Selenium Nanoparticles (Se NPs) as Agents for Agriculture Crops with Multiple Activity: A Review
Abstract
1. Introduction
2. Approaches for the Synthesis of Se NPs-Based Nano-Fertilizers and Their Modifications
2.1. Methods for the Synthesis of Se NPs
2.2. Modification of Se NPs
2.2.1. Nanocomposites Based on Se NPs and Synthetic Polymers
2.2.2. Nanocomposites Based on Se NPs and Biopolymers
3. Mechanisms of Action of Se NPs on Agricultural Crops
3.1. Se NPs Uptake, Transport, Accumulation, and Biotransformation by Plants
3.2. Multi-Activity of Se NPs
3.2.1. Biostimulant Activity
3.2.2. Stress-Protective Activity
Salt Stress
Water Deficiency and Heat Stress
Exposure to Heavy Metals
3.2.3. Biofortification and Nutraceutical Activity
3.2.4. Antioxidant Activity
3.2.5. Antibacterial and Antifungal Activity
4. Comparison of the Efficiency of Se NPs with Inorganic (SeO32−, SeO42−) and Organic (SeMet, SeCys) Forms
4.1. Organic Se-Containing Fertilizers
4.2. Comparison of Effective Doses of Se NPs, SeO32−, and SeO42−
5. Negative Aspects, Limitations, and Risks of Using Se NPs
Analysis of the Phytotoxicity of Se NPs
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gudkov, S.V.; Sarimov, R.M.; Astashev, M.E.; Pishchalnikov, R.Y.; Yanykin, D.V.; Simakin, A.V.; Shkirin, A.V.; Serov, D.A.; Konchekov, E.M.; Gusein-zade Namik Guseynaga, o.; et al. Modern physical methods and technologies in agriculture. Physics-Uspekhi 2023, 67, 194–210. [Google Scholar] [CrossRef]
- Bano, I.; Skalickova, S.; Sajjad, H.; Skladanka, J.; Horky, P. Uses of Selenium Nanoparticles in the Plant Production. Agronomy 2021, 11, 2229. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Daneshvar Hakimi Meybodi, N.; Teixeira da Silva, J.A. Foliar application of selenium and nano-selenium affects pomegranate (Punica granatum cv. Malase Saveh) fruit yield and quality. S. Afr. J. Bot. 2019, 124, 350–358. [Google Scholar] [CrossRef]
- do Carmo Santos, M.L.; Silva Santos, A.; Pereira Silva de Novais, D.; dos Santos Lopes, N.; Pirovani, C.P.; Micheli, F. The family of glutathione peroxidase proteins and their role against biotic stress in plants: A systematic review. Front. Plant Sci. 2025, 16, 1425880. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed]
- Titov, A.F.; Kaznina, N.M.; Karapetyan, T.A.; Dorshakova, N.V.; Tarasova, V.N. Role of Selenium in Plants, Animals, and Humans. Biol. Bull. Rev. 2022, 12, 189–200. [Google Scholar] [CrossRef]
- Hasani, M.; Djalalinia, S.; Khazdooz, M.; Asayesh, H.; Zarei, M.; Gorabi, A.M.; Ansari, H.; Qorbani, M.; Heshmat, R. Effect of selenium supplementation on antioxidant markers: A systematic review and meta-analysis of randomized controlled trials. Hormones 2019, 18, 451–462. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.-L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292–3311. [Google Scholar] [CrossRef]
- El-Ramady, H.R.; Domokos-Szabolcsy, É.; Shalaby, T.A.; Prokisch, J.; Fári, M. Selenium in Agriculture: Water, Air, Soil, Plants, Food, Animals and Nanoselenium. In CO2 Sequestration, Biofuels and Depollution; Environmental Chemistry for a Sustainable World; Springer: Cham, Switzerland, 2015; pp. 153–232. [Google Scholar]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef]
- Dhillon, K.S.; Dhillon, S.K. Genesis of seleniferous soils and associated animal and human health problems. Adv. Agron. 2019, 154, 1–80. [Google Scholar]
- Díaz-Zarco, S.; Montes de Oca-Jiménez, R.; Rodríguez-Domínguez, M.C. Niveles de Selenio en suelo, pasto y en ovejas: Inf luencia del suplemento de Selenio en la concentración de IgG en ovejas gestantes y corderos. Rev. Terra Latinoam. 2022, 40. [Google Scholar] [CrossRef]
- Mozafariyan, M.; Shekari, L.; Hawrylak-Nowak, B.; Kamelmanesh, M.M. Protective Role of Selenium on Pepper Exposed to Cadmium Stress During Reproductive Stage. Biol. Trace Elem. Res. 2014, 160, 97–107. [Google Scholar] [CrossRef]
- El-Ramady, H.; Abdalla, N.; Taha, H.S.; Alshaal, T.; El-Henawy, A.; Faizy, S.E.D.A.; Shams, M.S.; Youssef, S.M.; Shalaby, T.; Bayoumi, Y.; et al. Selenium and nano-selenium in plant nutrition. Environ. Chem. Lett. 2015, 14, 123–147. [Google Scholar] [CrossRef]
- Skrypnik, L.; Feduraev, P.; Golubkina, N.; Maslennikov, P.; Antipina, M.; Katserov, D.; Murariu, O.C.; Tallarita, A.V.; Caruso, G. Foliar spraying of selenium in inorganic and organic forms stimulates plant growth and secondary metabolism of sage (Salvia officinalis L.) through alterations in photosynthesis and primary metabolism. Sci. Hortic. 2024, 338, 113633. [Google Scholar] [CrossRef]
- Cabral Gouveia, G.C.; Galindo, F.S.; Dantas Bereta Lanza, M.G.; Caroline da Rocha Silva, A.; Pereira de Brito Mateus, M.; Souza da Silva, M.; Rimoldi Tavanti, R.F.; Tavanti, T.R.; Lavres, J.; dos Reis, A.R. Selenium toxicity stress-induced phenotypical, biochemical and physiological responses in rice plants: Characterization of symptoms and plant metabolic adjustment. Ecotoxicol. Environ. Saf. 2020, 202, 110916. [Google Scholar] [CrossRef] [PubMed]
- Raza, M.A.S.; Aslam, M.U.; Valipour, M.; Iqbal, R.; Haider, I.; Mustafa, A.E.-Z.M.A.; Elshikh, M.S.; Ali, I.; Roy, R.; Elshamly, A.M.S. Seed priming with selenium improves growth and yield of quinoa plants suffering drought. Sci. Rep. 2024, 14, 886. [Google Scholar] [CrossRef]
- Ameen, M.; Zia, M.A.; Najeeb Alawadi, H.F.; Naqve, M.; Mahmood, A.; Shahzad, A.N.; Khan, B.A.; Alhammad, B.A.; Aljabri, M.; Seleiman, M.F. Exogenous application of selenium on sunflower (Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations. Front. Plant Sci. 2024, 15, 1427420. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Mahmud, J.A.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, H.; Cheng, S.; Xu, F.; Rao, S. Advances in research on influencing factors of selenium enrichment in plants. Plant Growth Regul. 2023, 103, 243–255. [Google Scholar] [CrossRef]
- Bodnar, M.; Konieczka, P.; Namiesnik, J. The Properties, Functions, and Use of Selenium Compounds in Living Organisms. J. Environ. Sci. Health Part C 2012, 30, 225–252. [Google Scholar] [CrossRef]
- Ullah, H.; Liu, G.; Yousaf, B.; Ali, M.U.; Irshad, S.; Abbas, Q.; Ahmad, R. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives. Environ. Geochem. Health 2018, 41, 1003–1035. [Google Scholar] [CrossRef]
- Nie, X.; Luo, D.; Ma, H.; Wang, L.; Yang, C.; Tian, X.; Nie, Y. Different effects of selenium speciation on selenium absorption, selenium transformation and cadmium antagonism in garlic. Food Chem. 2024, 443, 138460. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Zeng, H.; Yang, C.; Wang, G.; Zhou, L. A Review of Selenium (Se) Nanoparticles: From Synthesis to Applications. Part. Part. Syst. Charact. 2023, 40, 2300098. [Google Scholar] [CrossRef]
- Hernández-Díaz, J.A.; Garza-García, J.J.O.; León-Morales, J.M.; Zamudio-Ojeda, A.; Arratia-Quijada, J.; Velázquez-Juárez, G.; López-Velázquez, J.C.; García-Morales, S. Antibacterial Activity of Biosynthesized Selenium Nanoparticles Using Extracts of Calendula officinalis against Potentially Clinical Bacterial Strains. Molecules 2021, 26, 5929. [Google Scholar] [CrossRef] [PubMed]
- Fatima, M.; Maqbool, A.; Sardar, R.; Maqsood, M.F.; Zulfiqar, U. Nano-Selenium: A Green Promising Approach against Abiotic Stresses in Plants. J. Soil Sci. Plant Nutr. 2024, 24, 6000–6023. [Google Scholar] [CrossRef]
- Nag, S.; Kar, S.; Mishra, S.; Stany, B.; Seelan, A.; Mohanto, S.; Haryini, S.S.; Kamaraj, C.; Subramaniyan, V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs)—A state-of-the-art comprehensive update. Int. J. Pharm. 2024, 662, 124535. [Google Scholar] [CrossRef] [PubMed]
- Nie, T.; Wu, H.; Wong, K.-H.; Chen, T. Facile synthesis of highly uniform selenium nanoparticles using glucose as the reductant and surface decorator to induce cancer cell apoptosis. J. Mater. Chem. B 2016, 4, 2351–2358. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, C.; Yuan, W.; Wei, X.; Liu, C.; Huang, J.; Yuan, M.; Wu, Y.; Ling, Q.; Hoffmann, P.R.; et al. Mannose-rich Oligosaccharides-functionalized selenium nanoparticles mediates Macrophage reprogramming and inflammation resolution in ulcerative colitis. Chem. Eng. J. 2022, 435, 131715. [Google Scholar] [CrossRef]
- Li, Q.; Chen, T.; Yang, F.; Liu, J.; Zheng, W. Facile and controllable one-step fabrication of selenium nanoparticles assisted by l-cysteine. Mater. Lett. 2010, 64, 614–617. [Google Scholar] [CrossRef]
- Ge, M.; Zhou, S.; Li, D.; Song, D.; Yang, S.; Xu, M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. J. Hazard. Mater. 2024, 472, 134491. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, W.; Wang, R.; Li, H.; Xia, X.; Zhao, X.; Hu, L.; Chen, T.; Tang, Y.; Zhang, H. Photocarrier relaxation pathways in selenium quantum dots and their application in UV-Vis photodetection. Nanoscale 2020, 12, 11232–11241. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Guo, Y.; Gu, L.; Wu, Y.; Bindra, A.K.; Teo, W.L.; Wu, F.-G.; Zhao, Y. Thiolate-Assisted Route for Constructing Chalcogen Quantum Dots with Photoinduced Fluorescence Enhancement. ACS Appl. Mater. Interfaces 2021, 13, 48449–48456. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Chen, X.; Liu, Y.; Gong, Y.; Yuan, G.; Liu, J.; Chen, L. Defense and inhibition integrated mesoporous nanoselenium delivery system against tomato gray mold. Environ. Sci. Nano 2020, 7, 210–227. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Liu, R.; Xiao, C.; Duan, X.; McClements, D.J.; Liu, X. Delivery of Sesamol Using Polyethylene-Glycol-Functionalized Selenium Nanoparticles in Human Liver Cells in Culture. J. Agric. Food Chem. 2019, 67, 2991–2998. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-K.; Qiu, W.-Y.; Wang, Y.-Y.; Wang, W.-H.; Yang, Y.; Zhang, H.-N. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydr. Polym. 2018, 179, 19–27. [Google Scholar] [CrossRef]
- Valueva, S.V.; Borovikova, L.N. Effect of the Type of Biologically Active Stabilizers on the Spectral and Dimensional Characteristics of Selenium-Containing Hybrid Nanosystems. Russ. J. Phys. Chem. A 2019, 93, 129–134. [Google Scholar] [CrossRef]
- Tran, T.H.; Le, X.C.; Tran, T.N.M.; Nguyen, N.T.T.; Pham, B.N.; Vu, D. Nano selenium–alginate edible coating extends hydroponic strawberry shelf life and provides selenium fortification as a micro-nutrient. Food Biosci. 2023, 53, 102597. [Google Scholar] [CrossRef]
- Shaban, A.S.; Abouzeid, R.; Wu, Q.; Subudhi, P.K. Lignin-containing cellulose nanofiber-selenium nanoparticle hybrid enhances tolerance to salt stress in rice genotypes. Sci. Rep. 2025, 15, 14173. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Nozhkina, O.A.; Tretyakova, M.S.; Graskova, I.A.; Klimenkov, I.V.; Sudakov, N.P.; Alexandrova, G.P.; Sukhov, B.G. Biological Activity and Environmental Safety of Selenium Nanoparticles Encapsulated in Starch Macromolecules. Nanotechnologies Russ. 2020, 15, 96–104. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Nozhkina, O.A.; Ganenko, T.V.; Graskova, I.A.; Sukhov, B.G.; Artem’ev, A.V.; Trofimov, B.A.; Krutovsky, K.V. Selenium Nanocomposites in Natural Matrices as Potato Recovery Agent. Int. J. Mol. Sci. 2021, 22, 4576. [Google Scholar] [CrossRef]
- Sheikhalipour, M.; Mohammadi, S.A.; Esmaielpour, B.; Spanos, A.; Mahmoudi, R.; Mahdavinia, G.R.; Milani, M.H.; Kahnamoei, A.; Nouraein, M.; Antoniou, C.; et al. Seedling nanopriming with selenium-chitosan nanoparticles mitigates the adverse effects of salt stress by inducing multiple defence pathways in bitter melon plants. Int. J. Biol. Macromol. 2023, 242, 124923. [Google Scholar] [CrossRef] [PubMed]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan–Selenium Nanoparticle (Cs–Se NP) Foliar Spray Alleviates Salt Stress in Bitter Melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef]
- Khan, Z.; Chowdhury, D.; Upadhyaya, H. Application of the composite nanoparticles of selenium and chitosan for ameliorating arsenic stress in rice seedlings. Plant Physiol. Biochem. 2025, 220, 109470. [Google Scholar] [CrossRef]
- Yang, C.; Wang, C.; Khan, Z.; Duan, S.; Li, Z.; Shen, H. Algal polysaccharides–Selenium nanoparticles regulate the uptake and distribution of selenium in rice plants. Front. Plant Sci. 2023, 14, 1135080. [Google Scholar] [CrossRef]
- Peng, S.-y.; Yan, J.; Li, M.; Yan, Z.-x.; Wei, H.-y.; Xu, D.-j.; Cheng, X. Preparation of polysaccharide-conjugated selenium nanoparticles from spent mushroom substrates and their growth-promoting effect on rice seedlings. Int. J. Biol. Macromol. 2023, 253, 126789. [Google Scholar] [CrossRef] [PubMed]
- Abouelhamd, N.; Gharib, F.A.E.L.; Amin, A.A.; Ahmed, E.Z. Impact of foliar spray with Se, nano-Se and sodium sulfate on growth, yield and metabolic activities of red kidney bean. Sci. Rep. 2023, 13, 17102. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Blinov, A.V.; Serov, A.V.; Gvozdenko, A.A.; Kravtsov, A.A.; Nagdalian, A.A.; Raffa, V.V.; Maglakelidze, D.G.; Blinova, A.A.; Kobina, A.V.; et al. Effect of Selenium Nanoparticles on Germination of Hordéum Vulgáre Barley Seeds. Coatings 2021, 11, 862. [Google Scholar] [CrossRef]
- Sayed, E.G.; Desoukey, S.F.; Desouky, A.F.; Farag, M.F.; El-kholy, R.I.; Azoz, S.N. Synergistic Influence of Arbuscular mycorrhizal Fungi Inoculation with Nanoparticle Foliar Application Enhances Chili (Capsicum annuum L.) Antioxidant Enzymes, Anatomical Characteristics, and Productivity under Cold-Stress Conditions. Plants 2024, 13, 517. [Google Scholar] [CrossRef] [PubMed]
- Attia, M.S.; Salem, S.S.; Elakraa, A.A.; Abdel-Maksoud, M.A.; Malik, A.; Kiani, B.H.; Malash, M.N.; El-Sayyad, G.S. Promising antagonistic effect of bimetallic silver-selenium nanoparticles against Ralstonia solanacearum-causing wilt disease in eggplant (Solanum melongena L.). Physiol. Mol. Plant Pathol. 2024, 133, 102369. [Google Scholar] [CrossRef]
- Ge, Y.-M.; Xue, Y.; Zhao, X.-F.; Liu, J.-Z.; Xing, W.-C.; Hu, S.-W.; Gao, H.-M. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. Int. J. Biol. Macromol. 2024, 254, 127971. [Google Scholar] [CrossRef]
- Azimi, F.; Oraei, M.; Gohari, G.; Panahirad, S.; Farmarzi, A. Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiol. Biochem. 2021, 167, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Nozhkina, O.A.; Perfileva, A.I.; Graskova, I.A.; Dyakova, A.V.; Nurminsky, V.N.; Klimenkov, I.V.; Ganenko, T.V.; Borodina, T.N.; Aleksandrova, G.P.; Sukhov, B.G.; et al. The Biological Activity of a Selenium Nanocomposite Encapsulated in Carrageenan Macromolecules with Respect to Ring Rot Pathogenesis of Potato Plants. Nanotechnologies Russ. 2020, 14, 255–262. [Google Scholar] [CrossRef]
- Abd El-Aziz, M.E.; Salama, D.M.; Morsi, S.M.M.; Youssef, A.M.; El-Sakhawy, M. Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev. Chem. Eng. 2022, 38, 603–616. [Google Scholar] [CrossRef]
- Inayah, N.N.; Kusumaatmaja, A.; Murtafi’atin, R. Slow-release fertilizer behavior of polyvinyl alcohol (PVA)/urea/TiO2 nanofiber membrane. Polym. Adv. Technol. 2024, 35, e6472. [Google Scholar] [CrossRef]
- Treviño López, E.A.; Sandoval-Rangel, A.; Benavides Mendoza, A.; Benavides Mendoza, A.; Ortega Ortiz, H.; Cadenas Pliego, G.; Cabrera de la Fuente, M. Nanopartículas de selenio absorbidas en hidrogeles de quitosán-polivinil alcohol en la producción de pepino injertado. Rev. Mex. Cienc. Agrícolas 2021, 159–169. [Google Scholar] [CrossRef]
- Routier, C.; Vallan, L.; Daguerre, Y.; Juvany, M.; Istif, E.; Mantione, D.; Brochon, C.; Hadziioannou, G.; Strand, Å.; Näsholm, T.; et al. Chitosan-Modified Polyethyleneimine Nanoparticles for Enhancing the Carboxylation Reaction and Plants’ CO2 Uptake. ACS Nano 2023, 17, 3430–3441. [Google Scholar] [CrossRef]
- Bombin, S.; LeFebvre, M.; Sherwood, J.; Xu, Y.; Bao, Y.; Ramonell, K. Developmental and Reproductive Effects of Iron Oxide Nanoparticles in Arabidopsis thaliana. Int. J. Mol. Sci. 2015, 16, 24174–24193. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Graskova, I.A.; Sukhov, B.G.; Krutovsky, K.V. Effect of Selenium Nanocomposites Based on Natural Polymer Matrices on the Biomass and Storage of Potato Tubers in a Field Experiment. Agronomy 2022, 12, 1281. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Nozhkina, O.A.; Graskova, I.A.; Dyakova, A.V.; Pavlova, A.G.; Aleksandrova, G.P.; Klimenkov, I.V.; Sukhov, B.G.; Trofimov, B.A. Selenium Nanocomposites Having Polysaccharid Matrices Stimulate Growth of Potato Plants in Vitro Infected with Ring Rot Pathogen. Dokl. Biol. Sci. 2020, 489, 184–188. [Google Scholar] [CrossRef]
- Colman, S.L.; Salcedo, M.F.; Iglesias, M.J.; Alvarez, V.A.; Fiol, D.F.; Casalongué, C.A.; Foresi, N.P. Chitosan microparticles mitigate nitrogen deficiency in tomato plants. Plant Physiol. Biochem. 2024, 212, 108728. [Google Scholar] [CrossRef]
- Chakraborty, M.; Hasanuzzaman, M.; Rahman, M.; Khan, M.A.R.; Bhowmik, P.; Mahmud, N.U.; Tanveer, M.; Islam, T. Mechanism of Plant Growth Promotion and Disease Suppression by Chitosan Biopolymer. Agriculture 2020, 10, 624. [Google Scholar] [CrossRef]
- Ningsih, S.; Sari, D.W. Effect of Chitosan on Chlorophyll Content and Phytotoxicity in Brassica juncea L. Techno J. Penelit. 2023, 12, 90–98. [Google Scholar] [CrossRef]
- Rojas-Pirela, M.; Carillo, P.; Lárez-Velásquez, C.; Romanazzi, G. Effects of chitosan on plant growth under stress conditions: Similarities with plant growth promoting bacteria. Front. Plant Sci. 2024, 15, 1423949. [Google Scholar] [CrossRef]
- Ashraf, A.; Dutta, J.; Farooq, A.; Rafatullah, M.; Pal, K.; Kyzas, G.Z. Chitosan-based materials for heavy metal adsorption: Recent advancements, challenges and limitations. J. Mol. Struct. 2024, 1309, 138225. [Google Scholar] [CrossRef]
- Sarwar, N.; Akhtar, M.; Kamran, M.A.; Imran, M.; Riaz, M.A.; Kamran, K.; Hussain, S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020, 93, 103615. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon, M.; Malagoli, M.; Pilon-Smits, E.A.H. Exploring the importance of sulfate transporters and ATP sulphurylases for selenium hyperaccumulation—A comparison of Stanleya pinnata and Brassica juncea (Brassicaceae). Front. Plant Sci. 2015, 6, 2. [Google Scholar] [CrossRef]
- El Kassis, E.; Cathala, N.; Rouached, H.; Fourcroy, P.; Berthomieu, P.; Terry, N.; Davidian, J.-C. Characterization of a Selenate-Resistant Arabidopsis Mutant. Root Growth as a Potential Target for Selenate Toxicity. Plant Physiol. 2007, 143, 1231–1241. [Google Scholar] [CrossRef]
- Hu, T.; Li, H.; Li, J.; Zhao, G.; Wu, W.; Liu, L.; Wang, Q.; Guo, Y. Absorption and Bio-Transformation of Selenium Nanoparticles by Wheat Seedlings (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 597. [Google Scholar] [CrossRef]
- Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: Spotlight on speciation. Br. J. Nutr. 2008, 100, 238–253. [Google Scholar] [CrossRef]
- Rawat, S.; Apodaca, S.A.; Tan, W.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Terrestrial Nanotoxicology: Evaluating the Nano-Biointeractions in Vascular Plants. In Bioactivity of Engineered Nanoparticles; Nanomedicine and Nanotoxicology; Springer: Singapore, 2017; pp. 21–42. [Google Scholar]
- Cheng, B.; Liu, J.; Li, X.; Yue, L.; Cao, X.; Li, J.; Wang, C.; Wang, Z. Bioavailability of selenium nanoparticles in soil and plant: The role of particle size. Environ. Exp. Bot. 2024, 220, 105682. [Google Scholar] [CrossRef]
- Wang, W.-N.; Tarafdar, J.C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanoparticle Res. 2013, 15, 1417. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Li, K.; Wan, Y.; Wang, Q.; Zhuang, Z.; Guo, Y.; Li, H. Uptake, translocation and biotransformation of selenium nanoparticles in rice seedlings (Oryza sativa L.). J. Nanobiotechnol. 2020, 18, 103. [Google Scholar] [CrossRef]
- Azim, Z.; Singh, N.B.; Singh, A.; Amist, N.; Niharika; Khare, S.; Yadav, R.K.; Bano, C.; Yadav, V. A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: Current status and future prospectus. J. Plant Biochem. Biotechnol. 2022, 32, 211–224. [Google Scholar] [CrossRef]
- Aslani, F.; Bagheri, S.; Muhd Julkapli, N.; Juraimi, A.S.; Hashemi, F.S.G.; Baghdadi, A. Effects of Engineered Nanomaterials on Plants Growth: An Overview. Sci. World J. 2014, 2014, 641759. [Google Scholar] [CrossRef]
- Wang, X.; Hussain, B.; Xin, X.; Zou, T.; Huang, X.; Cheng, L.; Wu, Z.; Yang, Y.; Li, Y.; He, Z.; et al. Fate and Physiological Effects of Foliar Selenium Nanoparticles in Wheat. ACS Nano 2025, 19, 21792–21806. [Google Scholar] [CrossRef] [PubMed]
- Husted, S.; Minutello, F.; Pinna, A.; Tougaard, S.L.; Møs, P.; Kopittke, P.M. What is missing to advance foliar fertilization using nanotechnology? Trends Plant Sci. 2023, 28, 90–105. [Google Scholar] [CrossRef]
- Borgatta, J.R.; Lochbaum, C.A.; Elmer, W.H.; White, J.C.; Pedersen, J.A.; Hamers, R.J. Biomolecular corona formation on CuO nanoparticles in plant xylem fluid. Environ. Sci. Nano 2021, 8, 1067–1080. [Google Scholar] [CrossRef]
- Schiavon, M.; Pilon-Smits, E.A.H. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2016, 213, 1582–1596. [Google Scholar] [CrossRef]
- Sabbagh, M.; Van Hoewyk, D. Malformed Selenoproteins Are Removed by the Ubiquitin–Proteasome Pathway in Stanleya pinnata. Plant Cell Physiol. 2012, 53, 555–564. [Google Scholar] [CrossRef]
- Van Hoewyk, D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants. Ann. Bot. 2013, 112, 965–972. [Google Scholar] [CrossRef]
- Sors, T.G.; Ellis, D.R.; Salt, D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res. 2005, 86, 373–389. [Google Scholar] [CrossRef]
- Terry, N.; Zayed, A.M.; de Souza, M.P.; Tarun, A.S. Selenium Inhigherplants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 401–432. [Google Scholar] [CrossRef] [PubMed]
- Malagoli, M.; Schiavon, M.; dall’Acqua, S.; Pilon-Smits, E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant Sci. 2015, 6, 280. [Google Scholar] [CrossRef]
- Jain, R.; Seder-Colomina, M.; Jordan, N.; Dessi, P.; Cosmidis, J.; van Hullebusch, E.D.; Weiss, S.; Farges, F.; Lens, P.N.L. Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J. Hazard. Mater. 2015, 295, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled release micronutrient fertilizers for precision agriculture—A review. Sci. Total Environ. 2020, 712, 136365. [Google Scholar] [CrossRef] [PubMed]
- Domokos-Szabolcsy, E.; Marton, L.; Sztrik, A.; Babka, B.; Prokisch, J.; Fari, M. Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul. 2012, 68, 525–531. [Google Scholar] [CrossRef]
- Qi, W.-Y.; Li, Q.; Chen, H.; Liu, J.; Xing, S.-F.; Xu, M.; Yan, Z.; Song, C.; Wang, S.-G. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. J. Hazard. Mater. 2021, 417, 12590. [Google Scholar] [CrossRef]
- Tendenedzai, J.T.; Chirwa, E.M.N.; Brink, H.G. Harnessing selenium nanoparticles (SeNPs) for enhancing growth and germination, and mitigating oxidative stress in Pisum sativum L. Sci. Rep. 2023, 13, 20379. [Google Scholar] [CrossRef]
- Joshi, S.M.; De Britto, S.; Jogaiah, S. Myco-engineered selenium nanoparticles elicit resistance against tomato late blight disease by regulating differential expression of cellular, biochemical and defense responsive genes. J. Biotechnol. 2021, 325, 196–206. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Shafeev, G.A.; Glinushkin, A.P.; Shkirin, A.V.; Barmina, E.V.; Rakov, I.I.; Simakin, A.V.; Kislov, A.V.; Astashev, M.E.; Vodeneev, V.A.; et al. Production and Use of Selenium Nanoparticles as Fertilizers. ACS Omega 2020, 5, 17767–17774. [Google Scholar] [CrossRef]
- Medrano-Macías, J.; Narvaéz-Ortiz, W.A. Selenium and Nano-Selenium as a New Frontier of Plant Biostimulant. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement; Sustainable Plant Nutrition in a Changing World; Springer International Publishing: Cham, Switzerland, 2022; pp. 41–54. [Google Scholar]
- Khai, H.D.; Hiep, P.P.M.; Tung, H.T.; Phong, T.H.; Mai, N.T.N.; Luan, V.Q.; Cuong, D.M.; Vinh, B.V.T.; Nhut, D.T. Selenium nanoparticles promote adventitious rooting without callus formation at the base of passion fruit cuttings via hormonal homeostasis changes. Sci. Hortic. 2024, 323, 112485. [Google Scholar] [CrossRef]
- Li, W.; Ma, L.; Ye, Y.; Tang, Q.; Shen, Y.; Zou, Z.; Zhou, H.; Liang, C.; Wang, G. Selenium absorption, translocation and biotransformation in pak choi (Brassica chinensis L.) after foliar application of selenium nanoparticles. Food Chem. 2025, 463, 141439. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Ge, C.; Wu, H.; Jing, F.; Wu, S.; Li, H.; Zhou, D. Foliar Selenium Nanoparticles Application Promotes the Growth of Maize (Zea mays L.) Seedlings by Regulating Carbon, Nitrogen and Oxidative Stress Metabolism. Sci. Hortic. 2023, 311, 111816. [Google Scholar] [CrossRef]
- Liu, A.; Xiao, W.; Lai, W.; Wang, J.; Li, X.; Yu, H.; Zha, Y. Potential Application of Selenium and Copper Nanoparticles in Improving Growth, Quality, and Physiological Characteristics of Strawberry under Drought Stress. Agriculture 2024, 14, 1172. [Google Scholar] [CrossRef]
- Khan, Z.; Thounaojam, T.C.; Chowdhury, D.; Upadhyaya, H. The role of selenium and nano selenium on physiological responses in plant: A review. Plant Growth Regul. 2023, 100, 409–433. [Google Scholar] [CrossRef]
- de los Ángeles Sariñana-Navarrete, M.; Benavides-Mendoza, A.; González-Morales, S.; Juárez-Maldonado, A.; Preciado-Rangel, P.; Sánchez-Chávez, E.; Cadenas-Pliego, G.; Antonio-Bautista, A.; Morelos-Moreno, Á. Selenium Seed Priming and Biostimulation Influence the Seed Germination and Seedling Morphology of Jalapeño (Capsicum annuum L.). Horticulturae 2024, 10, 119. [Google Scholar] [CrossRef]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; León-Morales, J.M.; Velázquez-Juárez, G.; Zamudio-Ojeda, A.; Arratia-Quijada, J.; Reyes-Maldonado, O.K.; López-Velázquez, J.C.; García-Morales, S. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. J. Nanobiotechnol. 2023, 21, 252. [Google Scholar] [CrossRef]
- Garza-García, J.J.O.; Hernández-Díaz, J.A.; Zamudio-Ojeda, A.; León-Morales, J.M.; Guerrero-Guzmán, A.; Sánchez-Chiprés, D.R.; López-Velázquez, J.C.; García-Morales, S. The Role of Selenium Nanoparticles in Agriculture and Food Technology. Biol. Trace Elem. Res. 2021, 200, 2528–2548. [Google Scholar] [CrossRef]
- Sotoodehnia-Korani, S.; Iranbakhsh, A.; Ebadi, M.; Majd, A.; Oraghi Ardebili, Z. Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ. Pollut. 2020, 265, 114727. [Google Scholar] [CrossRef]
- Daler, S.; Korkmaz, N.; Kılıç, T.; Hatterman-Valenti, H.; Karadağ, A.; Kaya, O. Modulatory effects of selenium nanoparticles against drought stress in some grapevine rootstock/scion combinations. Chem. Biol. Technol. Agric. 2024, 11, 108. [Google Scholar] [CrossRef]
- Rajaee Behbahani, S.; Iranbakhsh, A.; Ebadi, M.; Majd, A.; Ardebili, Z.O. Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PLoS ONE 2020, 15, e0235556. [Google Scholar] [CrossRef]
- Kang, L.; Wu, Y.; Jia, Y.; Chen, Z.; Kang, D.; Zhang, L.; Pan, C. Nano-selenium enhances melon resistance to Podosphaera xanthii by enhancing the antioxidant capacity and promoting alterations in the polyamine, phenylpropanoid and hormone signaling pathways. J. Nanobiotechnol. 2023, 21, 377. [Google Scholar] [CrossRef]
- Kang, L.; Wu, Y.; Zhang, J.; An, Q.; Zhou, C.; Li, D.; Pan, C. Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis melo L.) plants. Ecotoxicol. Environ. Saf. 2022, 241, 113777. [Google Scholar] [CrossRef]
- Sarkar, R.D.; Kalita, M.C. Se nanoparticles stabilized with Allamanda cathartica L. flower extract inhibited phytopathogens and promoted mustard growth under salt stress. Heliyon 2022, 8, e09076. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.M.; Abdelrahman, M.; Hosseini, M.S.; Hoveizeh, N.F.; Tran, L.-S.P. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ. Pollut. 2019, 253, 246–258. [Google Scholar] [CrossRef]
- Soleymanzadeh, R.; Iranbakhsh, A.; Habibi, G.; Ardebili, Z.O. Selenium nanoparticle protected strawberry against salt stress through modifications in salicylic acid, ion homeostasis, antioxidant machinery, and photosynthesis performance. Acta Biol. Cracoviensia s. Bot. 2020, 62, 33–42. [Google Scholar] [CrossRef]
- Mrština, T.; Praus, L.; Száková, J.; Kaplan, L.; Tlustoš, P. Foliar Biofortification of Maize (Zea mays L.) with Selenium: Effects of Compound Type, Application Rate, and Growth Stage. Agriculture 2024, 14, 2105. [Google Scholar] [CrossRef]
- Wang, M.; Mu, C.; Li, Y.; Wang, Y.; Ma, W.; Ge, C.; Cheng, C.; Shi, G.; Li, H.; Zhou, D. Foliar application of selenium nanoparticles alleviates cadmium toxicity in maize (Zea mays L.) seedlings: Evidence on antioxidant, gene expression, and metabolomics analysis. Sci. Total Environ. 2023, 899, 165521. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, R.; Li, F.; Yu, S.; Nie, Y.; Li, J.-Q.; Pan, C.; Zhu, W.; Zhou, Z.; Diao, J. Nano-selenium repaired the damage caused by fungicides on strawberry flavor quality and antioxidant capacity by regulating ABA biosynthesis and ripening-related transcription factors. Pestic. Biochem. Physiol. 2024, 198, 105753. [Google Scholar] [CrossRef]
- Ahmad, I.; Younas, Z.; Mashwani, Z.-u.-R.; Raja, N.I.; Akram, A. Phytomediated Selenium Nanoparticles Improved Physio-morphological, Antioxidant, and Oil Bioactive Compounds of Sesame under Induced Biotic Stress. ACS Omega 2023, 8, 3354–3366. [Google Scholar] [CrossRef] [PubMed]
- Babajani, A.; Iranbakhsh, A.; Oraghi Ardebili, Z.; Eslami, B. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ. Sci. Pollut. Res. 2019, 26, 24430–24444. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.-S.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef] [PubMed]
- Sariñana-Navarrete, M.d.l.Á.; Morelos-Moreno, Á.; Sánchez, E.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; Preciado-Rangel, P. Selenium Nanoparticles Improve Quality, Bioactive Compounds and Enzymatic Activity in Jalapeño Pepper Fruits. Agronomy 2023, 13, 652. [Google Scholar] [CrossRef]
- Amin, M.A.; Ismail, M.A.; Badawy, A.A.; Awad, M.A.; Hamza, M.F.; Awad, M.F.; Fouda, A. The Potency of Fungal-Fabricated Selenium Nanoparticles to Improve the Growth Performance of Helianthus annuus L. and Control of Cutworm Agrotis ipsilon. Catalysts 2021, 11, 1551. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Saad, A.M.; Najjar, A.A.; Alzahrani, S.O.; Alkhatib, F.M.; Shafi, M.E.; Selem, E.; Desoky, E.-S.M.; Fouda, S.E.E.; El-Tahan, A.M.; et al. The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi J. Biol. Sci. 2021, 28, 4461–4471. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.A.; Heikal, Y.M.; Zayed, E.M.; Shamseldin, S.A.M.; Salama, Y.E.; Amer, K.E.; Basuoni, M.M.; Abd Ellatif, S.; Mohamed, A.H. Conferring of Drought and Heat Stress Tolerance in Wheat (Triticum aestivum L.) Genotypes and Their Response to Selenium Nanoparticles Application. Nanomaterials 2023, 13, 998. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Fatima, N.; Mashwani, Z.-u.-R.; Akram, A.; Haq, E.u.; Mehak, A.; Abasi, F.; Ajmal, M.; Yousaf, T.; Raja, N.I.; et al. Effect of Phytosynthesized Selenium and Cerium Oxide Nanoparticles on Wheat (Triticum aestivum L.) against Stripe Rust Disease. Molecules 2022, 27, 8149. [Google Scholar] [CrossRef]
- Ikram, M.; Raja, N.I.; Javed, B.; Mashwani, Z.-u.-R.; Hussain, M.; Hussain, M.; Ehsan, M.; Rafique, N.; Malik, K.; Sultana, T.; et al. Foliar applications of bio-fabricated selenium nanoparticles to improve the growth of wheat plants under drought stress. Green Process. Synth. 2020, 9, 706–714. [Google Scholar] [CrossRef]
- Ghazi, A.A.; El-Nahrawy, S.; El-Ramady, H.; Ling, W. Biosynthesis of Nano-Selenium and Its Impact on Germination of Wheat under Salt Stress for Sustainable Production. Sustainability 2022, 14, 1784. [Google Scholar] [CrossRef]
- Zafar, S.; Hasnain, Z.; Danish, S.; Battaglia, M.L.; Fahad, S.; Ansari, M.J.; Alharbi, S.A. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biol. 2024, 24, 35. [Google Scholar] [CrossRef]
- Wang, M.; Mu, C.; Lin, X.; Ma, W.; Wu, H.; Si, D.; Ge, C.; Cheng, C.; Zhao, L.; Li, H.; et al. Foliar Application of Nanoparticles Reduced Cadmium Content in Wheat (Triticum aestivum L.) Grains via Long-Distance “Leaf–Root–Microorganism” Regulation. Environ. Sci. Technol. 2024, 58, 6900–6912. [Google Scholar] [CrossRef] [PubMed]
- Sardari, M.; Rezayian, M.; Niknam, V. Comparative Study for the Effect of Selenium and Nano-Selenium on Wheat Plants Grown under Drought Stress. Russ. J. Plant Physiol. 2022, 69, 127. [Google Scholar] [CrossRef]
- El-Badri, A.M.; Hashem, A.M.; Batool, M.; Sherif, A.; Nishawy, E.; Ayaad, M.; Hassan, H.M.; Elrewainy, I.M.; Wang, J.; Kuai, J.; et al. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. J. Nanobiotechnol. 2022, 20, 163. [Google Scholar] [CrossRef]
- Farooq, M.A.; Islam, F.; Ayyaz, A.; Chen, W.; Noor, Y.; Hu, W.; Hannan, F.; Zhou, W. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut. 2022, 292, 118473. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yan, J.; Qin, Y.; Xu, J.; Shohag, M.J.I.; Wei, Y.; Gu, M. Effect of Different Forms of Selenium on the Physiological Response and the Cadmium Uptake by Rice under Cadmium Stress. Int. J. Environ. Res. Public Health 2020, 17, 6991. [Google Scholar] [CrossRef]
- Setty, J.; Samant, S.B.; Yadav, M.K.; Manjubala, M.; Pandurangam, V. Beneficial effects of bio-fabricated selenium nanoparticles as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Sci. Rep. 2023, 13, 22349. [Google Scholar] [CrossRef]
- Freire, B.M.; Lange, C.N.; Cavalcanti, Y.T.; Seabra, A.B.; Batista, B.L. Ionomic Profile of Rice Seedlings after Foliar Application of Selenium Nanoparticles. Toxics 2024, 12, 482. [Google Scholar] [CrossRef]
- Freire, B.M.; Lange, C.N.; Cavalcanti, Y.T.; Monteiro, L.R.; Pieretti, J.C.; Seabra, A.B.; Batista, B.L. The dual effect of Selenium nanoparticles in rice seedlings: From increasing antioxidant activity to inducing oxidative stress. Plant Stress 2024, 11, 100372. [Google Scholar] [CrossRef]
- Shang, H.; Li, C.; Cai, Z.; Hao, Y.; Cao, Y.; Jia, W.; Han, L.; White, J.C.; Ma, C.; Xing, B. Biosynthesized Selenium Nanoparticles as an Effective Tool to Combat Soil Metal Stresses in Rice (Oryza sativa L.). ACS Nano 2024, 18, 19636–19648. [Google Scholar] [CrossRef]
- Li, D.; An, Q.; Wu, Y.; Li, J.-Q.; Pan, C. Foliar Application of Selenium Nanoparticles on Celery Stimulates Several Nutrient Component Levels by Regulating the α-Linolenic Acid Pathway. ACS Sustain. Chem. Eng. 2020, 8, 10502–10510. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V.V. High-Temperature Stress Alleviation by Selenium Nanoparticle Treatment in Grain Sorghum. ACS Omega 2018, 3, 2479–2491. [Google Scholar] [CrossRef]
- Abdelsalam, A.; El-Sayed, H.; Hamama, H.M.; Morad, M.Y.; Aloufi, A.S.; Abd El-Hameed, R.M. Biogenic Selenium Nanoparticles: Anticancer, Antimicrobial, Insecticidal Properties and Their Impact on Soybean (Glycine max L.) Seed Germination and Seedling Growth. Biology 2023, 12, 1361. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, M.; Wang, X.; Salam, A.; Wu, H.; Li, S.; Zhu, S.; Chang, J.; Chen, X.; Zhang, Z.; Zhang, P. Selenium Nanoparticles Boost the Drought Stress Response of Soybean by Enhancing Pigment Accumulation, Oxidative Stress Management and Ultrastructural Integrity. Agronomy 2024, 14, 1372. [Google Scholar] [CrossRef]
- Zsiros, O.; Nagy, V.; Párducz, Á.; Nagy, G.; Ünnep, R.; El-Ramady, H.; Prokisch, J.; Lisztes-Szabó, Z.; Fári, M.; Csajbók, J.; et al. Effects of selenate and red Se-nanoparticles on the photosynthetic apparatus of Nicotiana tabacum. Photosynth. Res. 2018, 139, 449–460. [Google Scholar] [CrossRef]
- García-Locascio, E.; Valenzuela, E.I.; Cervantes-Avilés, P. Impact of seed priming with Selenium nanoparticles on germination and seedlings growth of tomato. Sci. Rep. 2024, 14, 6726. [Google Scholar] [CrossRef] [PubMed]
- Evstatiev, B.I.; García-Locascio, E.; Valenzuela, E.I.; Cervantes-Avilés, P.; Mihailov, N.P. Effects of seed priming and foliar application of Se nanoparticles in the germination, seedling growth, and reproductive stage of tomato and maize. BIO Web Conf. 2024, 122, 01014. [Google Scholar] [CrossRef]
- Ishtiaq, M.; Mazhar, M.W.; Maqbool, M.; Hussain, T.; Hussain, S.A.; Casini, R.; Abd-ElGawad, A.M.; Elansary, H.O. Seed Priming with the Selenium Nanoparticles Maintains the Redox Status in the Water Stressed Tomato Plants by Modulating the Antioxidant Defense Enzymes. Plants 2023, 12, 1556. [Google Scholar] [CrossRef] [PubMed]
- Neysanian, M.; Iranbakhsh, A.; Ahmadvand, R.; Oraghi Ardebili, Z.; Ebadi, M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS ONE 2020, 16, e0250192. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.; Quiterio-Gutiérrez, T.; Cadenas-Pliego, G.; Ortega-Ortiz, H.; Hernández-Fuentes, A.D.; Cabrera de la Fuente, M.; Valdés-Reyna, J.; Juárez-Maldonado, A. Impact of Selenium and Copper Nanoparticles on Yield, Antioxidant System, and Fruit Quality of Tomato Plants. Plants 2019, 8, 355. [Google Scholar] [CrossRef]
- Morales-Espinoza, M.C.; Cadenas-Pliego, G.; Pérez-Alvarez, M.; Hernández-Fuentes, A.D.; Cabrera de la Fuente, M.; Benavides-Mendoza, A.; Valdés-Reyna, J.; Juárez-Maldonado, A. Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress. Molecules 2019, 24, 3030. [Google Scholar] [CrossRef]
- Quiterio-Gutiérrez, T.; Ortega-Ortiz, H.; Cadenas-Pliego, G.; Hernández-Fuentes, A.D.; Sandoval-Rangel, A.; Benavides-Mendoza, A.; Cabrera-de la Fuente, M.; Juárez-Maldonado, A. The Application of Selenium and Copper Nanoparticles Modifies the Biochemical Responses of Tomato Plants under Stress by Alternaria solani. Int. J. Mol. Sci. 2019, 20, 1950. [Google Scholar] [CrossRef]
- Ahmad, A.; Javad, S.; Iqbal, S.; Shahzadi, K.; Gatasheh, M.K.; Javed, T. Alleviation potential of green-synthesized selenium nanoparticles for cadmium stress in Solanum lycopersicum L.: Modulation of secondary metabolites and physiochemical attributes. Plant Cell Rep. 2024, 43, 113. [Google Scholar] [CrossRef] [PubMed]
- Chernikova, O.; Mazhayskiy, Y.; Ampleeva, L. Selenium in nanosized form as an alternative to microfertilizers. Agron. Res. 2019, 17, 974–981. [Google Scholar] [CrossRef]
- Rady, M.M.; Desoky, E.-S.M.; Ahmed, S.M.; Majrashi, A.; Ali, E.F.; Arnaout, S.M.A.I.; Selem, E. Foliar Nourishment with Nano-Selenium Dioxide Promotes Physiology, Biochemistry, Antioxidant Defenses, and Salt Tolerance in Phaseolus vulgaris. Plants 2021, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, M.; Rajeswari, V.D. Green synthesis of selenium nanoparticles using leaf extract of Moringa oleifera, their biological applications, and effects on the growth of Phaseolus vulgaris-: Agricultural synthetic biotechnology for sustainable nutrition. Biocatal. Agric. Biotechnol. 2024, 55, 102978. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, J.; Wang, G.; Zhou, L. Selenium Nanoparticles for Antioxidant Activity and Selenium Enrichment in Plants. ACS Appl. Nano Mater. 2024, 7, 12881–12890. [Google Scholar] [CrossRef]
- Nagdalian, A.A.; Blinov, A.V.; Siddiqui, S.A.; Gvozdenko, A.A.; Golik, A.B.; Maglakelidze, D.G.; Rzhepakovsky, I.V.; Kukharuk, M.Y.; Piskov, S.I.; Rebezov, M.B.; et al. Effect of selenium nanoparticles on biological and morphofunctional parameters of barley seeds (Hordéum vulgáre L.). Sci. Rep. 2023, 13, 6453. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Folmanis, G.E.; Tananaev, I.G.; Krivenkov, L.V.; Kosheleva, O.V.; Soldatenko, A.V. Comparative Evaluation of Spinach Biofortification with Selenium Nanoparticles and Ionic Forms of the Element. Nanotechnologies Russ. 2018, 12, 569–576. [Google Scholar] [CrossRef]
- Di, X.; Jing, R.; Xie, S.; Sun, Y.; Huang, Q. Biofortification of bok choy with selenium nanoparticles and its inhibitory effects on cadmium accumulation. Plant Soil 2023, 494, 701–716. [Google Scholar] [CrossRef]
- Tu, J.; Wu, J.; Huang, X.; Zhou, C. Foliar Spraying Biosynthetic Nanoselenium Alleviates Cd Stress through Changes in Growth, Cd Uptake and Nutritional Quality of pak choi (Brassica chinensis L.). J. Soil Sci. Plant Nutr. 2024, 24, 2946–2958. [Google Scholar] [CrossRef]
- Salem, F.; Rahman, R.A.; Tammam, A. Effects of Enterobacter cloacae extract, selenium nanoparticles and methyl jasmonate on shoot liquid cultures of Sarcocornia fruticosa under salinity stress. BMC Plant Biol. 2025, 25, 42. [Google Scholar] [CrossRef]
- Sindireva, A.; Golubkina, N.; Bezuglova, H.; Fedotov, M.; Alpatov, A.; Erdenotsogt, E.; Sękara, A.; Murariu, O.C.; Caruso, G. Effects of High Doses of Selenate, Selenite and Nano-Selenium on Biometrical Characteristics, Yield and Biofortification Levels of Vicia faba L. Cultivars. Plants 2023, 12, 2847. [Google Scholar] [CrossRef]
- Logvinenko, L.; Golubkina, N.; Fedotova, I.; Bogachuk, M.; Fedotov, M.; Kataev, V.; Alpatov, A.; Shevchuk, O.; Caruso, G. Effect of Foliar Sodium Selenate and Nano Selenium Supply on Biochemical Characteristics, Essential Oil Accumulation and Mineral Composition of Artemisia annua L. Molecules 2022, 27, 8246. Molecules 2022, 27, 8246. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Jia, Y.; Wu, Y.; Liu, H.; Zhao, D.; Ju, Y.; Pan, C.; Mao, J. Selenium Nanoparticle and Melatonin Treatments Improve Melon Seedling Growth by Regulating Carbohydrate and Polyamine. Int. J. Mol. Sci. 2024, 25, 7830. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Erland, L.A.E. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. Front. Plant Sci. 2021, 12, 683047. [Google Scholar] [CrossRef]
- Samanta, S.; Roychoudhury, A. Crosstalk of melatonin with major phytohormones and growth regulators in mediating abiotic stress tolerance in plants. S. Afr. J. Bot. 2023, 163, 201–216. [Google Scholar] [CrossRef]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2021, 38, 39–67. [Google Scholar] [CrossRef]
- Nedjimi, B. Selenium as a powerful trace element for mitigation of plant salt stress: A review. J. Trace Elem. Miner. 2024, 8, 100123. [Google Scholar] [CrossRef]
- Saeedi, R.; Seyedi, A.; Esmaeilizadeh, M.; Seyedi, N.; Morteza Zahedi, S.; Malekzadeh, M.R. Improving the performance of the photosynthetic apparatus of Citrus sinensis with the use of chitosan-selenium nanocomposite (CS + Se NPs) under salinity stress. BMC Plant Biol. 2024, 24, 745. [Google Scholar] [CrossRef]
- Sattar, A.; Cheema, M.A.; Sher, A.; Ijaz, M.; Ul-Allah, S.; Nawaz, A.; Abbas, T.; Ali, Q. Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiol. Plant 2019, 41, 146. [Google Scholar] [CrossRef]
- Samanta, S.; Seth, C.S.; Roychoudhury, A. The molecular paradigm of reactive oxygen species (ROS) and reactive nitrogen species (RNS) with different phytohormone signaling pathways during drought stress in plants. Plant Physiol. Biochem. 2024, 206, 108259. [Google Scholar] [CrossRef] [PubMed]
- Sieprawska, A.; Kornaś, A.; Filek, M. Involvement of Selenium in Protective Mechanisms of Plants under Environmental Stress Conditions—Review. Acta Biol. Cracoviensia s. Bot. 2015, 57, 9–20. [Google Scholar] [CrossRef]
- Rady, M.M.; Belal, H.E.E.; Gadallah, F.M.; Semida, W.M. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Sci. Hortic. 2020, 266, 109290. [Google Scholar] [CrossRef]
- Ahmad, R.; Waraich, E.A.; Nawaz, F.; Ashraf, M.Y.; Khalid, M. Selenium (Se) improves drought tolerance in crop plants—A myth or fact? J. Sci. Food Agric. 2015, 96, 372–380. [Google Scholar] [CrossRef]
- Sardar, R.; Ahmed, S.; Shah, A.A.; Yasin, N.A. Selenium nanoparticles reduced cadmium uptake, regulated nutritional homeostasis and antioxidative system in Coriandrum sativum grown in cadmium toxic conditions. Chemosphere 2022, 287, 132332. [Google Scholar] [CrossRef]
- Hussain, B.; Ashraf, M.N.; Shafeeq-ur-Rahman; Abbas, A.; Li, J.; Farooq, M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar] [CrossRef]
- Yuan, Z.; Cai, S.; Yan, C.; Rao, S.; Cheng, S.; Xu, F.; Liu, X. Research Progress on the Physiological Mechanism by Which Selenium Alleviates Heavy Metal Stress in Plants: A Review. Agronomy 2024, 14, 1787. [Google Scholar] [CrossRef]
- Zhu, Y.; Dong, Y.; Zhu, N.; Jin, H. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. Ecotoxicol. Environ. Saf. 2022, 240, 113681. [Google Scholar] [CrossRef]
- Semenova, N.A.; Nikulina, E.A.; Tsirulnikova, N.V.; Godyaeva, M.M.; Uyutova, N.I.; Baimler, I.V.; Simakin, A.V.; Stepanova, E.V.; Gudkov, S.V. Application of 2-Iminoselenazolidin-4-Ones (ISeA) for Beta vulgaris L. and Brassica rapa L. Plants Se-Biofortification. Agronomy 2024, 14, 1407. [Google Scholar] [CrossRef]
- Shiriaev, A.; Brizzolara, S.; Sorce, C.; Meoni, G.; Vergata, C.; Martinelli, F.; Maza, E.; Djari, A.; Pirrello, J.; Pezzarossa, B.; et al. Selenium Biofortification Impacts the Tomato Fruit Metabolome and Transcriptional Profile at Ripening. J. Agric. Food Chem. 2023, 71, 13554–13565. [Google Scholar] [CrossRef]
- Salem, M.F.; Tayel, A.A.; Alzuaibr, F.M.; Bakr, R.A. Innovative Approach for Controlling Black Rot of Persimmon Fruits by Means of Nanobiotechnology from Nanochitosan and Rosmarinic Acid-Mediated Selenium Nanoparticles. Polymers 2022, 14, 2116. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, Q.; Chen, C.; Li, Q.; Lin, H.; Bai, S.; Zhao, J.; Li, J.; Wang, K.; Zhu, M. Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). Lwt 2023, 175, 114496. [Google Scholar] [CrossRef]
- Saijo, Y.; Loo, E.P.i. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 2019, 225, 87–104. [Google Scholar] [CrossRef]
- Danquah, A.; de Zelicourt, A.; Colcombet, J.; Hirt, H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. 2014, 32, 40–52. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kidokoro, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulatory networks in plant responses to drought and cold stress. Plant Physiol. 2024, 195, 170–189. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, Y.; Asadi, M.; Zahedi, S.M.; Venditti, A. Selenium nanoparticles improved biochemical and physiological properties and antioxidant systems of savoury under drought stress. Nat. Prod. Res. 2024, 39, 1188–1198. [Google Scholar] [CrossRef]
- Hernández-Fuentes, A.D.; Montaño-Herrera, A.; Pinedo-Espinoza, J.M.; Pinedo-Guerrero, Z.H.; López-Palestina, C.U. Changes of the antioxidant system in pear (Pyrus communis L.) fruits by foliar application of copper, selenium, iron, and zinc nanoparticles. J. Agric. Food Res. 2023, 14, 100885. [Google Scholar] [CrossRef]
- do Carmo Santos, M.L.; Santos, T.A.; dos Santos Lopes, N.; Macedo Ferreira, M.; Martins Alves, A.M.; Pirovani, C.P.; Micheli, F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. Plant Physiol. Biochem. 2024, 207, 108332. [Google Scholar] [CrossRef]
- Hussein, H.-A.A.; Darwesh, O.M.; Mekki, B.B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal. Agric. Biotechnol. 2019, 18, 101080. [Google Scholar] [CrossRef]
- Zhou, C.; Li, D.; Shi, X.; Zhang, J.; An, Q.; Wu, Y.; Kang, L.; Li, J.-Q.; Pan, C. Nanoselenium Enhanced Wheat Resistance to Aphids by Regulating Biosynthesis of DIMBOA and Volatile Components. J. Agric. Food Chem. 2021, 69, 14103–14114. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Serov, D.A.; Khabatova, V.V.; Vodeneev, V.; Li, R.; Gudkov, S.V. A Review of the Antibacterial, Fungicidal and Antiviral Properties of Selenium Nanoparticles. Materials 2023, 16, 5363. [Google Scholar] [CrossRef]
- Tayel, A.A.; Ebaid, A.M.; Otian, A.M.; Mahrous, H.; El Rabey, H.A.; Salem, M.F. Application of edible nanocomposites from chitosan/fenugreek seed mucilage/selenium nanoparticles for protecting lemon from green mold. Int. J. Biol. Macromol. 2024, 273, 133109. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.H.; Abdelaziz, A.M.; Askar, A.A.; Fouda, H.M.; Khalil, A.M.A.; Abd-Elsalam, K.A.; Khaleil, M.M. Bacillus megaterium-Mediated Synthesis of Selenium Nanoparticles and Their Antifungal Activity against Rhizoctonia solani in Faba Bean Plants. J. Fungi 2021, 7, 195. [Google Scholar] [CrossRef]
- Xu, X.; Wang, J.; Wu, H.; Cui, X.; Hou, D.; Cui, J.; Lu, R.; Lin, A. Synthesis and Characterization of Chitosan Oligosaccharide Selenium Nanoparticles and Selenium Enrichment Evaluation and Mechanism on Soybean Sprouts. ACS Agric. Sci. Technol. 2022, 3, 67–81. [Google Scholar] [CrossRef]
- Hossain, A.; Skalicky, M.; Brestic, M.; Maitra, S.; Sarkar, S.; Ahmad, Z.; Vemuri, H.; Garai, S.; Mondal, M.; Bhatt, R.; et al. Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021, 26, 881. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, J.; Berkelaar, E. Plant Uptake and Translocation of Inorganic and Organic Forms of Selenium. Arch. Environ. Contam. Toxicol. 2013, 65, 458–465. [Google Scholar] [CrossRef]
- Wu, Z.; Bañuelos, G.S.; Lin, Z.-Q.; Liu, Y.; Yuan, L.; Yin, X.; Li, M. Biofortification and phytoremediation of selenium in China. Front. Plant Sci. 2015, 6, 136. [Google Scholar] [CrossRef]
- Bañuelos, G.S.; Arroyo, I.; Pickering, I.J.; Yang, S.I.; Freeman, J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015, 166, 603–608. [Google Scholar] [CrossRef]
- Huang, R.; Bañuelos, G.S.; Zhao, J.; Wang, Z.; Farooq, M.R.; Yang, Y.; Song, J.; Zhang, Z.; Chen, Y.; Yin, X.; et al. Comprehensive evaluation of factors influencing selenium fertilization biofortification. J. Sci. Food Agric. 2024, 104, 6100–6107. [Google Scholar] [CrossRef]
- Ikram, M.; Javed, B.; Raja, N.I.; Mashwani, Z.-u.-R. Biomedical Potential of Plant-Based Selenium Nanoparticles: A Comprehensive Review on Therapeutic and Mechanistic Aspects. Int. J. Nanomed. 2021, 16, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Alam, H.; Khatoon, N.; Raza, M.; Ghosh, P.C.; Sardar, M. Synthesis and Characterization of Nano Selenium Using Plant Biomolecules and Their Potential Applications. BioNanoScience 2018, 9, 96–104. [Google Scholar] [CrossRef]
- Fardsadegh, B.; Vaghari, H.; Mohammad-Jafari, R.; Najian, Y.; Jafarizadeh-Malmiri, H. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Process. Synth. 2019, 8, 191–198. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.-J.; Sun, X.-D.; Zhang, M.; Duan, J.-L.; Xiao, F.; Lin, Y.; Zhu, F.-P.; Kong, X.-P.; Ding, Z.; et al. Incorporation of Selenium Derived from Nanoparticles into Plant Proteins In Vivo. ACS Nano 2023, 17, 15847–15856. [Google Scholar] [CrossRef]
- Perfileva, A.I.; Tsivileva, O.M.; Nozhkina, O.A.; Karepova, M.S.; Graskova, I.A.; Ganenko, T.V.; Sukhov, B.G.; Krutovsky, K.V. Effect of Natural Polysaccharide Matrix-Based Selenium Nanocomposites on Phytophthora cactorum and Rhizospheric Microorganisms. Nanomaterials 2021, 11, 2274. [Google Scholar] [CrossRef] [PubMed]
- Farré, M.; Gajda-Schrantz, K.; Kantiani, L.; Barceló, D. Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal. Bioanal. Chem. 2008, 393, 81–95. [Google Scholar] [CrossRef]
- Fan, S.; Yang, Y.; Sun, L.; Yu, B.; Dai, C.; Qu, Y. Different toxicity to liver and gill of zebrafish by selenium nanoparticles derived from bio/chemical methods. Environ. Sci. Pollut. Res. 2022, 29, 61512–61521. [Google Scholar] [CrossRef]
- Selmani, A.; Ulm, L.; Kasemets, K.; Kurvet, I.; Erceg, I.; Barbir, R.; Pem, B.; Santini, P.; Marion, I.D.; Vinković, T.; et al. Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings. Chemosphere 2020, 250, 126265. [Google Scholar] [CrossRef]
- Zohra, E.; Ikram, M.; Omar, A.A.; Hussain, M.; Satti, S.H.; Raja, N.I.; Mashwani, Z.-U.-R.; Ehsan, M. Potential applications of biogenic selenium nanoparticles in alleviating biotic and abiotic stresses in plants: A comprehensive insight on the mechanistic approach and future perspectives. Green Process. Synth. 2021, 10, 456–475. [Google Scholar] [CrossRef]
- Nedjimi, B. The role of selenium and selenium nanoparticles in enhancing plant tolerance to cadmium stress: A sustainable approach. Discov. Plants 2025, 2, 129. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Nazerieh, H.; Ardebili, Z.O.; Iranbakhsh, A. Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric. Slov. 2018, 111, 357–368. [Google Scholar] [CrossRef]
- Abedi, S.; Iranbakhsh, A.; Oraghi Ardebili, Z.; Ebadi, M. Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): Potential benefits and risk assessment. Environ. Sci. Pollut. Res. 2020, 28, 3136–3148. [Google Scholar] [CrossRef]
- Ragavan, P.; Ananth, A.; Rajan, M.R. Impact of Selenium Nanoparticles on Growth, Biochemical Characteristics and Yield of Cluster Bean Cyamopsis tetragonoloba. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2917–2926. [Google Scholar] [CrossRef]
- Zeid, I.; Gharib, Z.; Ghazi, S.; Ahmed, E. Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. J. Plant Physiol. Pathol. 2019, 7, 1. [Google Scholar] [CrossRef]
- Li, D.; Zhou, C.; Zhang, J.; An, Q.; Wu, Y.; Li, J.-Q.; Pan, C. Nanoselenium Foliar Applications Enhance the Nutrient Quality of Pepper by Activating the Capsaicinoid Synthetic Pathway. J. Agric. Food Chem. 2020, 68, 9888–9895. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, S.; Li, K.; Guo, Y. Selenium Nanoparticles Regulate Antioxidant Enzymes and Flavonoid Compounds in Fagopyrum dibotrys. Plants 2024, 13, 3098. [Google Scholar] [CrossRef]
- Mateus, M.P.d.B.; Tavanti, R.F.R.; Tavanti, T.R.; Santos, E.F.; Jalal, A.; Reis, A.R.d. Selenium biofortification enhances ROS scavenge system increasing yield of coffee plants. Ecotoxicol. Environ. Saf. 2021, 209, 111772. [Google Scholar] [CrossRef]
- José Rodrigues Cruz, F. Selenium in Plants: Biofortification, Toxicity, and Redox State Balance. In The Power of Antioxidants—Unleashing Nature’s Defense Against Oxidative Stress; Biochemistry; IntechOpen: London, UK, 2025. [Google Scholar]
- Semenova, N.A.; Burmistrov, D.E.; Shumeyko, S.A.; Gudkov, S.V. Fertilizers Based on Nanoparticles as Sources of Macro- and Microelements for Plant Crop Growth: A Review. Agronomy 2024, 14, 1646. [Google Scholar] [CrossRef]
- Mathur, P.; Chakraborty, R.; Aftab, T.; Roy, S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. Plant Physiol. Biochem. 2023, 199, 107721. [Google Scholar] [CrossRef]
Plant | Composition | Synthesis Method | Size (nm) | Treatment Method | Concentrations | Maximal Effective conc. | Effects | Ref. |
---|---|---|---|---|---|---|---|---|
Strawberry (Fragaria × ananassa) | Se NPs + alginate | γ-irradiation with sodium alginate | 94 | Fruit covering | 75, 150, 300 mg/L | 150 mg/L | ↓ growth of Neopestalotiopsis rosae and Fusarium oxysporum, ↑ Se content ~2 times, ↑ fruit hardness by 26%, ↓ fruit weight loss by 3 times, ↑ preservation of appearance during storage, ↑ preservation of vitamins C and B9 during storage | [38] |
Rice (Oryza sativa L.) | Se NPs + lignin containing cellulose nanofibers | Chemical reduction using ascorbic acid followed by microwave heating | 32 | Seed priming | 10, 20 mg/L | 20 mg/L | ↑ germination rates, ↓ salt damage rates, Under salt stress (150 mM NaCl): ↑ chlorophyll content (~8 times), ↓ Na+/K+ ratio, ↓ OSLOL5, NHX1, SOS1 and HAK20 gene expression levels | [39] |
Potato (Solanum tuberosum L.) | Se NPs + arabinogalactan + Stach | Chemical synthesis | 40 | Addition to Growth Medium | 0.000625% 1 (Se) | Bactericidal and antibiofilm activity against Clavibacter sepedonicus, ↑ Root weight (25%), ↑ Peroxidase activity in tissues of potato leaves (85%), ↑ ROS production in plant tissues (520%), ↑ Vegetative part weigh (20%), ↓ Internode length, × effects against soil Acinetobacter quilouiace and Rhodococcus erythropolis × Se accumulation in tubers | [40,41] | |
Tomato plants (Solánum lycopérsicum L.) | Se NPs + PAA and thiophanate-methyl | Chemical synthesis | 110 | Foliar treatment | 50, 100, 200 mg/L | Antifungal effect against Botrytis cinerea, ↑% of germination (34.28%), ↑ Root length (72.41%), ↑ Stem length (18.18%), ↑ Chlorophyll a (28.20%) and b (89.28%) content, ↑ Carotenoids content (61.76%), ↑ Total chlorophyll content (35–41%), ↑ Lycopene content in fruit (55–95%), ↑ Anthocyanin content in fruit (22.5%), ↑ Se content in fruit (~2600–3000%), × Fruit weight | [34] | |
Melon (Momordica charantia L., Cucumis melo L.) | Se NPs + CS | Chemical synthesis using chitosan | 110 | Addition to Growth Medium for Seedlings | 10, 20 mg/L | 20 mg/L | ↑ Root length (32.39–16.22%), ↑ Shoot and stem length (30.93–22.61%), ↑ Fresh root mass (26.73–21.93%), ↑ Fresh shoot and stem mass (24.10–16.02%), ↑ Dry root mass (25.73–21.52%), ↑ Dry shoot mass (24.50–15.88%), ↑ Photosynthetic activity (SPAD 9.50–10.17%), ↑ Proline content (9.26–19.78%), ↑ Water content in leaves (RWC 7.85–5.69%) | [42] |
Se NPs + CS | Chemical synthesis with chitosan | 50 | Foliar treatment | 10, 20 mg/L | 20 mg/L | Under salt stress 50, 100 mM NaCl: ↑ Root fresh mass (10.29–13.59%), ↑ Root dry mass (7.14–13.35%), ↑ Shoot fresh mass (16.97–24.20%), ↑ Shoot dry mass (10.41–13.59%), ↑ Plant height (7.03–13.47%), ↑ RWC (13.46–27.53%), ↑ Yield (25.00–25.11%), ↑ Fruit mass (17.30–22.85%), ↑ Fruit count (10.00–13.95%), ↑ Photosynthetic activity (7.80–11.13%), ↓ MDA content (18.32–29.47%), ↓ H2O2 content (14.77–15.35%), ↑ CAT activity (14.97–16.50%), POD (36.66–63.33%) and APX (23.25–24.29%) | [43] | |
Rice (Oryza sativa L.) | Se NPs + CS | Chemical reduction | 115.6 | – | 10 mg/L | ↓ SOD activity in shoots (~1.3%) and roots (~2.6%), ↓ CAT activity in shoots (~3.2%) and roots (~7.2%), ↓ APX activity in shoots (~10.6%) and ↑ in roots (~5%), × Changes in GPX activity in shoots and roots, Under As-induced stress: ↑ SOD activity in shoots (~27%) and roots (~72.7%), ↑ CAT activity in shoots (~154.8%) and roots (~48.1%), ↑ APX activity in shoots (~181.8%) and roots (~193.3%), ↑ GPX activity in shoots (~45.4%) and roots (~40.8%) | [44] | |
Se NPs + algal polysaccharides | Chemical reduction using ascorbic acid | 80 | Addition NPs to hydroponic medium and soil | 0.08, 0.4, 0.8, 1.19, 1.6 mg/L | 1.6 mg/L | × Root weight (%), ↑ Se concentration in roots (~25%), ↑ Total Se in roots (~20%), ↑ OsSULTR1;2, OsPT2 and OsNIP2 expression levels, ↑ Organic Se concentration in roots by a factor of 39.6 and 2.53 compared to SeO4 and SeO3, ↑ Inorganic Se concentration in roots by a factor of 2.2 and 2 compared to SeO4 and SeO3, ↑ Organic Se concentration in shoots by a factor of 10.8 and 1.91 compared to SeO4 and SeO2 | [45] | |
Se NPs+ polysaccharides from spent mushroom substrate Agrocybe aegerita | Chemical reduction using ascorbic acid | – | Root and Foliar Application | 2, 20 mg/L | 20 mg/L | ↑ Root length (50–65%), ↑ Stem length (15–20%), ↑ Leaf length (30–35%), ↑ Antioxidant enzyme activities, Free radical scavenging | [46] | |
Red bean (Phaseolus vulgaris L.) | Se NPs coated with gum arabic | Chemical reduction | 46.9 | Foliar treatment | 0.04, 0.2, 0.4 mg/L | 0.4 mg/L | ↑ Stem length (~2.5–22.5%), ↑ Root length (~5–70%), ↑ Dry shoot weight (~up to 40%), ↑ Dry root weight (~up to 27.3%), ↑ Fresh shoot weight (~2.7–70.3%), ↑ Fresh root weight (~4.3–78.6%), ↑ Leaf number (~up to 75%), ↑ Chlorophyll “a” (~4.5–40.9%), “b” (~4.3–47.8%), carotenoid (~20.9–58.1%) content | [47] |
Barley (Hordéum vulgare L.) | Se NPs stabilized by PVP | Chemical reduction | 70 | Seed priming | 0.465, 4.65, 46.5, 465, 4650 mg/L | 4.65 mg/L | At 0.465–46.5 mg/L: ↑ Root length (54.9–120%), ↑ Root number (35–51.2%), ↑ Shoot length (27.8–87.2%); At >46.5 mg/L: ↓ Root length (45.8–100%), ↓ Root number (up to 100%), ↓ Shoot length (84.6–100%), ↑ Germination rate (45%) at 4.65 mg/L Se NPs and decrease (4.5–100%) at all others | [48] |
Chili Pepper (Capsicum annuum L.) | Se NPs + ZnO + Arbuscular mycorrhiza fungus (AMF) inoculation | Chemical reduction | 8.37–12.8 (ZnO NPs), 5.27–6.51 (Se NPs) | Foliar treatment | 10 mg/L | – | Under combined application of ZnO NPs, Se NPs + AMF: ↑ Average fruit weight by 98.7%, ↑ Fruit number by 54.8%, ↑ Thylakoid grana thickness, ↑ Chloroplast number, ↑ Total ascorbic acid content, ↑ Total capsaicin content | [49] |
Orange (Citrus × sinensis (L.) Osbeck) | Se NPs + CS | – | 50–150 | Foliar treatment | 10, 20 mg/L | 20 mg/L | ↑ Chlorophyll a (40–80%) and b (25–42%) content, carotenoids (67–92%), ↑ Chlorophyll a/b ratio and SPAD value by 33% and 21% respectively at 20 mg/mL Se NPs with chitosan, ↑ Fv/Fm value, SPAD coefficient (20%), chlorophyll (25–42%) and carotenoid (67–92%) content under salt stress simulation | [50] |
Apple (M. pumila Jinfu) | Compound consisting of Rosa roxburghii procyanidin, chitosan, and Se NPs | Biosynthesis | 84, 56 | Apple and red bayberry fruit treatment | 0.03 mg/kg 1 (apple), 0.12 mg/kg 1 (red bayberry) | – | ↓ Spread of P. piricola and S. aureus on apples, × Cytotoxicity | [51] |
Moldavian dragonhead (Dracocephalum moldavica L.) | Se NPs + CS | Synthesis by ion gelation | 70 | Foliar treatment | 5, 10 mg/L | 5 mg/L | ↓ Negative effects under Cd stress, ↓ MDA content (2.3 times), ↓ H2O2 content (1.3 times), ↑ Chlorophyll fluorescence parameters, ↑ Morphological characteristics, ↑ Photosynthetic pigment content, ↑ Proline content, ↑ Phenol content | [52] |
Potato (Solanum tuberosum L.) | Se NPs in a carrageenan matrix | Chemical precipitation | 70 | Addition of NPs to the nutrient medium | – | – | ↑ Number of leaves (13.2%), ↑ Root mass (37.9%) | [53] |
Plant | Composition | Synthesis Method | Size (nm) | Treatment Method | Concentrations | Maximal Effective Conc. | Effects | Ref. |
---|---|---|---|---|---|---|---|---|
Grape (Vitis vinifera L.) | Se NPs | Biosynthesis using leaf extract of Vitis vinifera L. | 28–50 | Foliar treatment | 1, 10, 100 mg/L | 10 mg/L | ↑ Shoot length (38–48%), ↑ Fresh (15.9–24.6%) and dry (21.6–27.5%) mass, ↑ Leaf number (20.7–29.3%), ↑ Leaf area (up to 25%), ↑ Photosynthetic activity (7.5–16.3%), ↓ H2O2 content (13.7–33.8%), ↓ MDA content (16.4–30.8%), ↓ Proline content (~18.2–31.8%), ↓ SOD activity (~18.5–40%), CAT activity (11–35.6%), and APX activity (29.7–67.7%), ↑ Proline content without drought (15–80%) | [103] |
Pomegranate (Punica granatum L.) | Se NPs | Commercial Se NPs (Iranian Nanomaterials Pioneers Co., Mashhad, Iran) | 10–45 | Foliar treatment | 0.08, 0.16 mg/L | 0.16 mg/L | ↑ Yield (4.2–16.5%), ↑ Leaf area (2.3–24.9%), ↑ Chlorophyll content (2.1–24.3%), ↑ Fruit count (7.4–28.9%), ↑ Mineral elements: N (2.6–22.6%), P (25–43.8%), K (6.6–12.3%), Ca (8.2–17.3%), Mn (1.6–6.6%), ↑ Total soluble sugars (4.2–19.8%), ↑ Phenolic compounds (3.5–8.1%), ↑ Antioxidant activity (6.1–25.6%), ↑ Anthocyanins (4.8–27.7%), ↑ Peel thickness (5–27.2%), ↑ Fruit mass (2.4–5.2%) | [3] |
Melon (Momordica charantia L., Cucumis melo L.) | Se NPs | Commercial Se NPs (NanoSany Corporation, Iranian Nanomaterials Pioneers Company) | 10–45 | Addition to Growth Medium for Seedlings | 1, 4, 10, 30, 50 mg/L | 4 mg/L | ↑ Total fresh leaf mass (50%), ↑ Expression of transcription factors WRKY1 (7.9 times), PAL (4.5–11.9 times) and 4CL (9 times), ↑ NR activity (52%), ↑ Proline content (80%), ↑ POD (35%), CAT (10%) and active phenols (50%) | [104] |
Se NPs | Chemical synthesis with ascorbic acid | 72.4 | Foliar treatment | 5 mg/L | – | ↓ Powdery mildew disease index (Podosphaera xanthii) (21–45%), ↑ PAL activity (22–38%), 4-hydroxylase (24–126%), 4-coumarate: Co A ligase (19–64%), CAT (42–65%), APX (24–94%), ↓ H2O2 content (9–25%) and MDA content (30–48%) | [105] | |
Se NPs | Commercially available Se NPs (Guilin Jiqi Group Co. Ltd., Guilin, China) | – | Foliar treatment | 2.5, 5, 10 mg/L | 5 mg/L | ↑ Fructose, glucose, galactitol, stachyose, lactic, tartaric, fumaric, malic, and succinic acid content in treated plants, ↑ Cucurbitacin B synthesis, ↑ Plant resistance to pathogens, ↑ Antioxidant enzyme activity | [106] | |
Field cabbage (Brassica campestris L.) | Se NPs | Biosynthesis using Allamanda cathartica L. extract | 60.31 | Seed priming in Se NPs solution | 12.5, 25, 50 mg/L | 25 mg/L | Under salt stress 200 mM: ↑ Germination rate (31%), ↑ Shoot length (92%), ↑ Root length (78%), ↑ Total chlorophyll content (49%) under salt stress | [107] |
Strawberry (Fragaria × ananassa) | Se NPs | Commercially available Se NPs (NANOSANY Corporation) | 10–45 | Foliar treatment | 10, 20 mg/L | 20 mg/L | ↑ Sucrose content (9.80–10.13%), ↑ Fructose content (10.21–19.80%), ↑ Glucose content (19.69–24.19%), ↑ Malic acid content (14.02–24.24%), citric acid content (21.33–21.78%), and succinic acid content (25.51–38.70%) | [108] |
Se NPs | Commercially available Se NPs (Iranian Nanomaterials Pioneers Co., Mashhad, Iran) | 10–45 | Foliar treatment | 0.79, 7.90 mg/L | 7.90 mg/L | Under salt stress: ↓ SOD activity (5.9–11.8%), ↓ MDA (~17.8–18.9%) and H2O2 (~20–60%), ↑ PAL activity (~5.1–43.6%) | [109] | |
Se, Cu NPs | Chemical reduction | 5–18 (Se), 35–42 (Cu) | Foliar treatment | 100 mg/L | – | ↑ Antioxidant enzyme activity (CAT, POD, SOD), ↓ Malondialdehyde content, ↑ Photosynthetic pigment content (chlorophyll a, chlorophyll b, and total chlorophyll), ↑ Drought resistance | [97] | |
Corn (Zea mays L.) | Se NPs | Chemical reduction using surfactants | – | Foliar treatment | 100, 150, 200, 250 µg/pot 1 | 200 µg/pot | Se NPs were less effective than Na2SeO4 application | [110] |
Se NPs | Chemical reduction | – | Foliar treatment | 20 mg/L | – | Cd-induced stress: ↑ chlorophyll content (40.2%), ↑ carotenoid content (50%), no growth changes, ↑ photosynthesis rate (84%), ↑ mineral element concentrations: Ca (26%), Fe (55.4%), Mg (27%), Na (28.6%) and Zn (10.1%), ↓ MDA content (15.7%) and H2O2 content (34.9%), ↑ GSH content (20.9% and 51.8%), APX (92% and 35.7%), CAT (23.1% and 10.4%), SOD (21.1%) in leaves and roots respectively, ↓ ZmHMA2 gene expression (58.8%) in roots, ↑ ZmHMA3 gene expression (~58.1%) in roots | [111] | |
Se NPs | Chemical reduction | 55–65 | Foliar treatment | 10 mg/L | – | ↑ Flavor compound content, regulation of abscisic acid and sucrose accumulation, ↑ Expression of maturation-related transcription factors: FaMYB1, FaMYB10, FaRIF, FaSnRK1, FaSnRK2.6 and FaABI1 when combined with Se NPs, ↑ Antioxidant capacity of fruits, ↑ Selenium content | [112] | |
Sesame (Sesamum indicum L.) | Se NPs | Biosynthesis using Allium sativum extract | 100 | Pre-treatment of seeds, foliar spray | 10, 20, 30, 40, 50 mg/L | 40 mg/L | ↑ Root length (55.7%), ↑ Leaf number (48%), ↑ Stem diameter (38%), ↑ SOD (147%), POD (140%) and CAT (76%) activity | [113] |
Lemon balm (Melissa officinalis L.) | Se, ZnO NPs | Commercially available Se NPs (NanoSany Corporation, Iranian Nanomaterials Pioneers Company) | 10–45 | Watering with nutrient solution containing NPs | 10, 50 mg/L | 10 mg/L | ↑ Leaf fresh mass (19.6%) with 10 mg/L Se NPs, and ↓ Leaf fresh mass (43.5%) with 50 mg/L Se NPs, ↓ NR activity (15%), ↑ POD activity (44.9–63.5%), ↑ Phenolic content in leaves (59.4–79.5%) and roots (61.7–100%) | [114] |
Cucumber (Cucumis sativus L.) | Se NPs | Biosynthesis using Lactobacillus casei | 50–200 | Foliar treatment | 25 mg/L | – | ↑ Average fruit mass (6.1–16.1%), ↑ Plant height (11.7–12.3%), ↑ Leaf area (9.7–22.9%), ↑ Chlorophyll content (2.2–3.4%), ↑ CAT activity (10.8–11.4%), POD (40–48.4%), proline (15.8–21.1%), ↑ Relative water content (10.7%) | [115] |
Jalapeno pepper (Capsicum annuum L.) | Se NPs | Chemical reduction | 20 | Watering at the base of the stem | 1, 15,30, 45 mg/L | 45 mg/L | ↑ Plant height (up to 12.74%), yield (up to 52.75%), ↑ Root fresh mass (14.4–24.7%) ↑ Root dry mass (4.8–30.6%), ↑ Fruit density (5.5–59.3%), ↑ Chlorophyll content (up to 9.97%), ↑ Antioxidant capacity (14.6–35.7%), ↑ Total phenols (18.9–75.2%), ↑ CAT activity (6–40%), PAL (144.25–250.03%), ↓ APX activity (more than 60%) at 45 mg/L, ↓ GPX activity (20.9–48.49%) | [116] |
Se NPs | Commercially available Se NPs (NanoSany Corporation, Iranian Nanomaterials Pioneers Company) | 10–45 | Growing in nutrient medium with Se NPs | 0.5, 1, 10, 30 mg/L | 1 mg/L | At 0.5–1 mg/L: ↑ Leaf fresh mass (65.5%), ↑ bZIP1 gene expression (2.2–3.0 times) and WRKY1 (3.8 times), ↑ NR activity (48%), ↑ POD activity (21%), ↑ Catalase activity (56%), ↑ PAL activity (~41.6–58.3%), ↑ soluble phenols (~23.5–41.2%). At 10 mg/L: ↑ bZIP1 gene expression (5.4 times), ↓ WRKY1 gene expression (15.8 times), ↓ NR activity (–26.2%), ↓ POD activity (–24.7%), ↑ CAT activity (2.4 times), PAL (~100%), ↑ Soluble phenols (~88%) | [102] | |
Sunflower (Helianthus annuus L.) | Se NPs | Biosynthesis using Penicillium chrysogenum | 3–15 | Foliar treatment | 10, 15, 20, 25 mg/L | 20 mg/L | ↑ Growth, ↑ Carotenoid concentrations, ↑ Chlorophyll content, carbohydrates, proteins, phenolic compounds, and proline | [117] |
Wheat (Triticum aestivum L.) | Se NPs | Biosynthesis using Lactobacillus acidophilus | 46 | Seed priming | 50–150 mg/L | 100 mg/L | ↑ Growth, ↑ Grain quantity and quality, ↑ Carotenoid and chlorophyll concentrations | [118] |
Se NPs | Commercially available Se NPs (Sigma–Aldrich) | 5–70 | Foliar treatment | 10 mg/L | – | ↑ Growth, ↑ Photosynthesis and gas exchange rates, ↑ Drought and heat resistance, ↑ CAT, APX, and SOD activity | [119] | |
Se NPs | Synthesis using Melia azedarach L. extract | 61 | Foliar treatment | 10, 20, 30, 40 mg/L | 30 mg/L | ↑ Growth, ↑ Chlorophyll, proline, phenol, and flavonoid concentrations, ↑ SOD activity | [120] | |
Se NPs | Biosynthesis using Allium sativum L. extract | 50–150 | Foliar treatment | 10, 20, 30, 40 mg/L | 30 mg/L | ↑ Plant height, ↑ Shoot length, ↑ Fresh and dry shoot mass, ↑ Root length, ↑ Fresh and dry root mass, ↑ Leaf area, ↑ Leaf number and length | [121] | |
Se NPs | Biosynthesis using Bacillus cereus | 41–102 | Seed priming | 50, 75, 100 mg/L | 100 mg/L | ↑ Germination parameters, ↑ Growth under salt stress | [122] | |
Se NPs | Biosynthesis using lemon (Citrus limon L.) leaf extract | 37 | Foliar treatment | 5, 10, 100 mg/L | 100 mg/L | ↑ Yield, ↑ 1000-grain weight, ↑ Chlorophyll a and b content, ↓ H2O2 and MDA concentration under salt stress | [123] | |
Se NPs | Commercially available Se NPs (Xianfeng Nano Company, Nanjing, China) | 25.2 | Foliar treatment | 0.24, 0.48, 0.96 mg/plant 1 | 0.96 mg/plant | ↓ Cd content by 35.0%, ↑ Grain yield by 33.9%, ↓ Expression of Cd transport protein genes (TaNramp5 and TaLCT1), ↑ Expression of Cd vacuolar sequestration protein genes (TaHMA3 and TaTM20), ↑ Leaf antioxidant metabolite levels, ↓ Rhizosphere organic acid content, ↓ Cd bioavailability in rhizosphere soil, ↑ Development of carbon- and nitrogen-related soil microorganisms (Solirubrobacter and Pedomicrobium) | [124] | |
Se NPs | – | – | Watering with a solution containing nanoparticles | 2, 5 mg/L | 2 mg/L | ↓ Plant length (20.3–25.2%), ↓ Root length (24.7–34.1%), ↓ Shoot length (18.1–20.1%), ↓ Root dry weight (151.9–33.3%), ↓ Shoot dry weight (51.7–34.7%), ↓ Plant dry weight (52.1–28.8%), ↓ SOD content (37.5%) at 5 mg/L, POX (54.3–56.5%), ↑ SOD content (11.1%) at 2 mg/L, CAT (52.5–57.5), ↓ PAL activity (2.2–59%), ↑ Total chlorophyll content (199.6–95.7%) and carotenoids (101.6–154.3%) | [125] | |
Rapeseed (Brassica napus L.) | Se NPs | Biosynthesis using Comamonas testosteroni | 167 | Seed priming | 3.95, 7.9, 11.84 mg/L | 11.84 mg/L | ↑ Germination rate (1.06–1.27%), ↑ Fresh shoot weight (1.59–4.49%), ↑ Dry shoot weight (29.56–26.94%), ↑ Root weight (22.8–25.5%), ↑ Shoot and root length (up to 8.47% and 24.74%), ↑ Total chlorophyll content (24.04%), ↓ Soluble protein content (8.48–5.86%), ↑ SOD (204–119%), POD (305.2–216%), and APX (191–106.1%) activity in shoots | [126] |
Se NPs | Biosynthesis using a bacterial isolate from the Caspian Sea | – | Foliar treatment | 5, 10, 20 mg/L | 20 mg/L | ↑ Total dry weight (62–106%), ↑ Cd stress resistance, ↓ ROS formation, ↓ MDA by 73–81%, ↓ O2·– by 59–61%, ↓ H2O2 by 39–59%, ↑ Catalase activity (72%), ↑ Ascorbate peroxidase activity (75%) at 20 mg/L | [89] | |
Se NPs, melatonin | Chemical reduction using melatonin | ~50–60 | Addition of NPs to nutrient medium | 50 mg/L | – | ↓ As-induced stress, ↑ Root dry weight (14.28%), ↑ Leaf dry weight (23.07%), ↑ Photosynthesis rate (50.73%), ↑ Transpiration rate (64.97%), ↓ MDA (17–29%) and H2O2 (14–24%), ↑ SOD (31%), POD (96%), CAT (50%), APX (20%), GR (50%), and GSH (60%) activity | [127] | |
Rice (Oryza sativa L.) | Se NPs | Chemical synthesis | 50–100 | Foliar treatment | 0.08 mg/L | – | ↑ Growth, ↑ Chlorophyll content, ↑ CAT and GPX activity, ↓ Malondialdehyde concentration, ↓ Cd impact on growth and chlorophyll content | [128] |
Se NPs | Biosynthesis using Vitis vinifera L. raisin extract | 40 | Seed priming | 1.58, 1.97 mg/L | 1.97 mg/L | ↑ Germination, ↑ Seedling emergence and growth, ↑ Germination energy, ↑ Nutrient content, ↑ α-amylase activity (>60%), ↑ Antioxidant enzyme activity: SOD (>50%), CAT (>80%), APX (>80%) | [129] | |
Se NPs | Chemical reduction | 50 | Foliar treatment | 0.5, 5 mg/L | 0.5 mg/L | ↑ Leaf Se concentration (by 420%), ↓ Lead (Pb) accumulation in roots | [130] | |
Se NPs | Chemical synthesis using ascorbic acid | 50.1 ± 5.6 | Seed priming | 0.5, 2, 5, 20, 50, 200 mg/L | 50 mg/L | ↓ Root length (64–73%), ↓ Root number (48–79%) at Se NP concentrations > 50 mg/L, ↑ APX, CAT, and SOD activity, ↑ Antioxidant metabolism, ↓ ROS levels | [131] | |
Se NPs in gel | Biosynthesis using Aloe vera extract | 403 | Cultivation in nutrient solution with NPs | 15, 30 mg/L | 15 mg/L | ↑ Fresh root weight (100.7%), ↑ Chlorophyll content (>50%), ↓ Acid-soluble Cd fraction (4.01%) | [132] | |
Celery (Apium graveolens L.) | Se NPs | Commercially available Se NPs (Guilin JIQI Group Co. Ltd.) | 50–78 | Foliar treatment | 5, 10 mg/L | 5 mg/L | ↑ Antioxidant capacity (46.7%), ↑ Apigenin biosynthesis (58.4%), ↑ Rutin biosynthesis (66.2%), ↑ p-Coumaric acid biosynthesis (80.4%), ↑ Ferulic acid biosynthesis (68.2%), ↑ Luteolin biosynthesis (87.0%), ↑ Kaempferol biosynthesis (105.7%), ↑ Leaf vitamin C content (26.7%) | [133] |
Grain Sorghum (Sorghum bicolor L.) | Se NPs | Chemical reduction | 10–40 | Foliar treatment | 10 mg/L | – | ↓ O2·– content (29%), ↓ H2O2 content (38%), ↓ MDA content (39%), ↓ Membrane damage degree (25%) under temperature stress, ↑ SOD (22%), CAT (24%), POX (11%), and GPX (9%) activity, ↑ Yield under stress conditions (26%) | [134] |
Soybean (Glycine max L.) | Se NPs | Biosynthesis using Penicillium chrysogenum | 30–80 | Seed priming | 0.008, 0.04, 0.08, 0.16, 0.24 mg/L | 0.08 mg/L | ↑ Growth, ↑ Germination rate (93%), ↑ Germination energy (76.5%), ↑ Germination speed (19%), ↑ Average germination time (4.3 days) | [135] |
Se NPs | Commercial product (Sigma–Aldrich) | 20 | Foliar treatment | 100, 150, 200 mg/L | 150 mg/L | ↑ Drought resistance and yield under drought conditions, ↓ Electrolyte leakage, ↓ ROS accumulation, ↓ MDA content | [136] | |
Tobacco (Nicotiana tabacum L,) | Se NPs | Biosynthesis using Lactobacillus acidophilus | – | Cultivation in nutrient medium with NPs | 0.0412, 0.42, 4.2, 20.1, 42.0 mg/L | 42.0 mg/L | ↑ Shoot rooting rate (40% on day 8 and 10% on day 16), ↑ Root system growth (40%) | [88] |
Se NPs | Biosynthesis using Lactobacillus acidophilus | 50–200 | Addition to cultivation medium | 100 mg/L | – | × Negative effect on seedling growth even at maximum Se NP concentration (100 mg/L), Minor effect on thylakoid membrane ultrastructure and photosynthetic apparatus | [137] | |
Tomato (Solanum lycopersicum L.) | Se NPs | Commercially available Se NPs (ID Nano, México) | 50 | Seed priming | 1, 10, 50 mg/L | 1 mg/L | ↑ Seed germination, ↑ Total antioxidant capacity (TAC) (by 38.97%), ↑ Chlorophyll content (by 21.28%) | [138] |
Se NPs | 50 | 1, 10, 50 mg/L | 10 mg/L | ↑ Growth, ↑ Germination rate (by 50%), ↑ Germination energy index (by 208%), ↑ Stem length (by 10.8%), ↑ Stem width (by 4.3%), ↑ Chlorophyll content (by 30.8%) | [139] | |||
Se NPs | Commercially available Se NPs (Sigma–Aldrich) | 70–90 | Seed priming | 25, 50, 75, 100 mg/L | 75 mg/L | ↑ Yield under drought conditions, ↓ H2O2 content (by 39.3%) and MDA (by 28.9%), ↑ SOD activity (by 34.9) and CAT (by 25.4%), ↑ Carotenoid content (by 13.5%), ↑ α-Tocopherol content (by 22.8%), ↑ Flavonoid content (by 25.2%), ↑ Anthocyanin content (by 19.6%), ↑ Ascorbic acid content (by 26.4%), ↑ Reduced glutathione content (by 14.8%) | [140] | |
Se NPs | Commercially available Se NPs (Iranian Nanomaterials Pioneers Co., Mashhad, Iran) | 10–45 | Foliar treatment | 3, 10 mg/L | 3 mg/L | ↑ Shoot and root biomass, ↑ Antioxidant enzyme activity: CAT and POD, ↑ Ascorbate concentration, ↑ Non-protein thiol and soluble phenol concentrations, ↑ Phenylalanine ammonia-lyase activity, ↑ miR172 level (3.5 times), ↑ bZIP transcription factor expression (9.7 times), ↑ CRTISO gene expression in leaves (5.5 times) | [141] | |
Biosynthesis from Trichoderma atroviride | – | Seed priming | 100 mg/L | – | ↑ Germination rate (22%), ↑ Plant height (51.2%), ↑ Fruit weight, ↑ (7–9 days), ↑ Resistance to Phytophthora infestans (72.9–49.5%) | [91] | ||
Se, Cu NPs | Chemical reduction | 2–20 | Addition to substrate | 1, 10, 20 mg/L | 10 mg/L | ↑ Yield by 21%, ↑ Chlorophyll, ascorbic acid, glutathione, superoxide dismutase, glutathione peroxidase, and phenylalanine ammonia-lyase content in leaves, ↑ Ascorbic acid, glutathione, and flavonoid content in fruits | [142] | |
Se NPs | Chemical reduction | 2–20 | Addition to substrate | 1, 5, 10, 20 mg/L | 20 mg/L | ↑ Yield under salt stress, ↑ Photosynthetic pigment content in leaves, ↑ Antioxidant content in fruits: (lycopene, β–carotene, flavonoids, and phenols); Under salt stress: ↓ Plant height (up to 3.2%), ↓ Leaf number (2.5–4%), ↓ Cluster number (0.9–3.5%), ↓ Fresh (2.9–5.8%) and dry (3–6.2%) aboveground weight, ↑ Fruit number (4–11.1%), ↑ Average fruit weight (0.3–3.7%), ↑ Cluster number at 20 mg/L (1.1%), ↑ Fresh aboveground weight (12.3%), ↑ Dry aboveground weight (14.6%) at 10 mg/L, ↓ Fruit number at 5 mg/L (2.1%), ↓ Phenol content at 1 mg/L | [143] | |
Se, Cu NPs | Chemical reduction | 2–20 | Foliar treatment | 10, 20 mg/L | 20 mg/L | Under A. solani infection: ↑ Plant height (up to 1.4%), ↑ Leaf number (up to 6.2%), ↑ Cluster number (up to 2.8%), ↑ Phenol content in leaves (up to 11.6%), ↑ Phenol content in fruits (1.7–27.1%), ↑ GPX activity in leaves (32.2–133.4), ↑ PAL activity in leaves (10.6–127.8%), ↑ APX activity in leaves (92.3–434.6%), ↑ APX activity in fruits (46.9%), ↓ GPX activity in fruits (16.3–42.2%), ↓ PAL activity in fruits (31.7–62.4%), ↓ SOD activity in leaves (up to 25.9%), ↓ SOD activity in fruits (15.3–40.5%) | [144] | |
Se NPs | Biosynthesis using Nigella sativa extract | 272 ± 72 | Foliar treatment, soil addition | 100, 300 mg/L | 100 mg/L | Under Cd-induced stress: ↑ Shoot length by 45%, ↑ Root length by 51%, ↑ Branch number by 506%, ↑ Leaf number per plant by 208%, ↑ Ascorbic acid, protein, phenolic compounds, flavonoids, and proline content, ↑ Leaf area by 82%, ↑ Fruit yield (>100%), ↑ Fruit weight (>100%), ↑ Lycopene content (75%), ↓ Days to fruit set in tomato plants, ↓ Cd uptake | [145] | |
Potato (Solanum tuberosum L.) | Se NPs | – | 4–8 | Tuber treatment before planting | 0.13 g/hectare ¹ | – | ↑ Protein content, ↑ Vitamin C content | [146] |
Common bean (Phaseolus vulgaris L.) | Se NPs | Commercially available Se NPs (Sigma–Aldrich) | 10–45 | Foliar treatment | 39.5, 79, 118.5 mg/L | 79 mg/L | ↑ Shoot length (32.5–98.8%), ↑ Number of leaves (18.5–54.4%), ↑ Leaf area (6.8–28.9%), ↑ Shoot dry weight (55.5–128.5%), ↑ Chlorophyll “a” (17.5–40.2%) and “b” (18.2–34.5%), ↑ Photosynthesis rate (68.6–121.8%), ↑ Transpiration rate (43.6–111%), ↑ Relative water content (2.3–16.9%), ↑ Membrane stability index (32.5–118.6%), ↑ Free proline content (7.1–22.8%), ↑ Soluble sugar content (14.1–39.3%), ↑ CAT content (~9.5–42.9%), POD (~28.6–107.1%), APX (~10.5–57.9%), SOD (~50–125%) | [147] |
Se NPs | Biosynthesis using Moringa oleifera leaf extract | ~71.2 | Foliar treatment | 50, 100, 150, 200, 250 mg/L | 100 mg/L | ↓ Bacterial growth, biofilm formation, Antibacterial activity against Pseudomonas aeruginosa, ↑ Chlorophyll, tannin, flavonoid, and phenol content in plants | [148] | |
Se NPs | Dissolution of Se powder in ethylenediamine (EDA) followed by dispersion in water | 53 | – | 6, 10, 14, 20 mg/L | 20 mg/L | ↑ Seleno-amino acid content in bean sprouts up to 0.182 µg/g, ↓ DPPH (83.3%), ABTS (88.1%), ·OH (71.6%), × Significant cytotoxicity against HeLa and HepG2 cells | [149] | |
Barley (Hordéum vulgare L.) | Se NPs | Chemical reduction | 50 | Seed priming | 1, 5, 10, 20 mg/L | 5 mg/L | At 1–10 mg/L Se NPs: ↑ Root number (4.3–46.2%), ↑ Root length (8.6–139.3%), ↑ Shoot length (27.1–164.5%), ↑ Seed germination rate (~4–8%); At 20 mg/L Se NPs: ↓ Root number (15.1%), ↑ Shoot length (15.8%) | [150] |
Radish (Raphanus sativus var. sativus), Arugula (Eruca vesicaria subsp. sativa (Mill.) Thell.), Eggplant (Solanum melongena L.), Cucumber (Cucumis sativus L.), Tomato (Solanum lycopersicum L.), Chili Pepper (Capsicum annuum L.) | Se NPs | Laser ablation in water followed by fragmentation | <100 | Addition to substrate | 1, 5, 10, 25 µg/kg 1 | 10 µg/kg 1 | ↑ Hyperthermia resistance, ↑ Leaf area at 1–10 µg/mL Se NPs, ↓ Leaf area at 25 µg/mL Se NPs, × Effect on Capsicum annuum under hyperthermia simulation, × Growth changes under non-stress conditions, | [92] |
Chili Pepper (Capsicum annuum L.) | Se NPs + ZnO + Arbuscular mycorrhiza fungus (AMF) inoculation | Chemical reduction | 8.37–12.8 (ZnO NPs), 5.27–6.51 (Se NPs) | Foliar treatment | 10 mg/L | – | Under combined application of ZnO NPs, Se NPs + AMF: ↑ Average fruit weight by 98.7%, ↑ Fruit number by 54.8%, ↑ Thylakoid grana thickness, ↑ Chloroplast number, ↑ Total ascorbic acid content, ↑ Total capsaicin content | [49] |
Ag–Se bimetallic NPs | – | – | Foliar treatment | 100 mg/L | – | ↓ Disease index by 17.5%, ↑ Protection against Ralstonia solanacearum wilt by 78.1%, ↑ Vegetative growth, ↑ Photosynthetic pigment content, ↑ Soluble carbohydrate and protein content in infected plants | [50] | |
Pink Periwinkle (Catharanthus roseus (L.) G.Do), Marigold (Calendula officinalis L.) | Se NPs | Biosynthesis using Amphipterygium glaucum extract | 40–60 | Foliar treatment | 0.8, 1.6, 3.95, 7.9 mg/L | 1.6 mg/L | Catharanthus roseus: ↑ Fresh (37.7–72.1%) and dry (28.6–57.1%) flower weight, ↑ Fresh leaf weight (14.7–22%), ↑ Fresh (14.2–24.7%) and dry (5.3–13.2%) stem weight, ↑ Flower number (42.8–60.9%), ↑ Total carotenoid content (13.3–40%), ↓ Photosynthetic efficiency (up to 6.7%) Calendula officinalis: ↑ Dry leaf weight (20.7–34.5%), ↑ Fresh stem weight (13.2–27.2%), ↑ Fresh (45.1–53.4%) and dry (22.7–45.5%) root weight, ↑ Root length (up to 29.7%), ↑ Total chlorophyll (up to 78.6%) and carotenoid (up to 57.1%) content, ↓ Photosynthetic efficiency (up to 5.5%) | [100] |
Spinach (Spinacia oleracea L. var. Stoik) | Se NPs | Laser ablation in water | ~35 | Foliar treatment | 22.11 mg/L | – | ↑ Average weight of male (~93.3%) and female (~90%) plants, ↑ Ascorbic acid content in male (16.9%) and female (15.3%) plants, ↓ Cd content in male (13.3%) and female (66.1%) plants, ↓ Lead content in male (−11.1%) and female (−19%) plants | [151] |
Bok Choy (Brassica rapa subsp. chinensis) | Se NPs | Commercially available Se NPs (Chip Biology Co., Tianjin, China) | 50 | Foliar treatment/Soil application | 1, 2 mg/kg 1 (Soil); 30, 60 mg/kg 1 (Foliar) | 2 mg/kg 1 (Soil); 60 mg/kg 1 (Foliar) | ↓ Cd concentration by 25.9–42.4% and Cd uptake rate by 33.4–37.8%, × Effect on available Cd, ↑ Se concentration by 3.1–6.3 times in bok choy and higher Se concentration in roots than shoots Under foliar application: × Effect on Cd uptake, ↑ Se accumulation by 2.4–33.0 times | [152] |
Foliar treatment | 5, 10, 20, 40 mg/L | 20 mg/L | ↓ Cd toxicity, ↓ Cd accumulation, ↓ MDA formation, ↑ Plant growth, ↑ Antioxidant enzyme activity | [153] | ||||
Se NPs | Laser ablation in liquid | 60 | Foliar treatment | 5, 10 mg/L | 10 mg/L | × Negative effect on growth at 10 mg/L Se–NP concentration compared to SeO32−, ↑ Uptake of macronutrients (Mg, P, K, and Ca) and micronutrients (Mn, Cu, Zn, and Fe), ↑ Se accumulation in leaves, ↓ Transport capacity compared to SeO32− | [95] | |
Shrubby Glasswort (Sarcocornia fruticose L.) | Se NPs | – | 50–100 | Addition to substrate | 100 mg/L | – | Under salt stress (0.7–1 M NaCl): ↑ Fresh (32.4–10.8%) and dry (5.2–6.9%) shoot weight, ↑ Water content (4.2–2.2%), ↑ Chlorophyll a (9.4–5.8%), b (13.7–10.3%), and total (9.6–6.2%) content, ↑ Carotenoid content (37.6–7.1%), ↓ Proline content (46.6–33%), ↓ MDA content (66.7–44.4%), ↓ APX activity (−23.8%) at 1 M, SOD (−9.1–3.6%), ↑ APX activity (19%) at 0.7 M, GPX (130.4–30.4%), PAL (50–11.8%) | [154] |
Garden bean (Vicia faba L.) | Se, ZnO NPs | Biosynthesis using grape seed aqueous extract | 7.67–12.86 | Seed priming | 50, 100, 200 mg/L | 100 mg/L | ↑ Dry pod weight (35.4–104.4%), ↑ Seed number per pod (11.8–76.5%), ↑ 100–seed weight (2.3–26.3%), At 50–100 ppm: ↑ Shoot (18–26.1%) and root (52.6–73.8%) length, ↑ Fresh shoot (33.8–51.7%) and root (32.2–39.7%) weight, ↑ Pod number (18.8–42.5%), At 200 ppm: ↓ Shoot (−11.4%) and root (−10.6%) length, ↓ Fresh shoot (−8.3%) and root (−3.8%) weight, ↓ Pod number (−5%) | [154] |
Se NPs | Laser ablation in deionized water | 90 | Foliar treatment | 100 mg/L | – | Beans of the “Belorusskaya” variety: ↑ Stem length (5.3%), ↑ Pod length (6.7%), × Pod width, ↓ Pod thickness (26.3%), ↑ Weight of 1000 seeds (94.7%), ↑ Number of seeds per plant (33.1%), Beans of the “Russian black” variety: ↑ Stem length (9.4%), ↑ Pod length (14.3%), ↑ Pod width (6.3%), ↓ Pod thickness (30.8%), ↑ Weight of 1000 seeds (37.4%), ↑ Number of seeds per plant (15.3%) | [155] | |
Sagebrush (Artemisia annua L.) | Se NPs | Laser ablation in deionized water | 100 | Foliar treatment | 30.6 mg/L | – | ↑ Plant height (5.4%), ↑ Plant diameter (14.6%), ↑ Leaf length (8.4%), ↑ Leaf width (5.4%), ↑ Plant weight (10.8%), ↑ Total chlorophyll (128.6%) and carotene (47.6%) content, ↑ Antioxidant activity in stems (8.8%), ↓ Antioxidant activity in leaves (1.3%) and roots (7%), ↓ Proline (17.4%) and MDA (17.4%) content | [156] |
Size, nm | Crop | Botanical Family | Optimal Conc., mg L−1 | Depressing Conc., mg L−1 | Negative Reaction | Ref. |
---|---|---|---|---|---|---|
10–45 | Cichorium intybus L. | Compositae | 4 | 40 | ↓ 26% root and shoot FW, ↓ 43% number of flowers | [206] |
50–150 | Cyamopsis tetragonoloba (L.) Taub. | Fabaceae | 100–300 | 400–500 | ↓ 21.6 times yield, ↓ 37.5% number of grains, ↓ 36% FW, ↓ 2.6 times DW | [207] |
33.4 | Vigna unguiculata (L.) Walp. | Fabaceae | 100–150 | 300 | ↓ 22% plumule length, ↓ 16.7% radicle length | [208] |
22 | Melissa officinalis L. | Lamiaceae | 10 | 50 | ↓ 30% FW | [114] |
19–45 | Mentha x piperita L. | Lamiaceae | 2 | 20 | ↓ 31% leaf length, ↓ 40% leaf surface area, ↓ 33% FW, ↓ 20% total chlorophyll content, ↓ 32% activity of nitrate reductase, | [205] |
10–45 | Capsicum annuum L. | Solanaceae | 0.5–1 | 10–30 | ↓ 20 times FW, ↓ 33% activity of nitrate reductase, ↓ differentiation of xylem tissues, ↑ proline concentration, ↑ 1.5 times CAT, ↑ 2 times total soluble phenols, ↑ abnormalities in the structure of the stem apical meristem | [102] |
50–78 | Capsicum annuum L. | Solanaceae | 20 | >50 | ↓ 17% total chlorophyll content, ↓ 29% flavonoids, ↓ 30% capsacin, ↓ 20% soluble sugars (compared to 20 mg/L), ↑ 17% SOD activity, ↑ 50% total phenols | [209] |
2–20 | Solanum lycopersicum L. | Solanaceae | 10 | >20 | ↓ 5% yield, ↓ 12% flavonoids, ↑ 7% total soluble phenols | [142] |
81–152 | Fagopyrum dibotrys—(D.Don.) Hara.—PFAF.org | Polygonaceae | 5 | >20 | ↓ 14% leaf FW, ↓ 47% stem FW, ↓ 33% tuber FW, ↓ 3 times leaf transfer factor, ↓ 1.5 times stalk transfer factor, ↓ 3 times tuber transfer factor (compared to 5 mg/L), ↑ 2 times SOD activity, ↓ 20% POD | [210] |
10–50 | Coffea arabica L. | Coffeeae | 40 | >80 | ↓ 33% total chlorophyll content, ↓ 41% carotenoids, ↓ 20% total pheophytin, ↓ 10% total sugars, ↓ 40% APX ascorbate peroxidase activity, ↑ 12.5% SOD activity, ↑ 2 times CAT activity, ↑ 2 times glutathione reductase activity, | [211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burmistrov, D.E.; Shumeyko, S.A.; Semenova, N.A.; Dorokhov, A.S.; Gudkov, S.V. Selenium Nanoparticles (Se NPs) as Agents for Agriculture Crops with Multiple Activity: A Review. Agronomy 2025, 15, 1591. https://doi.org/10.3390/agronomy15071591
Burmistrov DE, Shumeyko SA, Semenova NA, Dorokhov AS, Gudkov SV. Selenium Nanoparticles (Se NPs) as Agents for Agriculture Crops with Multiple Activity: A Review. Agronomy. 2025; 15(7):1591. https://doi.org/10.3390/agronomy15071591
Chicago/Turabian StyleBurmistrov, Dmitry E., Sergey A. Shumeyko, Natalia A. Semenova, Alexey S. Dorokhov, and Sergey V. Gudkov. 2025. "Selenium Nanoparticles (Se NPs) as Agents for Agriculture Crops with Multiple Activity: A Review" Agronomy 15, no. 7: 1591. https://doi.org/10.3390/agronomy15071591
APA StyleBurmistrov, D. E., Shumeyko, S. A., Semenova, N. A., Dorokhov, A. S., & Gudkov, S. V. (2025). Selenium Nanoparticles (Se NPs) as Agents for Agriculture Crops with Multiple Activity: A Review. Agronomy, 15(7), 1591. https://doi.org/10.3390/agronomy15071591