Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Plant and Soil Sample Collection
2.3. Soil Chemical Properties and N2-Fixation Activity Determination
2.4. Soil nifH Gene Quantification and High-Throughput Sequencing
2.5. Bioinformatic Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil Properties
3.2. Soil N2-Fixation Activity and nifH Gene Abundance
3.3. Soil Diazotrophic Community Composition and Diversity Indices
3.4. Co-Occurrence Network Patterns of Soil Diazotrophic Community
3.5. Linkages of Soil Diazotrophic Community to Plant and Soil Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kwak, J.I.; Nam, S.H.; An, Y.J. Assessing the risks of silver nanoparticle-concentrated matrix application in agricultural soil: Implications for plant and soil enzymes. Comp. Biochem. Physiol. Part C 2023, 269, 109631. [Google Scholar] [CrossRef] [PubMed]
- Frances, I.; Enejiyon, S.O.; Chimbekujwo, K.I.; Oyewole, O.A.; Adetunji, C.O.; Adeyomoye, O.I.; Adetunji, J.B.; Ogundolie, F.A.; Mathew, J.T.; Inobeme, A.; et al. Chapter 9—Application of chitosan-based nanoparticles as an effective antibacterial agent. In Chitosan-Based Nanoparticles for Biomedical Applications; Woodhead Publishing Series in Biomaterials: Sawston, UK, 2025; pp. 195–216. [Google Scholar]
- Madanayake, N.H.; Perera, N.; Adassooriya, N.M. Engineered nanomaterials: Threats, releases, and concentrations in the environment. In Emerging Contaminants in the Environment; Sarma, H., Dominguez, D.C., Lee, W.Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 225–240. [Google Scholar]
- Hong, X.C.; Song, Y.D.; Cao, D.D.; Xu, S.W.; Gao, F.; Fan, H.X.; Yao, H.Y. Silver nanoparticles altered soil respiration, enzyme activity, carbon use efficiency and microbial community in an upland Soil. Appl. Soil Ecol. 2025, 211, 106128. [Google Scholar] [CrossRef]
- Rani, N.; Kumari, K.; Hooda, V. Impact evaluation of bare and chitosan complexed silver nanoparticles on the growth of Sorghum bicolor (L.) Moench and soil bacterial diversity. Plant Physiol. Rep. 2024, 29, 316–331. [Google Scholar] [CrossRef]
- Aasfar, A.; Adnane, B.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Kadmiri, I.M. Nitrogen fixing azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Etto, R.M.; Jesus, E.C.; Cruz, L.M.; Schneider, B.S.F.; Tomachewshi, D.; Urrea-Valencia, S.; Goncalves, D.R.P.; Galvao, F.; Ayub, R.A.; Curcio, G.R.; et al. Influence of environmental factors on the tropical peatlands diazotrophic communities from the Southern Brazilian Atlantic Rain Forest. Lett. Appl. Microbiol. 2022, 3, 543–554. [Google Scholar] [CrossRef]
- Li, Y.Y.; Pan, F.X.; Yao, H.Y. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J. Soil Sediment. 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
- Aroh, K.; Udensi, J.U. Study on interactive effects of different levels of lead and mercury on nitrogen fixation of some diazotrophs. J. Adv. Biol. Biotechnol. 2021, 24, 34–42. [Google Scholar] [CrossRef]
- Cao, J.L.; Liu, Z.Y.; Zhao, H.Y.; Lai, F.Y.; Han, Y.; Lin, X.G. Effects of copper oxide nanoparticles on soil diazotrophic communities in maize rhizosphere. J. Soils Sediments 2023, 23, 1760–1774. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Zhang, Y.W.; Liu, N.Y.; Sun, H.; Zhang, S.B.; Timm, S.; Huang, W. Variation in photosynthetic efficiency among maize cultivars and its implications for breeding strategy.Journal of Experimental Botany. J. Exp. Bot. 2025, eraf249. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.L.; Yangzong, Z.; Gardea-Torresdey, J.L.; White, J.C.; Zhao, L.J. Seed priming with peactive oxygen species-generating nanoparticles enhanced maize tolerance to multiple abiotic stresses. Environ. Sci. Technol. 2023, 57, 19932–19941. [Google Scholar] [CrossRef]
- Jangid, H.; Kumar, G. Ecotoxicity of fungal-synthesized silver nanoparticles: Mechanisms, impacts, and sustainable mitigation strategies. 3 Biotech 2025, 15, 101. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis Part 2.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–580. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Ameriaca J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Patra, A.K.; Abbadie, L.; Clays-Josserand, A.; Degrange, V.; Grayston, S.J.; Guillaumaud, N.; Loiseau, P.; Louault, F.; Mahmood, S.; Nazaret, S. Effects of management regime and plant species on the enzyme activity and genetic structure of N2-fixing, denitrifying and nitrifying bacterial communities in grassland soils. Environ. Microbiol. 2006, 8, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Poly, F.; Ranjard, L.; Nazaret, S.; Gourbiere, F.; Monrozier, L.J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl. Environ. Microbiol. 2001, 67, 2255–2262. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef]
- Luo, Y.Q.; Hui, D.F.; Zhang, D.Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: A meta-analysis. Ecology 2006, 87, 53–63. [Google Scholar] [CrossRef]
- Luo, F.; Yang, Y.; Zhong, J.; Gao, H.; Khan, L.; Thompson, D.K. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinform. 2007, 8, 199. [Google Scholar] [CrossRef]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef]
- Barberan, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. Isme J. 2012, 6, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q.I. Nitrogen fixation and diazotrophs—A review. Rom. Biotech. Lett. 2021, 26, 2834–2845. [Google Scholar] [CrossRef]
- Yin, L.Y.; Cheng, Y.W.; Espinasse, B.; Colman, B.P.; Auffan, M.; Wiesner, M.; Rose, J.; Liu, J.; Bernhardt, E.S. More than the ions: The effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 2011, 45, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.X.; Hu, T.; Peng, O.; Chen, A.W.; Tie, B.Q.; Shao, J.H. Impact of heavy metal passivators on the nitrogenase activity and diazotrophic community in a cadmium-contaminated paddy field. Int. Biodeterior. Biodegrad. 2022, 175, 105506. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant Sci. 2016, 7, 90. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Z.H.; Xue, C.; Gao, W.H.; Wang, G.L.; Liu, X.Y. Changes in N2-fixation activity, abundance and composition of diazotrophic communities in a wheat field under elevated CO2 and canopy warming. Appl. Soil Ecol. 2021, 165, 104017. [Google Scholar] [CrossRef]
- Sz’ekely, A.J.; Berga, M.; Langenheder, S. Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J. 2013, 7, 61–71. [Google Scholar] [CrossRef]
- Yousuf, B.; Kumar, R.; Mishra, A.; Jha, B. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a genetargeted clone library approach. FEMS Microbiol. Lett. 2014, 360, 117–125. [Google Scholar] [CrossRef]
- Fan, K.K.; Weisenhorn, P.; Gilbert, J.A.; Shi, Y.; Bai, Y.; Chu, H.Y. Soil pH correlates with the co-occurrence and assemblage process of diazotrophic communities in rhizosphere and bulk soils of wheat fields. Soil Biol. Biochem. 2018, 121, 185–192. [Google Scholar] [CrossRef]
- Zhao, J.; Cai, Y.; Jia, Z. pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences 2020, 6, 1451. [Google Scholar] [CrossRef]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Orr, C.H.; Leifert, C.; Cummings, S.P.; Cooper, J.M. Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS ONE 2012, 7, e52891. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.P.; Guo, L.J.; Xu, X.Y.; Zhang, L.; Zhang, K.C.; Chen, M.F.; Zhao, Y.X.; Burkey, K.O.; Shew, H.D.; Zobel, R.W.; et al. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 2021, 7, eabe9256. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.L.; Song, D.L.; Guo, Q.K.; Zhou, W.; Liu, G.R.; Ma, R.P.; Liang, G.Q.; He, P.; Sun, G.; Yuan, F.S.; et al. Predicting the influence of fertilization regimes on potential N fixation through their effect on free-living diazotrophic community structure in double rice cropping systems. Soil Biol. Biochem. 2021, 156, 108220. [Google Scholar] [CrossRef]
- Penton, C.R.; Yang, C.; Wu, L.; Wang, Q.; Zhang, J.; Liu, F.; Qin, Y.; Deng, Y.; Hemme, C.L.; Zheng, T. NifH-harboring bacterial community composition across an Alaskan permafrost thaw gradient. Front. Microbiol. 2016, 7, 1894. [Google Scholar] [CrossRef]
- Bertness, M.D.; Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 1994, 5, 191–193. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87, 198701. [Google Scholar] [CrossRef]
- Narisawa, N.; Haruta, S.; Arai, H.; Ishii, M.; Igarashi, Y. Coexistence of antibiotic-producing and antibiotic-sensitive bacteria in biofilms is mediated by resistant bacteria. Appl. Environ. Microbiol. 2008, 74, 3887–3894. [Google Scholar] [CrossRef]
- Wood, S.A.; Gilbert, J.A.; Leff, J.W.; Fierer, N.; D’angelo, H.; Bateman, C. Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biol. Biochem. 2017, 112, 258–268. [Google Scholar] [CrossRef]
- Berry, D.; Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 2014, 5, 219. [Google Scholar] [CrossRef]
- Navarro-Noya, Y.E.; Luna-Guido, M.; Dendooven, L. Cultivable nitrogen fixing bacteria from extremely alkaline-saline soils. Adv. Microbiol. 2016, 6, 412–423. [Google Scholar] [CrossRef]
- Banerjee, A.; Hazra, A.; Das, S.; Sengupta, C. Groundwater inhabited Bacillus and Paenibacillus strains alleviate arsenic-induced phytotoxicity of rice plant. Int. J. Phytoremediation 2021, 22, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.T.; Zhao, H.H.; Deng, Y.; Zhou, J.Z.; Li, G.H.; Sun, B. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes. Front. Microbiol. 2016, 7, 60. [Google Scholar] [CrossRef] [PubMed]
Treatments | 0 mg kg−1 | 1 mg kg−1 | 5 mg kg−1 | 10 mg kg−1 | 20 mg kg−1 |
---|---|---|---|---|---|
Soil pH | 8.49 ± 0.03 a | 8.49 ± 0.02 a | 8.47 ± 0.02 ab | 8.46 ± 0.03 ab | 8.41 ± 0.02 b |
Soil EC | 165.7 ± 1.62 b | 181.7 ± 6.62 a | 195.0 ± 15.4 a | 180.2 ± 11.7 a | 183.8 ± 23.5 a |
Soil TN | 1.11 ± 0.02 a | 1.09 ± 0.02 a | 1.09 ± 0.03 a | 1.05 ± 0.08 a | 1.07 ± 0.04 a |
Soil AP | 10.3 ± 0.64 a | 10.1 ± 0.05 a | 9.92 ± 0.70 a | 9.70 ± 0.08 a | 9.47 ± 0.37 b |
Soil AK | 246.8 ± 10.3 a | 209.7 ± 11.7 a | 216.1 ± 7.46 a | 230.4 ± 24.1 a | 222.8 ± 9.29 a |
Soil DOC | 53.8 ± 2.20 a | 53.0 ± 1.15 a | 49.2 ± 3.77 ab | 50.4 ± 2.40 a | 42.7 ± 2.77 b |
Soil DTPA-Ag | 0.11 ± 0.03 c | 0.14 ± 0.04 c | 0.89 ± 0.06 c | 2.54 ± 0.16 b | 5.67 ± 0.99 a |
Treatments | 0 mg kg−1 | 1 mg kg−1 | 5 mg kg−1 | 10 mg kg−1 | 20 mg kg−1 |
---|---|---|---|---|---|
Chao1 | 705.2 ± 26.2 a | 727.1 ± 52.7 a | 735.7 ± 62.0 a | 712.0 ± 40.7 a | 767.2 ± 21.2 a |
Observed OTUs | 594 ± 4.36 a | 603.7 ± 45.5 a | 593 ± 5.19 a | 587.3 ± 15.9 a | 634 ± 24.4 a |
ACE | 695.0 ± 9.41 a | 720.4 ± 60.3 a | 702.7 ± 23.9 a | 704.6 ± 28.6 a | 755.9 ± 31.9 a |
Shannon | 3.52 ± 0.04 a | 3.40 ± 0.11 a | 3.46 ± 0.12 a | 3.53 ± 0.06 a | 3.54 ± 0.02 a |
Simpson | 0.065 ± 0.03 a | 0.062 ± 0.003 a | 0.065 ± 0.001 a | 0.072 ± 0.011 a | 0.068 ± 0.009 a |
Good’s coverage | 0.998 ± 0.0001 a | 0.998 ± 0.0001 a | 0.998 ± 0.0001 a | 0.999 ± 0.0002 a | 0.998 ± 0.0001 a |
Network Metrics | Control | AgNPs |
---|---|---|
Number of nodes | 476 | 469 |
Number of edges | 879 | 936 |
Negative | 563 | 543 |
Positive | 316 | 393 |
R square of power-law | 0.828 | 0.818 |
Average degree (avgK) | 3.693 | 3.991 |
Average clustering coefficient (avgCC) | 0.187 | 0.139 |
Average path distance (GD) | 8.939 | 7.751 |
Geodesic efficiency (E) | 0.145 | 0.163 |
Transitivity (Trans) | 0.215 | 0.155 |
Harmonic geodesic distance (HD) | 6.886 | 6.121 |
Maximal degree | 13 | 16 |
Centralization of degree (CD) | 0.020 | 0.026 |
Maximal betweenness | 12,207.34 | 20,779.31 |
Centralization of betweenness (CB) | 0.099 | 0.181 |
Maximal stress centrality (CS) | 13.4 | 65.277 |
Maximal eigenvector centrality | 0.314 | 0.265 |
Centralization of eigenvector centrality (CE) | 0.305 | 0.255 |
Density (D) | 0.008 | 0.009 |
Connectedness (Con) | 0.595 | 0.654 |
Efficiency | 0.99 | 0.99 |
Matrix | r | p |
---|---|---|
Shoot biomass | −0.07 | 0.669 |
Root biomass | −0.09 | 0.682 |
Soil pH | −0.622 | 0.051 |
Soil AK | −0.039 | 0.625 |
Soil AP | 0.217 | 0.110 |
Soil TN | −0.135 | 0.787 |
Soil DTPA-Ag | −0.654 | 0.025 |
Soil EC | −0.072 | 0.675 |
Soil DOC | 0.007 | 0.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Li, S.; Fan, C.; Cao, J. Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere. Agronomy 2025, 15, 1601. https://doi.org/10.3390/agronomy15071601
Chen H, Li S, Fan C, Cao J. Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere. Agronomy. 2025; 15(7):1601. https://doi.org/10.3390/agronomy15071601
Chicago/Turabian StyleChen, Hui, Siyao Li, Chengheng Fan, and Jiling Cao. 2025. "Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere" Agronomy 15, no. 7: 1601. https://doi.org/10.3390/agronomy15071601
APA StyleChen, H., Li, S., Fan, C., & Cao, J. (2025). Silver Nanoparticles Alter the Diazotrophic Community Structure and Co-Occurrence Patterns in Maize Rhizosphere. Agronomy, 15(7), 1601. https://doi.org/10.3390/agronomy15071601