Trampling and Dung and Urine Addition of Livestock Increase the Soil Organic Carbon in Mountain Meadows by Augmenting the Organic Carbon in Different Aggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Plant Sampling and Measurements
2.4. Soil Sampling and Measurements
2.5. Soil Aggregate Screening and Analysis
2.6. Statistical Analysis
3. Results
3.1. The Impact of Grazing on Plant Characteristics
3.2. The Impact of Grazing on Soil Physicochemical Properties
3.3. The Impact of Grazing on Soil Aggregate Composition
3.4. Effects of Grazing on Organic Carbon, Total Nitrogen, and Carbon-to-Nitrogen Ratio of Soil Aggregates
3.5. The Relationships Between SOC and Plant, Soil, and Aggregate Indicators
3.6. Principal Component Analysis Between SOC and Plant, Soil, and Aggregate Indicators
3.7. Redundancy Analysis Between SOC and Plant, Soil, and Aggregate Indicators
4. Discussion
4.1. Effects of Grazing on Soil Organic Carbon
4.2. Influencing Factors of Soil Organic Carbon Change
5. Conclusions
6. Patents
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Wang, Z.X.; Xing, A.J.; Shen, H.H. Effects of nitrogen addition on the combined global warming potential of three major soil greenhouse gases: A global meta-analysis. Environ. Pollut. 2023, 334, 121848. [Google Scholar] [PubMed]
- Belay, T.A.; Zhou, X.H.; Su, B.; Wan, S.Q.; Luo, Y.Q. Labile, recalcitrant, and microbial carbon andnitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warmingand clipping. Soil Biol. Biochem. 2008, 41, 110–116. [Google Scholar]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar]
- Wang, G.Y.; Mao, J.F.; Fan, I.L.; Ma, X.X.; Li, Y.M. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Glob. Ecol. Conserv. 2022, 34, e02039. [Google Scholar]
- Dlamini, P.; Chivenge, P.; Chaplot, V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: A meta-analysis shows. Agric. Ecosyst. Environ. 2016, 221, 258–269. [Google Scholar]
- Bai, Y.F.; Francesca, M.C. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar]
- Zhou, G.Y.; Luo, Q.; Chen, Y.J.; He, M.; Zhou, L.Y.; Frank, D.; He, Y.H.; Fu, Y.L.; Zhang, B.C.; Zhou, X.H. Effects of livestock grazing on grassland carbon storage and release overide impacts associated with global climate change. Glob. Change Biol. 2019, 25, 1119–1132. [Google Scholar]
- Wu, G.-L.; Liu, Z.-H.; Zhang, L.; Chen, J.-M.; Hu, T.-M. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western china. Plant Soil 2010, 332, 331–337. [Google Scholar]
- Zhou, G.Y.; Zhou, X.H.; He, Y.H.; Shao, J.J.; Hu, Z.H.; Liu, R.Q.; Zhou, H.M.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems: A meta-analysis. Glob. Change Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Delgado-Baquerizo, M.; Wang, D.L.; Isbell, F.; Liu, J.; Feng, C.; Liu, J.S.; Zhong, Z.W.; Zou, H.; Yuan, X.; et al. Diversifying livestock promotes multi diversity and multi functionality in managed grasslands. Proc. Natl. Acad. Sci. USA 2019, 116, 6187–6192. [Google Scholar] [CrossRef]
- Zhan, T.Y.; Zhang, Z.C.; Sun, J.; Liu, M.; Zhang, X.B.; Peng, F.; Tsunekawa, A.; Zhou, H.K.; Gou, X.W.; Fu, S. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Appl. Soil Ecol. 2020, 147, 103438. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Wang, Z.W.; Han, G.D.; Schellenberg, M.P.; Wu, Q.; Gu, C. Grazing induced changes in plant diversity is a critical factor controlling grassland productivity in the Desert Steppe, Northern China. Agric. Ecosyst. Environ. 2018, 265, 73–83. [Google Scholar] [CrossRef]
- Wen, D.; He, N.; Zhang, J. Dynamics of soil organic carbon and aggregate stability with grazing exclusion in the inner mongolian grasslands. PLoS ONE 2016, 11, e0146757. [Google Scholar] [CrossRef]
- Sharma, V.; Hussain, S.; Sharma, K.R.; Arya, V.M. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 2014, 232–234, 81–87. [Google Scholar]
- Zhao, Y.Y.; Liu, Z.; Wu, J.G. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Gilmullina, A.; Rumpel, C.; Blagodatskaya, E.; Chabbi, A. Management of grasslands by mowing versus grazing—Impacts on soil organic matter quality and microbial functioning. Appl. Soil Ecol. 2020, 156, 103701. [Google Scholar] [CrossRef]
- Pauler, C.M.; Isselstein, J.; Suter, M.; Berard, J.; Braunbeck, T.; Schneider, M.K. Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Funct. Ecol. 2020, 34, 980–992. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Steffens, M.; Mueller, C.W.; Kölbl, A.; Reszkowska, A.; Peth, S.; Horn, R.; Kögel-Knabner, I. Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. Eur. J. Soil Sci. 2012, 63, 22–31. [Google Scholar] [CrossRef]
- Dong, Y.Q.; Yang, H.L.; Sun, Z.J.; An, S.Z. Difference of soil carbon density under different grazing exclusion duration in;desert with distinct degrees of degradation. Arid Land Res. Manag. 2021, 35, 198–212. [Google Scholar]
- Wei, Y.; Zhang, Y.; Wilson, G.W.; Guo, Y.; Bi, Y.; Xiong, X.; Liu, N. Transformation of litter carbon to stable soil organic matter is facilitated by ungulate trampling. Geoderma 2021, 385, 114828. [Google Scholar]
- Bardgett, R.D.; Jones, A.C.; Jones, D.L.; Kemmitt, S.J.; Cook, R.; Hobbs, P.J. Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biol. Biochem. 2001, 33, 1653–1664. [Google Scholar]
- Zhang, X.R.; Zhang, W.Q.; Sai, X.; Chun, F.; Li, X.J.; Lu, X.X.; Wang, H.R. Grazing altered soil aggregates, nutrients and enzyme activities Stipa kirschnii steppe of Inner Mongolia. Soil Tillage Res. 2022, 219, 105327. [Google Scholar]
- Huang, R.; Lan, M.L.; Liu, J.; Gao, M. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: The role of different straws returning. Environ. Sci. Pollut. Res. 2017, 24, 27942–27952. [Google Scholar]
- Puget, P.; Chenu, C.; Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 2010, 51, 595–605. [Google Scholar]
- Yao, Y.; Ge, N.; Wei, X.; Fu, W.; Shao, M.; Zhao, X.; Ingwersen, J. Responses of soil organic carbon mineralization and its temperature sensitivity to re-vegetation in the agro-pastoral ecotone of northern China. Eur. J. Soil Biol. 2021, 103, 103278. [Google Scholar]
- Liang, A.Z.; Zang, Y.; Zhang, X.P.; Yang, X.M.; McLaughlin, N.; Chen, X.W.; Guo, Y.F.; Jia, S.X.; Zhang, S.X.; Wang, L.X.; et al. Investigations of relationships among aggregate pore structure, microbial biomass, and soil organic carbon in a Mollisol using combined non-destructive measurements and phospholipid fatty acid analysis. Soil Tillage Res. 2019, 185, 94–101. [Google Scholar]
- Fan, J.L.; Jin, H.; Zhang, C.H.; Zheng, J.J.; Zhang, J.; Han, G.D. Grazing intensity induced alternations of soil microbial community composition in aggregates drive soil organic carbon turnover in a desert steppe. Agric. Ecosyst. &, Environ. 2021, 313, 12. [Google Scholar]
- Liu, N.; Kan, H.M.; Yang, G.W.; Zhang, Y.J. Changes in plant, soil, and microbes in a typical steppe from simulated grazing: Explaining potential change in soil carbon. Ecol. Monogr. 2015, 85, 269–286. [Google Scholar]
- Guo, W.Z.; Jing, C.Q.; Deng, X.J.; Chen, C.; Zhao, W.K.; Hou, Z.X.; Whang, G.X. Variations in carbon flux and factors influencing it on the northern slopes of the Tianshan Mountains. Acta Pratacult. Sin. 2022, 31, 1–12. [Google Scholar]
- Zhang, Y.; Asiya, M.; Zhang, Y.J.; Xin, X.P.; Zhang, H.H.; Yan, R.R.; Rena, A.; Guo, M.L. Response of vegetation community characteristics and nutrient content to enclosure and grazing in Xinjiang mountain meadow. Xinjiang Agric. Sci. 2021, 58, 756–765. [Google Scholar]
- Thomas, S.M.; Beare, M.H.; Francis, G.S.; Barlow, H.E.; Hedderley, D.I. Effects of tillage, simulated cattle grazing and soil moisture on N2O emissions from a winter forage crop. Plant Soil 2008, 309, 131–145. [Google Scholar]
- Striker, G.G.; Mollard, F.P.O.; Grimoldi, A.A.; León, R.J.C.; Insausti, P. Trampling enhances the dominance of graminoids over forbs in flooded grassland mesocosms. Appl. Veg. Sci. 2011, 14, 95–106. [Google Scholar]
- Mikola, J.; Setälä, H.; Virkajärvi, P.; Saarijärvi, K.; Ilmarinen, K.; Voigt, W.; Vestberg, M. Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol. Monogr. 2009, 79, 221–244. [Google Scholar]
- Wang, Z.N.; Yuan, X.; Wang, D.L.; Zhang, Y.; Zhong, Z.W.; Guo, Q.F.; Feng, C. Large herbivores influence plant litter decomposition by altering soil properties and plant quality in a meadow steppe. Sci Rep. 2018, 8, 12. [Google Scholar]
- Rowell, D.L. Soil Science: Method and Applications; Addison Wesley Longman Ltd.: London, UK, 1994. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. Methods Soil Anal. Part 3 Chem. Methods 1982, 9, 539–579. [Google Scholar]
- Bao, S.D. Soil Agricultural Chemistry Analysis; China Agricultural Press: Beijing, China, 2006; pp. 25–103. [Google Scholar]
- Márquez, C.O.; Garcia, V.J.; Cambardella, C.A.; Schultz, R.C.; Isenhart, T.M. Aggregate-size stability distribution and soil stability. Soil Sci. Soc. Am. J. 2004, 68, 725–735. [Google Scholar]
- Margalef, R. Information theory in ecology. Gen. Syst. 1958, 3, 36–71. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 168, 668. [Google Scholar]
- Shannon, C.E. A mathematical theory of communications. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar]
- Pielou, E.C. Population and Community Ecology: Principles and Methods; Gordon and Breach: Philadelphia, PA, USA, 1974. [Google Scholar]
- Hoogendoorn, C.J.; Newton, P.C.D.; Devantier, B.P.; Rolle, B.A.; Theobald, P.W.; Lloyd-West, C.M. Grazing intensity and micro-topographical effects on some nitrogen and carbon pools and fluxes in sheep-grazed hill country in New Zealand. Agric. Ecosyst. Environ. 2016, 217, 22–32. [Google Scholar]
- Cui, X.Y.; Wang, Y.F.; Niu, H.S.; Wu, J.; Wang, S.P.; Schnug, E.; Rogasik, J.; Fleckenstein, J.; Tang, Y.H. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia. Ecol. Res. 2005, 20, 519–527. [Google Scholar]
- Schuman, G.E.; Reeder, J.D.; Manley, J.T.; Hart, R.H.; Manley, W.A. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass range land. Ecol. Appl. 1999, 9, 65–71. [Google Scholar]
- Shroff, R.; Vergara, F.; Muck, A.; Svatos, A.; Gershenzon, J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc. Natl. Acad. Sci. USA 2008, 105, 6196–6201. [Google Scholar]
- Fraser, M.D.; García, R.R. Mixed-species grazing management to improve sustainability and biodiversity. Proc. Natl. Acad. Sci. USA 2018, 37, 247–257. [Google Scholar]
- Zhang, M.; Li, X.B. A Review: Effects of Grazing on Soil Organic Carbon and the Related Processes. Acta Agrestia Sin. 2018, 26, 267–276. [Google Scholar]
- Luo, C.; Wang, S.; Zhang, L.; Wilkes, A.; Zhao, L.; Zhao, X.; Xu, S.; Xu, B. CO2, CH4 and N2O fluxes in an alpine meadow on the Tibetan plateau as affected by N-addition and grazing exclusion. Nutr. Cycl. Agroecosyst. 2020, 117, 29–42. [Google Scholar]
- Qiu, Y.; Guo, L.; Xu, X.; Zhang, L.; Zhang, K.; Chen, M.; Zhao, Y.; Burkey, K.O.; Shew, H.D.; Zobel, R.W.; et al. Warming and elevated ozone induce trade offs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. Sci. Adv. 2021, 7, eabe9256. [Google Scholar]
- Creamer, C.A.; de Menezes, A.B.; Krull, E.S.; Sanderman, J.; Newton-Walters, R.; Farrell, M. Microbial community structure mediates response of soil C decomposition to litter addition and warming. Soil Biol. Biochem. 2015, 80, 175–188. [Google Scholar]
- Zhou, Z.-Y.; Li, F.-R.; Chen, S.-K.; Zhang, H.-R.; Li, G. Dynamics of vegetation and soil carbon and nitrogen accumulation over26 years under controlled grazing in a desert shrub land. Plant Soil 2011, 341, 257–268. [Google Scholar]
- Ren, J.T.; Zhang, P.J.; Wu, Y.; Zhu, W.N.; Jin, Z.L.; Zhang, Y.L.; Bao, W.Z.; Qing, H. Study on Stability and Source of Soil Organic Carbon in Stipa grandis Steppe at Different Grazing Degradation Stages. Chin. J. Grassl. 2021, 43, 37–44. [Google Scholar]
- Wang, S.; Zhang, S.W.; Lin, X.; Li, X.Y.; Li, R.S.; Zhao, X.Y.; Liu, M.M. Response of soil water and carbon storage to short-term grazing prohibition in arid and semi-arid grasslands of China. J. Arid. Environ. 2022, 202, 104754. [Google Scholar]
- Jackson, R.B.; Lajtha, K.; Crow, S.E.; Hugelius, G.; Kramer, M.G.; Piñeiro, G. The ecology of soil carbon: Pools, Vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 2017, 48, 419–445. [Google Scholar]
- Sun, D.S.; Wesche, K.; Chen, D.D.; Zhang, S.H.; Wu, G.L.; Du, G.Z.; Comerford, N.B. Grazing depresses soil carbon storage through changing plant biomass and composition in Tibetan alpine meadow. Plant Soil Environ. 2011, 57, 271–278. [Google Scholar]
- Martinsen, V.; Mulder, J.; Austrheim, G.; Mysterud, A. Carbon storage in low-alpine grassland soils: Effects of different grazing intensities of sheep. Eur. J. Soil Sci. 2011, 62, 822–833. [Google Scholar]
- Wu, N.; Liu, J.; Yan, Z. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau. Rangifer 2004, 24, 9–15. [Google Scholar]
- Du, Y.G.; Ke, X.; Guo, X.W.; Cao, G.M.; Zhou, H.K. Soil and plant community characteristics under long term continuous grazing of different intensities in an alpine meadow on the Tibetan plateau. Biochem. Syst. Ecol. 2019, 85, 72–75. [Google Scholar]
- Wang, X.X.; Zhang, W.; Zhou, F.; Liu, Y.; He, H.B.; Zhang, X.D. Distinct regulation of microbial processes in the immobilization of labile carbon in different soils. Soil Biol. Biochem. 2020, 142, 107723. [Google Scholar]
- Poirier, V.; Roumet, C.; Munson, A.D. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biol. Biochem. 2018, 120, 246–259. [Google Scholar]
- Volk, M.; Bassin, S.; Lehmann, M.F.; Johnson, M.G.; Andersen, C.P. 13C isotopic signature and C concentration of soil density fractions illustrate reduced C allocation to subalpine grassland soil under high atmospheric N deposition. Soil Biol. Biochem. 2018, 125, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Wardle, D.A. Herbivore mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Gan, A.Q.; Jiang, J.C.; Li, X.; Wang, Y.T.; Xu, T.Y.; Niu, D.C.; Yang, X.X.; Dong, Q.M.; Guo, D. Effects of Grazing Intensity on Soil Aggregate Stability and Its Associated Organic Carbon Content in Alpine Grassland. Acta Agrestia Sin. 2024, 32, 1832–1842. [Google Scholar]
- Meier, I.C.; Finzi, A.C.; Phillips, R.P. Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biol. Biochem. 2017, 106, 119–128. [Google Scholar] [CrossRef]
- Tan, W.F.; Xu, Y.; Shi, Z.H.; Cai, P.; Huang, Q.Y. The Formation Process and Stabilization Mechanism of Soil Aggregates Driven by Binding Materials. Acta Pedol. Sin. 2023, 60, 1297–1308. [Google Scholar]
- Eldridge, D.J.; Delgado-Baquerizo, M. Functional groups of soil fungi decline under grazing. Plant Soil 2018, 426, 51–60. [Google Scholar] [CrossRef]
- Le Roux, X.; Poly, F.; Currey, P.; Commeaux, C.; Hai, B.; Nicol, G.W.; Prosser, J.I.; Schloter, M.; Attard, E.; Klumpp, K. Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J. 2008, 2, 221–232. [Google Scholar] [CrossRef]
- Köhler, B.; Gigon, A.; Edwards, P.J.; Krüsi, B.; Langenauer, R.; Lüscher, A.; Ryser, P. Changes in the species composition and conservation value of limestone grasslands in Northern Switzerland after 22 years of contrasting managements. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 51–67. [Google Scholar] [CrossRef]
- Wang, M.L.; Feng, Y.L. Effects of soil nitrogen levels on morphology, biomass allocation and photosynthesis in Ageratina adenophora and Chromoleana odorata. Chin. J. Plant Ecol. 2005, 29, 697–705. [Google Scholar]
- Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness of grasslands. Science 2004, 303, 1876–1879. [Google Scholar] [CrossRef]
- Yang, H.J.; Li, Y.; Wu, M.Y.; Zhang, Z.; Li, L.H.; Wang, S.Q. Plant community responses to nitrogen addition and increased precipitation: The importance of water availability and species traits. Glob. Change Biol. 2011, 17, 2936–2944. [Google Scholar] [CrossRef]
Simulate Grazing Time/Year | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|
First | 15 June | 18 June | 15 June | 15 June | 16 June | 18 June |
Second | 1 August | 3 August | 1 August | 1 August | 2 August | 3 August |
Third | 1 September | 2 September | 1 September | 2 September | 1 September | 2 September |
Program | Eigenvalue | |||
---|---|---|---|---|
PCA1 | PCA2 | PCA3 | PCA4 | |
SOC | 0.273 | 0.271 | −0.343 | 0.033 |
Height | 0.286 | −0.247 | 0.206 | −0.371 |
Coverage | −0.290 | −0.231 | 0.028 | 0.408 |
BD | −0.291 | 0.013 | 0.352 | 0.392 |
TN | −0.062 | 0.522 | 0.012 | −0.092 |
C/N | 0.316 | −0.222 | −0.323 | 0.091 |
MaA | 0.292 | −0.384 | −0.033 | 0.168 |
MiA | 0.177 | 0.307 | −0.247 | 0.553 |
SA | −0.320 | 0.317 | 0.080 | −0.271 |
MaA_SOC | 0.336 | 0.288 | −0.076 | −0.102 |
MiA_SOC | 0.265 | −0.015 | 0.495 | 0.016 |
SA_SOC | 0.285 | 0.208 | 0.366 | 0.326 |
MaA_TN | 0.295 | 0.148 | 0.396 | −0.007 |
Eigenvalue | 5.059 | 3.032 | 1.905 | 1.260 |
Contributions | 38.917 | 23.321 | 14.655 | 9.690 |
Cumulative contribution | 38.917 | 62.238 | 76.893 | 86.582 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Sun, Q.; Zhang, S.; Hu, X.; Asiya, M.; Xiong, J.; Wang, M.; Wang, X.; Long, R.; Jin, G. Trampling and Dung and Urine Addition of Livestock Increase the Soil Organic Carbon in Mountain Meadows by Augmenting the Organic Carbon in Different Aggregates. Agronomy 2025, 15, 843. https://doi.org/10.3390/agronomy15040843
Li W, Sun Q, Zhang S, Hu X, Asiya M, Xiong J, Wang M, Wang X, Long R, Jin G. Trampling and Dung and Urine Addition of Livestock Increase the Soil Organic Carbon in Mountain Meadows by Augmenting the Organic Carbon in Different Aggregates. Agronomy. 2025; 15(4):843. https://doi.org/10.3390/agronomy15040843
Chicago/Turabian StyleLi, Weisi, Qunce Sun, Shuzhen Zhang, Xiaojing Hu, Manlike Asiya, Jie Xiong, Mengyue Wang, Xuerui Wang, Runzhou Long, and Guili Jin. 2025. "Trampling and Dung and Urine Addition of Livestock Increase the Soil Organic Carbon in Mountain Meadows by Augmenting the Organic Carbon in Different Aggregates" Agronomy 15, no. 4: 843. https://doi.org/10.3390/agronomy15040843
APA StyleLi, W., Sun, Q., Zhang, S., Hu, X., Asiya, M., Xiong, J., Wang, M., Wang, X., Long, R., & Jin, G. (2025). Trampling and Dung and Urine Addition of Livestock Increase the Soil Organic Carbon in Mountain Meadows by Augmenting the Organic Carbon in Different Aggregates. Agronomy, 15(4), 843. https://doi.org/10.3390/agronomy15040843