The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Environmental Conditions, and Soils
2.2. Sampling Design and Laboratory Procedures
2.3. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.2. Soil Chemical Properties
3.3. Principal Component Analysis
4. Discussion
4.1. Soil Properties
4.2. Relation Among Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Evangelista, S.J.; Field, D.J.; McBratney, A.B.; Minasny, B.; Ng, W.; Padarian, J.; Dobarco, M.R.; Wadoux, A.M.C. Soil Security—Strategizing a Sustainable Future for Soil. Adv. Agron. 2024, 183, 70. [Google Scholar] [CrossRef]
- Pereira, P.; Inácio, M.; Pinto, L.; Kalinauskas, M.; Bogdzevic, K.; Zhao, W. Mapping Ecosystem Services in Urban and Peri-Urban Areas. A Systematic Review. Geogr. Sustain. 2024, 5, 491–509. [Google Scholar] [CrossRef]
- Ziter, C.; Turner, M.G. Current and Historical Land Use Influence Soil-Based Ecosystem Services in an Urban Landscape. Ecol. Appl. 2018, 28, 643–654. [Google Scholar] [CrossRef]
- Haghighi, F.; Gorji, M.; Shorafa, M. A Study of the Effects of Land Use Changes on Soil Physical Properties and Organic Matter. Land. Degrad. Dev. 2010, 21, 496–502. [Google Scholar] [CrossRef]
- Zhou, X.; Lin, H.S.; White, E.A. Surface soil hydraulic properties in four soil series under different land uses and their temporal changes. Catena 2008, 73, 180–188. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Russell-Anelli, J.; Neerchal, N.K. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil. Sci. Soc. Am. J. 2007, 71, 1010–1019. [Google Scholar] [CrossRef]
- Bogunovic, I.; Viduka, A.; Magdic, I.; Telak, L.J.; Francos, M.; Pereira, P. Agricultural and forest land-use impact on soil properties in Zagreb periurban area (Croatia). Agronomy 2020, 10, 1331. [Google Scholar] [CrossRef]
- Francos, M.; Bogunovic, I.; Úbeda, X.; Pereira, P. Soil physico-chemical properties and Organic Carbon stocks across different land use in an urban park of Vilnius, Lithuania. J. Cent. Eur. Agric. 2023, 24, 519–530. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. A global comparison of soil erosion associated with land use and climate type. Geoderma 2019, 343, 31–39. [Google Scholar] [CrossRef]
- Celik, I. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil. Till Res. 2005, 83, 270–277. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 2009, 35, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, J.L.; Davies, Z.G.; McHugh, N.; Gaston, K.J.; Leake, J.R. Organic carbon hidden in urban ecosystems. Sci. Rep. 2012, 2, 963. [Google Scholar] [CrossRef]
- Kaye, J.P.; Groffman, P.M.; Grimm, N.B.; Baker, L.A.; Pouyat, R.V. A distinct urban biogeochemistry? Trends Ecol. Evol. 2006, 21, 192–199. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Nowak, D.J. Carbon storage by urban soils in the United States. J. Environ. Quality 2010, 39, 1566–1575. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, X.; Xu, J.; Selim, H.M. Heavy metal contaminations in a soil–rice system: Identification of spatial dependence in relation to soil properties of paddy fields. Environ. Pollut. 2013, 181, 42–51. [Google Scholar] [CrossRef]
- Wong, C.S.C. Heavy metal pollution in urban soils and street dusts in Hong Kong. Appl. Geochem. 2003, 18, 483–494. [Google Scholar] [CrossRef]
- Pavao-Zuckerman, M.A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 2008, 16, 642–649. [Google Scholar] [CrossRef]
- Dugan, I.; Bogunovic, I.; Pereira, P. Soil management and seasonality impact on soil properties and soil erosion in steep vineyards of north-western Croatia. J. Hydrol. Hydromech. 2023, 71, 91–99. [Google Scholar] [CrossRef]
- Justić, M.; Jelaska, S.D. The relationship between biodiversity and the biomass of grasslands in the Zagreb area (NW Croatia). Acta Bot. Croat. 2022, 81, 221–232. [Google Scholar] [CrossRef]
- Bogunovic, I.; Bilandzija, D.; Andabaka, Z.; Stupic, D.; Rodrigo Comino, J.; Cacic, M.; Brezinscak, L.; Maletic, E.; Pereira, P. Soil compaction under different management practices in a Croatian vineyard. Arab. J. Geosci. 2017, 10, 340. [Google Scholar] [CrossRef]
- Brezinscak, L.; Bogunovic, I. Optimising Tillage and Straw Management for Improved Soil Physical Properties and Yield. Land 2025, 14, 376. [Google Scholar] [CrossRef]
- Defterdarović, J.; Filipović, L.; Ondrašek, G.; Bogunović, I.; Dugan, I.; Phogat, V.; He, H.; Rashti, M.R.; Tavakkoli, E.; Baumgartl, T.; et al. Impact of Hillslope Agriculture on Soil Compaction and Seasonal Water Dynamics in a Temperate Vineyard. Land 2024, 13, 588. [Google Scholar] [CrossRef]
- Voća, N.; Bilandžija, N.; Leto, J.; Cerovečki, L.; Krička, T. Revitalisation of Abandoned Agricultural Lands in Croatia Using the Energy Crop Miscanthus X Giganteus. J. Process Energy Agric. 2019, 631, 128. [Google Scholar] [CrossRef]
- Nimac, I.; Cindrić Kalin, K.; Renko, T.; Vujnović, T.; Horvath, K. The analysis of summer 2020 urban flood in Zagreb (Croatia) from hydro-meteorological point of view. Nat. Hazards 2022, 112, 873–897. [Google Scholar] [CrossRef]
- Sollitto, D.; Romic, M.; Castrignanò, A.; Romic, D.; Bakic, H. Assessing heavy metal contamination in soils of the Zagreb region (Northwest Croatia) using multivariate geostatistics. Catena 2010, 80, 182–194. [Google Scholar] [CrossRef]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. [Google Scholar]
- Croatian Meteorological and Hydrological Service. Climatological Data. Zagreb, Croatian Meteorological and Hydrological Service. 2025. Available online: https://meteo.hr/klima.php?section=klima_podaci¶m=k1&Grad=zagreb_gric (accessed on 1 April 2025).
- Ugarković, D.; Matijević, M.; Tikvić, I.; Popić, K. Some features of climate and climatic elements in the area of the city of Zagreb. Šumarski List 2021, 145, 479–488. [Google Scholar] [CrossRef]
- Seletković, A.; Kičić, M.; Ančić, M.; Kolić, J.; Pernar, R. The Urban Heat Island Analysis for the City of Zagreb in the Period 2013–2022 Utilising Landsat 8 Satellite Imagery. Sustainability 2023, 15, 3963. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 188. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy: Madison, Wi, USA, 1986; pp. 363–375. [Google Scholar]
- Dıaz-Zorita, M.; Perfect, E.; Grove, J.H. Disruptive methods for assessing soil structure. Soil. Till Res. 2002, 64, 3–22. [Google Scholar] [CrossRef]
- Widén, B.; Lindroth, A. A calibration system for soil carbon dioxide-efflux measurement chambers: Description and application. Soil. Sci. Soc. Am. J. 2003, 67, 327–334. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 425–444. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Wasserman, L. All of Nonparametric Statistics; Springer Science & Business Media: New York, NY, USA, 2006. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry the Principles and Practice of Statistics in Biological Research, 3rd ed.; Freeman: New York, NY, USA, 1969. [Google Scholar]
- Zhang, Y.; Wang, S.; Wang, H.; Ning, F.; Zhang, Y.; Dong, Z.; Wen, P.; Wang, R.; Wang, X.; Li, J. The effects of rotating conservation tillage with conventional tillage on soil properties and grain yields in winter wheat-spring maise rotations. Agric. For. Meteorol. 2018, 263, 107–117. [Google Scholar] [CrossRef]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Vinogradov, S.; Modiba, M.M.; Gyuricza, C.; Birkás, M. Three-year investigation of tillage management on the soil physical environment, earthworm populations and crop yields in Croatia. Agronomy 2021, 11, 825. [Google Scholar] [CrossRef]
- Jabro, J.D.; Iversen, W.M.; Stevens, W.B.; Evans, R.G.; Mikha, M.M.; Allen, B.L. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices. Soil. Till Res. 2016, 159, 67–72. [Google Scholar] [CrossRef]
- Håkansson, I. Machinery-Induced Compaction of Arable Soils; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2005. [Google Scholar]
- Franzluebbers, A.J.; Stuedemann, J.A.; Schomberg, H.H.; Wilkinson, S.R. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil. Biol. Biochem. 2000, 32, 469–478. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilisation mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil. 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, C.; Xu, Z.; Wang, Y.; Peng, H. Effect of vegetation on soil water retention and storage in a semi-arid alpine forest catchment. J. Arid. Land. 2013, 5, 207–219. [Google Scholar] [CrossRef]
- Evrendilek, F.; Celik, I.; Kilic, S. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J. Arid. Environ. 2004, 59, 743–752. [Google Scholar] [CrossRef]
- Gajić, B. Physical properties and organic matter of Fluvisols under forest, grassland, and 100 years of conventional tillage. Geoderma 2013, 200, 114–119. [Google Scholar] [CrossRef]
- Ajayi, A.E.; Faloye, O.T.; Reinsch, T.; Horn, R. Changes in soil structure and pore functions under long term/continuous grassland management. Agric. Ecosyst. Environ. 2021, 314, 107407. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Mondal, S.; Chakraborty, D. Global meta-analysis suggests that no-tillage favourably changes soil structure and porosity. Geoderma 2022, 405, 115443. [Google Scholar] [CrossRef]
- Sarker, T.C.; Zotti, M.; Fang, Y.; Giannino, F.; Mazzoleni, S.; Bonanomi, G.; Cai, Y.; Chang, S.X. Soil aggregation in relation to organic amendment: A synthesis. J. Soil. Sci. Plant Nutr. 2022, 22, 2481–2502. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Klber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Luo, Z.; Wang, E.; Sun, O.J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: A review and synthesis. Geoderma 2010, 155, 211–223. [Google Scholar] [CrossRef]
- Augusto, L.; Ranger, J.; Binkley, D.; Rothe, A. Impact of several common tree species of European temperate forests on soil fertility. Ann. For. Sci. 2002, 59, 233–253. [Google Scholar] [CrossRef]
- Binkley, D.; Richter, D. Nutrient cycles and H+ budgets of forest ecosystems. Adv. Ecol. Res. 1987, 16, 1–51. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef]
- Tang, C.; Rengel, Z.; Diatloff, E.; Gazey, C. Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crop Res. 2003, 80, 235–244. [Google Scholar] [CrossRef]
- Tejada, M.; García, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil. Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Charlesworth, S.; Everett, M.; McCarthy, R.; Ordonez, A.; De Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 2003, 29, 563–573. [Google Scholar] [CrossRef]
- Luo, X.S.; Yu, S.; Zhu, Y.G.; Li, X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2011, 421–422, 17–30. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef]
- Ducaroir, J.; Lamy, I. Evidence of trace metal association with soil organic matter using particle size fractionation after physical dispersion treatment. Analyst 1995, 120, 741–745. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil. Water Conserv. 1994, 49, 189–194. [Google Scholar] [CrossRef]
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier: San Diego, CA, USA, 2003. [Google Scholar]
- Paul, K.I.; Polglase, P.J.; Smethurst, P.J.; O’Connell, A.M.; Carlyle, C.J.; Khanna, P.K. Soil temperature under forests: A simple model for predicting soil temperature under a range of forest types. Agric. For. Meteorol. 2004, 121, 167–182. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A.; Luo, Y. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10. Glob. Chang. Biol. 2006, 12, 154–164. [Google Scholar] [CrossRef]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil. Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil. Biol. Biochem. 2012, 59, 72–85. [Google Scholar] [CrossRef]
- Birch, H.F. The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil. 1958, 10, 9–31. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P. Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil. Biol. Biochem. 2002, 34, 777–787. [Google Scholar] [CrossRef]
- Placella, S.A.; Brodie, E.L.; Firestone, M.K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl. Acad. Sci. USA 2012, 109, 10931–10936. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, M.A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil. Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
Soil Properties | Forest | Cropland | Grassland |
---|---|---|---|
Total organic C [g/kg] | 28.5 | 13.8 | 22.7 |
pH in KCl [w w−1 1:5] | 4.43 | 7.35 | 8.30 |
EC [dS/m] | 0.050 | 0.071 | 0.151 |
P2O5 [mg/kg] | 45.2 | 41.8 | 45.4 |
Exchangeable K [mg/kg] | 43.7 | 88.7 | 118.3 |
Ntotal [g/kg] | 2.25 | 1.55 | 2.79 |
Bulk density [g/cm3] | 0.92 | 1.32 | 1.14 |
Sand [%] | 9.5 | 5.8 | 16.2 |
Silt [%] | 80.0 | 81.5 | 72.8 |
Clay [%] | 10.5 | 12.8 | 11.0 |
Property | Year | Land Use | Mean | Med | Min | Max | S.D. | C.V. | SE | |
---|---|---|---|---|---|---|---|---|---|---|
BD (g cm−3) | 2021 | Forest | 1.164 | b | 1.137 | 1.028 | 1.337 | 0.112 | 9.6 | 0.040 |
Cropland | 1.245 | a | 1.242 | 1.077 | 1.398 | 0.096 | 7.7 | 0.034 | ||
Grassland | 1.236 | abA | 1.241 | 1.153 | 1.294 | 0.049 | 4.0 | 0.017 | ||
2023 | Forest | 1.107 | b | 1.096 | 0.976 | 1.215 | 0.075 | 6.8 | 0.027 | |
Cropland | 1.232 | a | 1.235 | 1.203 | 1.269 | 0.022 | 1.8 | 0.008 | ||
Grassland | 1.048 | bB | 1.055 | 0.918 | 1.125 | 0.069 | 6.6 | 0.024 | ||
SWC (%) | 2021 | Forest | 36.1 | 35.6 | 28.2 | 44.4 | 5.97 | 16.5 | 2.11 | |
Cropland | 36.7 | B | 37.7 | 23.9 | 45.0 | 6.26 | 17.1 | 2.21 | ||
Grassland | 30.5 | B | 29.7 | 13.3 | 46.1 | 11.72 | 38.5 | 4.14 | ||
2023 | Forest | 39.1 | b | 36.7 | 30.6 | 54.8 | 7.84 | 20.1 | 2.77 | |
Cropland | 49.0 | aA | 49.0 | 45.4 | 53.1 | 2.81 | 5.7 | 0.99 | ||
Grassland | 49.6 | aA | 50.9 | 39.0 | 55.3 | 5.06 | 10.2 | 1.79 | ||
Temp. (°C) | 2021 | Forest | 16.5 | aB | 16.4 | 16.2 | 17.5 | 0.41 | 2.5 | 0.14 |
Cropland | 14.5 | abB | 14.6 | 14.0 | 14.7 | 0.21 | 1.5 | 0.08 | ||
Grassland | 11.4 | bB | 11.4 | 11.2 | 11.5 | 0.11 | 1.0 | 0.04 | ||
2023 | Forest | 23.3 | bA | 23.3 | 23.2 | 23.5 | 0.09 | 0.4 | 0.03 | |
Cropland | 25.6 | abA | 25.6 | 24.4 | 26.8 | 0.94 | 3.7 | 0.33 | ||
Grassland | 27.9 | aA | 28.0 | 27.3 | 28.4 | 0.49 | 1.7 | 0.17 | ||
WHC (%) | 2021 | Forest | 51.9 | a | 51.8 | 43.0 | 59.4 | 6.46 | 12.5 | 2.28 |
Cropland | 39.9 | b | 37.4 | 27.5 | 58.6 | 12.44 | 31.2 | 4.40 | ||
Grassland | 49.2 | ab | 51.2 | 39.0 | 55.6 | 5.85 | 11.9 | 2.07 | ||
2023 | Forest | 51.7 | ab | 51.3 | 49.1 | 54.5 | 1.95 | 3.8 | 0.69 | |
Cropland | 45.1 | b | 41.9 | 35.7 | 59.7 | 7.94 | 17.6 | 2.81 | ||
Grassland | 54.6 | a | 55.2 | 51.0 | 57.1 | 1.96 | 3.6 | 0.69 | ||
WSA (%) | 2021 | Forest | 91.5 | a | 90.8 | 89.6 | 94.1 | 1.65 | 1.8 | 0.58 |
Cropland | 74.7 | b | 75.1 | 67.9 | 83.0 | 4.66 | 6.2 | 1.65 | ||
Grassland | 84.1 | ab | 83.2 | 79.3 | 91.1 | 4.29 | 5.1 | 1.52 | ||
2023 | Forest | 91.2 | a | 91.0 | 88.2 | 94.3 | 1.82 | 2.0 | 0.64 | |
Cropland | 81.0 | b | 81.1 | 72.5 | 88.6 | 4.44 | 5.5 | 1.57 | ||
Grassland | 81.3 | b | 81.3 | 63.9 | 90.5 | 8.81 | 10.8 | 3.11 | ||
Infiltration (cm/s) | 2021 | Forest | 0.00062 | 0.00062 | 0.00044 | 0.00088 | 0.00013 | 21.8 | 0.00005 | |
Cropland | 0.00050 | 0.00042 | 0.00034 | 0.00074 | 0.00016 | 32.5 | 0.00006 | |||
Grassland | 0.00061 | 0.00058 | 0.00029 | 0.00105 | 0.00029 | 47.4 | 0.00010 | |||
2023 | Forest | 0.00057 | 0.00061 | 0.00040 | 0.00071 | 0.00011 | 20.0 | 0.00004 | ||
Cropland | 0.00067 | 0.00064 | 0.00057 | 0.00078 | 0.00008 | 12.1 | 0.00003 | |||
Grassland | 0.00056 | 0.00056 | 0.00036 | 0.00072 | 0.00012 | 20.6 | 0.00004 | |||
Sand (%) | 2021 | Forest | 7.4 | a | 7.2 | 3.3 | 11.0 | 3.11 | 42.0 | 1.10 |
Cropland | 5.2 | ab | 3.9 | 2.7 | 10.0 | 3.10 | 59.7 | 1.10 | ||
Grassland | 3.8 | b | 3.6 | 2.9 | 4.9 | 0.80 | 21.2 | 0.28 | ||
2023 | Forest | 7.5 | a | 7.2 | 3.5 | 11.2 | 3.09 | 41.1 | 1.09 | |
Cropland | 5.2 | ab | 4.0 | 2.9 | 10.0 | 2.95 | 56.6 | 1.04 | ||
Grassland | 4.4 | b | 4.2 | 3.1 | 7.7 | 1.46 | 32.6 | 0.52 | ||
Silt (%) | 2021 | Forest | 76.1 | 76.4 | 72.2 | 79.1 | 2.04 | 2.7 | 0.72 | |
Cropland | 75.8 | 75.0 | 73.1 | 83.4 | 3.46 | 4.6 | 1.22 | |||
Grassland | 77.0 | 76.4 | 72.8 | 83.3 | 4.11 | 5.3 | 1.45 | |||
2023 | Forest | 75.9 | 76.2 | 72.0 | 78.9 | 2.04 | 2.7 | 0.72 | ||
Cropland | 75.7 | 74.8 | 72.9 | 83.2 | 3.48 | 4.6 | 1.23 | |||
Grassland | 76.9 | 76.2 | 72.6 | 83.1 | 4.07 | 5.3 | 1.44 | |||
Clay (%) | 2021 | Forest | 16.5 | 15.8 | 11.8 | 23.0 | 4.68 | 28.3 | 1.65 | |
Cropland | 19.0 | 19.8 | 13.2 | 24.2 | 4.98 | 26.2 | 1.76 | |||
Grassland | 19.2 | 18.8 | 13.3 | 24.1 | 4.37 | 22.7 | 1.54 | |||
2023 | Forest | 16.6 | 15.8 | 11.8 | 23.0 | 4.65 | 28.0 | 1.64 | ||
Cropland | 19.1 | 20.0 | 13.4 | 24.2 | 4.90 | 25.6 | 1.73 | |||
Grassland | 18.7 | 18.5 | 13.3 | 24.1 | 4.04 | 21.7 | 1.43 |
Property | Year | Land Use | Mean | Med | Min | Max | S.D. | C.V. | SE | |
---|---|---|---|---|---|---|---|---|---|---|
CO2 (kg ha−1 day−1) | 2021 | Forest | 66.8 | abB | 67.3 | 54.7 | 79.9 | 8.8 | 13.2 | 3.1 |
Cropland | 5.6 | bB | 5.5 | 4.2 | 8.4 | 1.4 | 26.0 | 0.5 | ||
Grassland | 1403.0 | aA | 1059.8 | 687.4 | 3492.3 | 940.1 | 67.0 | 332.4 | ||
2023 | Forest | 122.0 | bA | 116.3 | 95.5 | 157.8 | 22.7 | 18.6 | 8.0 | |
Cropland | 123.0 | bA | 116.3 | 70.6 | 232.6 | 47.9 | 38.9 | 16.9 | ||
Grassland | 200.9 | aB | 199.3 | 149.5 | 249.2 | 38.7 | 19.3 | 13.7 | ||
pH | 2021 | Forest | 4.43 | bA | 4.04 | 3.69 | 7.45 | 1.25 | 28.2 | 0.44 |
Cropland | 7.36 | aA | 7.30 | 7.16 | 7.75 | 0.20 | 2.7 | 0.07 | ||
Grassland | 7.25 | abB | 7.71 | 3.93 | 7.86 | 1.35 | 18.6 | 0.48 | ||
2023 | Forest | 3.66 | bB | 3.60 | 3.40 | 4.15 | 0.23 | 6.2 | 0.08 | |
Cropland | 7.06 | abB | 7.08 | 6.86 | 7.27 | 0.12 | 1.7 | 0.04 | ||
Grassland | 7.36 | aA | 7.37 | 7.18 | 7.45 | 0.08 | 1.1 | 0.03 | ||
SOM (%) | 2021 | Forest | 7.97 | a | 5.78 | 2.78 | 17.66 | 4.82 | 60.5 | 1.70 |
Cropland | 2.15 | c | 2.18 | 1.41 | 2.69 | 0.44 | 20.5 | 0.16 | ||
Grassland | 4.76 | b | 4.49 | 3.78 | 6.89 | 0.93 | 19.5 | 0.33 | ||
2023 | Forest | 6.63 | a | 5.53 | 4.32 | 13.31 | 2.97 | 44.8 | 1.05 | |
Cropland | 2.33 | b | 2.29 | 1.95 | 2.75 | 0.28 | 12.2 | 0.10 | ||
Grassland | 4.59 | a | 4.63 | 2.98 | 6.10 | 0.91 | 19.9 | 0.32 | ||
Cr (mg/kg) | 2021 | Forest | 110 | b | 96 | 85 | 195 | 36 | 32.8 | 12.80 |
Cropland | 197 | a | 197 | 184 | 211 | 9 | 4.4 | 3.07 | ||
Grassland | 180 | abB | 184 | 128 | 201 | 23 | 12.9 | 8.16 | ||
2023 | Forest | 103 | b | 104 | 70 | 125 | 19 | 18.3 | 6.65 | |
Cropland | 203 | b | 198 | 189 | 228 | 14 | 6.9 | 4.96 | ||
Grassland | 205 | aA | 205 | 180 | 223 | 17 | 8.1 | 5.84 | ||
Mn (mg/kg) | 2021 | Forest | 531 | b | 563 | 256 | 663 | 141.1 | 26.6 | 49.9 |
Cropland | 617 | b | 618 | 545 | 704 | 50.9 | 8.3 | 18.0 | ||
Grassland | 682 | a | 740 | 360 | 793 | 139.9 | 20.5 | 49.5 | ||
2023 | Forest | 536 | b | 553 | 382 | 684 | 109.1 | 20.4 | 38.6 | |
Cropland | 677 | a | 683 | 647 | 701 | 20.8 | 3.1 | 7.3 | ||
Grassland | 686 | a | 681 | 620 | 748 | 45.7 | 6.7 | 16.2 | ||
Fe (mg/kg) | 2021 | Forest | 30,362 | b | 29,589 | 27,986 | 38,176 | 3302 | 10.9 | 1168 |
Cropland | 40,216 | aA | 40,149 | 39,588 | 41,147 | 545 | 1.4 | 193 | ||
Grassland | 37,167 | ab | 37,826 | 29,419 | 39,884 | 3278 | 8.8 | 1159 | ||
2023 | Forest | 29,217 | b | 29,833 | 25,490 | 30,953 | 1854 | 6.3 | 655 | |
Cropland | 39,282 | aB | 39,022 | 38,595 | 40,161 | 601 | 1.5 | 213 | ||
Grassland | 37,775 | ab | 37,515 | 36,443 | 40,027 | 1070 | 2.8 | 378 | ||
Ni (mg/kg) | 2021 | Forest | 41.0 | b | 32.0 | 21.0 | 109.0 | 28.0 | 68.4 | 9.9 |
Cropland | 102.3 | a | 103.5 | 95.0 | 105.0 | 3.3 | 3.2 | 1.2 | ||
Grassland | 97.3 | ab | 106.0 | 27.0 | 120.0 | 29.1 | 29.9 | 10.3 | ||
2023 | Forest | 30.8 | b | 31.5 | 26.0 | 36.0 | 4.0 | 12.9 | 1.4 | |
Cropland | 106.0 | a | 108.0 | 94.0 | 113.0 | 6.3 | 5.9 | 2.2 | ||
Grassland | 108.3 | a | 108.5 | 100.0 | 117.0 | 6.0 | 5.6 | 2.1 | ||
Cu (mg/kg) | 2021 | Forest | 19.1 | b | 16.5 | 15.0 | 36.0 | 6.9 | 36.2 | 2.5 |
Cropland | 31.8 | ab | 32.0 | 27.0 | 35.0 | 2.5 | 7.9 | 0.9 | ||
Grassland | 34.0 | a | 37.5 | 15.0 | 40.0 | 8.3 | 24.5 | 2.9 | ||
2023 | Forest | 16.3 | b | 17.0 | 12.0 | 19.0 | 2.4 | 14.6 | 0.8 | |
Cropland | 30.4 | a | 29.5 | 28.0 | 34.0 | 2.3 | 7.7 | 0.8 | ||
Grassland | 35.3 | a | 36.5 | 29.0 | 40.0 | 4.0 | 11.4 | 1.4 | ||
Zn (mg/kg) | 2021 | Forest | 75.1 | b | 73.1 | 67.0 | 95.0 | 9.1 | 12.2 | 3.2 |
Cropland | 97.3 | a | 97.0 | 88.0 | 105.0 | 4.9 | 5.0 | 1.7 | ||
Grassland | 90.3 | abB | 91.5 | 74.0 | 96.0 | 7.0 | 7.7 | 2.5 | ||
2023 | Forest | 71.0 | b | 70.5 | 66.0 | 77.0 | 3.5 | 5.0 | 1.3 | |
Cropland | 96.1 | a | 96.5 | 91.0 | 102.0 | 3.3 | 3.4 | 1.2 | ||
Grassland | 95.6 | aA | 96.0 | 88.0 | 101.0 | 4.0 | 4.1 | 1.4 |
Property | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 |
---|---|---|---|---|---|
Water holding capacity (%) | −0.23 | 0.57 | 0.41 | 0.17 | 0.29 |
Soil water content (%) | 0.27 | 0.49 | 0.35 | −0.50 | −0.10 |
Bulk density (g cm−3) | 0.27 | −0.73 | −0.25 | 0.14 | −0.21 |
Water stable aggregates (%) | −0.74 | 0.18 | 0.10 | 0.21 | −0.08 |
Infiltration rate (cm/s) | −0.16 | 0.11 | 0.19 | 0.06 | −0.86 |
Temperature (°C) | −0.01 | 0.56 | 0.40 | −0.55 | −0.13 |
CO2 (kg ha−1 day−1) | −0.06 | 0.36 | 0.19 | 0.73 | −0.24 |
pH | 0.95 | 0.11 | −0.12 | 0.17 | 0.05 |
Soil organic matter (%) | −0.66 | 0.29 | 0.16 | 0.47 | 0.18 |
Cr (mg/kg) | 0.94 | 0.15 | 0.05 | −0.09 | 0.00 |
Mn (mg/kg) | 0.65 | 0.34 | −0.19 | 0.40 | −0.13 |
Fe (mg/kg) | 0.95 | −0.09 | −0.07 | −0.10 | −0.06 |
Ni (mg/kg) | 0.96 | 0.19 | −0.01 | 0.08 | 0.02 |
Cu (mg/kg) | 0.89 | 0.20 | 0.00 | 0.25 | 0.07 |
Zn (mg/kg) | 0.94 | 0.06 | 0.09 | −0.05 | 0.02 |
Sand (%) | −0.49 | 0.24 | −0.54 | −0.25 | −0.09 |
Silt (%) | 0.01 | 0.53 | −0.73 | 0.05 | 0.03 |
Clay (%) | 0.25 | −0.47 | 0.81 | 0.14 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogunovic, I.; Galic, M.; Percin, A.; Geng, S.; Pereira, P. The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes. Agronomy 2025, 15, 1589. https://doi.org/10.3390/agronomy15071589
Bogunovic I, Galic M, Percin A, Geng S, Pereira P. The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes. Agronomy. 2025; 15(7):1589. https://doi.org/10.3390/agronomy15071589
Chicago/Turabian StyleBogunovic, Igor, Marija Galic, Aleksandra Percin, Sun Geng, and Paulo Pereira. 2025. "The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes" Agronomy 15, no. 7: 1589. https://doi.org/10.3390/agronomy15071589
APA StyleBogunovic, I., Galic, M., Percin, A., Geng, S., & Pereira, P. (2025). The Role of Grassland Land Use in Enhancing Soil Resilience and Climate Adaptation in Periurban Landscapes. Agronomy, 15(7), 1589. https://doi.org/10.3390/agronomy15071589