 | 91.5% |
Alpine Meadow | 30.54 | 96.8% |
Geomorphological Regionalization | AGB Carbon Density (gC·m−2) | BGB Carbon Density (gC·m−2) |
---|---|---|
Altai Mountains and Beita Mountains (M1) | 43.09 | 1083.96 |
Mountainous Area of West Junggar Basin (M2) | 47.23 | 1189.06 |
Eastern Tianshan Mountains (M3) | 39.02 | 979.68 |
Western Tianshan Mountains (M4) | 53.68 | 1397.77 |
Kunlun Mountains and Altun Mountains (M5) | 35.54 | 1215.16 |
Junggar Basin (B1) | 44.05 | 1499.66 |
Tarim Basin (B2) | 42.55 | 639.00 |
Xinjiang Area (XJ) | 44.34 | 1229.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, P.; Jing, C.; Wang, G.; Shao, Y. Belowground Biomass Carbon Density in Xinjiang Grasslands: Spatiotemporal Variability and Dominant Drivers. Agronomy 2025, 15, 1597. https://doi.org/10.3390/agronomy15071597
Dong P, Jing C, Wang G, Shao Y. Belowground Biomass Carbon Density in Xinjiang Grasslands: Spatiotemporal Variability and Dominant Drivers. Agronomy. 2025; 15(7):1597. https://doi.org/10.3390/agronomy15071597
Chicago/Turabian StyleDong, Ping, Changqing Jing, Gongxin Wang, and Yuqing Shao. 2025. "Belowground Biomass Carbon Density in Xinjiang Grasslands: Spatiotemporal Variability and Dominant Drivers" Agronomy 15, no. 7: 1597. https://doi.org/10.3390/agronomy15071597
APA StyleDong, P., Jing, C., Wang, G., & Shao, Y. (2025). Belowground Biomass Carbon Density in Xinjiang Grasslands: Spatiotemporal Variability and Dominant Drivers. Agronomy, 15(7), 1597. https://doi.org/10.3390/agronomy15071597