Variability of Grassland Soils’ Properties in Comparison to Soils of Other Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling Design
2.3. Soil Chemical, Physical, and Biological Analysis
2.4. Data Analysis
3. Results
3.1. Soil Chemical, Physical, and Biological Properties in Different Ecosystems
3.2. Relationships Between Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suttie, J.M.; Reynoslds, S.G.; Batello, C. Grasslands of the World, 1st ed.; FAO: Roma, Italy, 2005. [Google Scholar]
- Squires, V.R.; Dengler, J.; Hua, L. Grasslands of the World: Diversity, Management, and Conservation, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2018. [Google Scholar]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.T.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Blüthgen, N.; Dormann, C.F.; Prati, D.; Klaus, V.H.; Kleinbecker, T.; Hölzel, N.; Alt, F.; Boch, S.; Gockel, S.; Hemp, A.; et al. A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic Appl. Ecol. 2012, 13, 207–220. [Google Scholar] [CrossRef]
- Mayel, S.; Jarrah, M.; Kuka, K. How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass Forage Sci. 2021, 76, 215–244. [Google Scholar] [CrossRef]
- Wang, X.; Wang, R.; Gao, J. Precipitation and soil nutrient determine the spatial variability of grassland productivity at large scales in China. Front. Plant Sci. 2022, 13, 996313. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.W. Pedogenesis in the Grassland and Adjacent Forests of the Great Plains. Adv. Soil Sci. 1987, 7, 53–93. [Google Scholar] [CrossRef]
- Paudel, S.; Cobb, A.B.; Boughton, E.H.; Spiegal, S.; Boughton, R.K.; Silveira, M.L.; Swain, H.M.; Reuter, R.; Goodman, L.E.; Steiner, J.L. A framework for sustainable management of ecosystem services and disservices in perennial grassland agroecosystems. Ecosphere 2021, 12, e03837. [Google Scholar] [CrossRef]
- Centeri, C. Effects of grazing on water erosion, compaction and infiltration on grasslands. Hydrology 2022, 9, 34. [Google Scholar] [CrossRef]
- Fraser, M.D.; Vallin, H.E.; Roberts, B.P. Animal board invited review: Grassland-based livestock farming and biodiversity. Animal 2022, 16, 100371. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmulowicz, B. Physiological and morphometric response of forage grass species and their biomass distribution depending on the term and frequency of water deficiency. Agronomy 2021, 11, 2471. [Google Scholar] [CrossRef]
- Richter, F.; Jan, P.; El Benni, N.; Luscher, A.; Buchmann, N.; Klaus, V.H. A guide to assess and value ecosystem services of grasslands. Ecosyst. Serv. 2021, 52, 101376. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solution. Science 2022, 377, 603–608. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zheng, K.; Han, C.; Li, L.; Sheng, H.; Ma, Z. Changes in soil carbon and nitrogen stocks following degradation of alpine grasslands on the Qinghai-Tibetan Plateau: A meta-analysis. Land Degrad. Dev. 2021, 32, 1262–1273. [Google Scholar] [CrossRef]
- Lyons, K.G.; Török, P.; Hermann, J.M.; Kiehl, K.; Kirmer, A.; Kollmann, J.; Overbeck, G.E.; Tischew, S.; Allen, E.B.; Bakker, J.D.; et al. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 2023, 46, e02612. [Google Scholar] [CrossRef]
- Martins, C.S.C.; Delgado-Baquerizo, M.; Jayaramaiah, R.H.; Tao, D.; Wang, J.T. Aboveground and belowground biodiversity have complementary effects on ecosystem functions across global grasslands. PLoS Biol. 2024, 22, e3002736. [Google Scholar] [CrossRef]
- Pecl, G.T.; Araújo, M.B.; Bell, J.D.; Blanchard, J.; Bonebrake, T.C. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017, 355, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Liu, H.; Hou, L.; Kang, N.; Nan, Z.; Hunag, J. The economic value of grassland ecosystem services: A global meta-analysis. Grassl. Res. 2022, 1, 63–74. [Google Scholar] [CrossRef]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemik, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Winkler, R. Valuation of ecosystem goods and services part 1: An integrated dynamic approach. Ecol. Econ. 2006, 59, 82–93. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Liu, H.; A, Z.; Guo, W. Quantitatively linking ecosystem service functions with soil moisture and ecohydrology regimes in watershed. Sci. Total Environ. 2024, 955, 176866. [Google Scholar] [CrossRef]
- Paul, C.; Kuhn, K.; Steinhoff-Knopp, B.; Weishuhn, P.; Helming, K. Towards a standardization of soil-related ecosystem service assessments. Eur. J. Soil Sci. 2020, 72, 1543–1558. [Google Scholar] [CrossRef]
- Williams, A.; Hedlund, K. Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Appl. Soil. Ecol. 2013, 65, 1–7. [Google Scholar] [CrossRef]
- Vrebos, D.; Staes, J.; Vandenbroucke, T.; D’Haeyer, T.; Johnston, R.; Muhumuza, M.; Kasabeke, C.; Meire, P. Mapping ecosystem service flows with land cover scoring maps for data-scarce regions. Ecosyst. Serv. 2015, 13, 28–40. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combating global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Prangel, E.; Kasari-Toussaint, L.; Neuenkamp, L.; Noreika, N.; Karise, R. Afforestation and abandonment of semi-natural grasslands lead to biodiversity loss and a decline in ecosystem services and functions. J. Appl. Ecol. 2023, 60, 825–836. [Google Scholar] [CrossRef]
- Hejcman, M.; Hejcmanova, P.; Pavlů, V.; Beneš, J. Origin and history of grasslands in Central Europe—A review. Grass Forage Sci. 2013, 68, 345–363. [Google Scholar] [CrossRef]
- Lovász, L.; Korner-Nievergelt, F.; Amrhein, V. Natural grazing by horses and cattle promotes bird diversity in a restored European alluvial grassland. PeerJ 2024, 12, e17777. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Salmon, J.M. Mapping the world’s degraded lands. Appl. Geogr. 2015, 57, 12–21. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- UGKKSR. Statistical Yearbook on Soil Resources in the Slovak Republic According to Data of Cadastre to 1 January 2024, 1st ed.; UGKKSR: Bratislava, Slovakia, 2024. (In Slovak) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; Available online: https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf (accessed on 20 January 2025).
- Nikitin, V.; Fishman, V. On the improvement of methods for determination of soil carbon. Chem. Agric. 1969, 3, 76–77. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Tan, Q.; Wang, G.; Liu, X.; Hao, T.; Tan, W. Responses of soil organic carbon turnover to nitrogen deposition are associated with nitrogen input rates: Derived from soil 14C evidence. Environ. Pollut. 2018, 238, 500–507. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Gurmesa, G.A.; Yu, G.; Li, L.; Zhang, W.; Fang, H.; Mo, J. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environ. Pollut. 2015, 206, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Klika, J.; Novák, A.; Gregor, A. Practical Lessons in Phytocenology, Ecology, Climatology and Soil Science; NCSAV: Praha, Czech Republic, 1954. (In Czech) [Google Scholar]
- Blake, G.R.; Hartage, K.H. Particle density. In Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods—Agronomy Monograph No.9; American Society of Agronomy—Soil Science Society of America: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Gupta, S.C.; Larson, W.E. Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour. Res. 1979, 15, 1633–1635. [Google Scholar] [CrossRef]
- Botula, Y.D.; Cornelis, W.M.; Baert, G.; Van Ranst, E. Evaluation of pedotransfer functions for predicting water retention of soils in Lower Congo (D.R. Congo). Agric. Water Manag. 2012, 111, 1–10. [Google Scholar] [CrossRef]
- Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water-based index as a suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [Google Scholar] [CrossRef]
- Zajonc, I. Earthworms of Slovakia (Oligochaeta: Lumbricidae), 1st ed.; VEDA: Bratislava, Slovakia, 1981. (In Slovak) [Google Scholar]
- Sherlock, E. Key to the Earthworms of the UK and Ireland; FSC and natural History Museum: London, UK, 2012. [Google Scholar]
- Behara, S.K.; Mathur, R.K.; Shukla, A.K.; Suresh, K.; Prakash, C. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humic tropical region of southern Inda. Catena 2018, 165, 251–259. [Google Scholar] [CrossRef]
- Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil properties spatial variability and delineation of site-specific management zones based on soil fertility using fuzzy clustering in a hilly field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. [Google Scholar] [CrossRef]
- Kosma, C.; Triantafyllidis, V.; Zotos, A.; Pittaras, A.; Kouneli, V. Assessing spatial variability of soil properties in Mediterranean smallholder farming systems. Land 2022, 11, 557. [Google Scholar] [CrossRef]
- Yadav, R.K.; Purakayastha, T.J.; Khan, M.A.; Kaushik, S.C. Long-term impact of manuring and fertilization on enrichment, stability and quality of organic carbon in Inceptisol under two potato-based cropping systems. Sci. Total Environ. 2017, 609, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Mazur-Paczka, A.; Paczka, G.; Kostecka, J.; Garcynska, M.; Podolak, A.; Szura, R. Community structure of Lumbricidae in permanent grassland and arable land. J. Ecol. Eng. 2019, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gebremeskel Weldmichael, T.; Szegi, T.; Denish, L.; Kumar Gangwar, R.; Michéli, E.; Simon, B. The patterns of soil microbial respiration and earthworm communities as influenced by soil and land-use type in selected soils of Hungary. Soil Sci. Annu. 2020, 71, 43–52. [Google Scholar] [CrossRef]
- Betancur-Corredor, B.; Zaitsev, A.; Russell, D.J. The impact of multiple agricultural land uses in sustaining earthworm communities in agroecosystems—A global met-analysis. Sci. Rep. 2024, 14, 30160. [Google Scholar] [CrossRef] [PubMed]
- Cong, W.-F.; Suriyagoda, L.D.B.; Lambers, H. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes. Trends Plant Sci. 2020, 25, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.B.; Sayyed, R.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef]
- Laakso, J.; Uusitalo, R.; Yli-Halla, M. Phosphorus speciation in agricultural catchment soils and in fresh and dried sediments of five constructed wetlands. Geoderma 2016, 271, 18–26. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Houlton, B.Z.; Chadwick, O.A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef]
- Hou, E.Q.; Luo, Y.; Kuang, Y.; Chen, C.; Lu, X.; Jiang, L.; Luo, X.; Wen, D. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 2020, 11, 637. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.Z.H.; Chang, S.X. Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Ecol. Evol. 2022, 6, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Négrel, P.; Ladenberger, A.; Reimann, C.; Birke, M.; Demetriades, A. GEMAS: Geochemical distribution of Mg in agricultural soil of Europe. J. Geochem. Explor. 2021, 221, 106706. [Google Scholar] [CrossRef]
- Kayser, M.; Isselstein, J. Potassium cycling and losses in grassland systems: A review. Grass Forage Sci. 2005, 60, 213–224. [Google Scholar] [CrossRef]
- Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [Google Scholar] [CrossRef]
- Zaghloul, A.; Saber, M.; Gadow, S.; Awad, F. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl. Res. Cent. 2020, 44, 127. [Google Scholar] [CrossRef]
- Hoeffner, K.; Hotte, H.; Cluzeau, D.; Charrier, X.; Gastal, F.; Pérés, G. Effects of temporary grassland introduction into annual crop rotation and nitrogen fertilization on earthworm communities and forage production. Appl. Soil Eco. 2021, 162, 103893. [Google Scholar] [CrossRef]
- Liu, Q.; Eisenhauer, N.; Scheu, S.; Reitz, T.; Schädler, M. Grasslands support more diverse and resilient earthworm communities to climate change than cropland in Central Europe. Agric. Ecosyst. Environ. 2025, 377, 109259. [Google Scholar] [CrossRef]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef]
- Antony, D.; Collins, C.D.; Clark, J.M.; Sizmur, T. Soil organic matter storage in temperate lowland arable, grassland and woodland topsoil and subsoil. Soil Use Manag. 2022, 38, 1532–1546. [Google Scholar] [CrossRef]
- Tamburini, G.; Aguilera, G.; öckinger, E. Grasslands enhance ecosystem service multifunctionality above and below-ground in agricultural landscape. J. Appl. Ecol. 2022, 59, 3061–3071. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
- Zhou, G.; Zhou, X.; He, Y.; Shao, J.; Hu, Z.; Liu, R.; Zhou, H.; Hosseinibai, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems. A meta-analysis. Glob. Change Biol. 2017, 23, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Canedoli, C.; Ferre, C.; Abu El Khair, D.; Comolli, R.; Liga, C. Evaluation of ecosystem services in a protected mountain area: Soil organic carbon stock and biodiversity in alpine forests and grasslands. Ecosyst. Serv. 2020, 44, 101135. [Google Scholar] [CrossRef]
- Kumar, S.S.; Wani, O.A.; Mir, S.A.; Babu, S.; Sharma, V.; Chesti, M.U.H.; Baba, Z.A.; Sofi, P.A.; Wani, F.J.; Dar, S.R.; et al. Soil carbon dynamics in the temperate Himalayas: Impact of land use management. Front. Environ. Sci. 2022, 10, 1009660. [Google Scholar] [CrossRef]
- Phukubye, K.; Mutema, M.; Buthelezi, N.; Muchaonyerwa, P.; Cerri, C.; Chaplot, V. On the impact of grassland management on soil carbon socks. A worldwide meta-analysis. Geoderma Reg. 2022, 28, e00479. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, E.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Li, J.-P.; Ma, H.-B.; Xie, Y.-Z.; Wang, K.-B.; Qiu, K.-Y. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China. Sci. Rep. 2019, 9, 16088. [Google Scholar] [CrossRef]
- Moreno-de las Heras, M.; Bochet, E.; Monleon, V.; Espigares, T.; Manuel Nicolau, J.; Molina, M.J.; García-Fayos, P. Aridity induces nonlinear effects of human disturbance on precipitation-use efficiency of Iberian woodlands. Ecosystems 2018, 21, 1295–1305. [Google Scholar] [CrossRef]
Cadastre | Locality | Latitude (N) | Longitude (E) | Altitude (A) (m) | Soil Type | Land Use | Landscape Unit |
---|---|---|---|---|---|---|---|
Liptovska Teplicka | GL_S_LP_LT | N48°57.011 | E20°06.875 | 930 | LP | GL | S |
Stara Huta | GL_S_CM_SH | N48°27.880 | E19°17.490 | 783 | CM | GL | S |
Banska Stiavnica | GL_S_CM_BS | N48°26.749 | E18°53.297 | 659 | CM | GL | S |
Oravska Jasenica | GL_S_CM_OJ | N49°24.106 | E19°25.976 | 656 | CM | GL | S |
Stiavnicke Bane | GL_P_FL_SB | N48°26.136 | E18°52.632 | 648 | FL | GL | P |
Tajov | GL_S_CM_TA | N48°44.837 | E19°03.153 | 597 | CM | GL | S |
Nizna | GL_S_CM_NI | N49°18.261 | E19°31.029 | 572 | CM | GL | S |
Dolna Lehota | GL_S_FL_DL | N49°15.947 | E19°21.743 | 508 | FL | GL | P |
Horna Micina | GL_S_CM_HM | N48°42.363 | E19°13.330 | 462 | LP | GL | S |
Zaskov | GL_S_FL_ZA | N49°11.343 | E19°12.488 | 451 | FL | GL | P |
Ocova | GL_S_PL_OC | N48°36.390 | E19°17.122 | 412 | PL | GL | S |
Tisovec | GL_P_FL_TI | N48°39.710 | E19°56.470 | 385 | FL | GL | P |
Svaty Anton | GL_P_FL_SA | N48°22.979 | E18°55.854 | 353 | FL | GL | P |
Hacava | GL_P_FL_HA | N48°37.257 | E19°57.056 | 351 | FL | GL | P |
Kecovo | GL_S_CM_KE | N48°28.586 | E20°27.858 | 344 | CM | GL | S |
Prencov | GL_S_CM_PR | N48°21.675 | E18°55.174 | 335 | CM | GL | S |
Hnusta | GL_S_CM_HN | N48°36.012 | E19°57.588 | 328 | CM | GL | S |
Hnusta | GL_P_FL_HN | N48°36.900 | E19°57.440 | 322 | FL | GL | P |
Prencov | GL_P_FL_PR | N48°20.859 | E18°55.871 | 288 | FL | GL | P |
Dvorniky | GL_P_FL_DV | N48°12.168 | E18°55.733 | 155 | FL | GL | P |
Liptovska Teplicka | AL_S_LP_LT | N48°57.009 | E20°06.749 | 920 | LP | AL | S |
Stara Huta | AL_S_CM_SH | N49°27.897 | E19°17.500 | 781 | CM | AL | S |
Oravska Jasenica | AL_S_CM_OJ | N49°24.117 | E19°25.982 | 656 | CM | AL | S |
Tajov | AL_S_CM_TA | N48°44.847 | E19°03.117 | 595 | CM | AL | S |
Horna Micina | AL_S_LP_HM | N48°42.326 | E19°13.320 | 460 | LP | AL | S |
Ocova | AL_S_PL_OC | N48°36.383 | E19°17.169 | 410 | PL | AL | S |
Liptovska Teplicka | FL_S_FL_LT | N48°56.828 | E20°06.483 | 925 | LP | FL | S |
Stara Huta | FL_S_CM_SH | N49°27.833 | E19°17.472 | 777 | CM | FL | S |
Oravska Jasenica | FL_S_CM_OJ | N49°24.180 | E19°25.737 | 667 | CM | FL | S |
Tajov | FL_S_CM_TA | N48°44.791 | E19°03.119 | 580 | CM | FL | S |
Horna Micina | FL_S_LP_HM | N48°42.385 | E19°13.378 | 465 | LP | FL | S |
Ocova | FL_S_PL_OC | N48°36.489 | E19°17.001 | 437 | PL | FL | S |
Stiavnicke Bane | RZ_P_FL_SB | N48°26.113 | E18°52.635 | 648 | FL | RZ | P |
Dolna Lehota | RZ_P_FL_DL | N49°15.935 | E19°21.757 | 505 | FL | RZ | P |
Zaskov | RZ_P_FL_ZA | N49°11.367 | E19°12.420 | 451 | FL | RZ | P |
Tisovec | RZ_P_FL_TI | N48°39.704 | E19°56.472 | 385 | FL | RZ | P |
Hnusta | RZ_P_FL_HN | N48°36.891 | E19°57.465 | 322 | FL | RZ | P |
Prencov | RZ_P_FL_PR | N48°20.866 | E18°55.900 | 284 | FL | RZ | P |
Eco- system | Statistical Characteristics | pH/H2O | pH/KCl | Eh (mV) | SOC (g kg−1) | SOM (g kg−1) | NT (g kg−1) | C/N | P (mg kg−1) | K (mg kg−1) | Mg (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
GLSP | ± SD | 6.37 ± 1.03 | 5.93 ± 1.17 | 364 ± 47 | 28.55 ± 11.64 | 49.22 ± 20.06 | 2.70 ± 1.22 | 10.94 ± 2.98 | 8.07 ± 9.17 | 187.8 ± 93.2 | 818.9 ± 1017.55 |
Min | 4.84 | 3.98 | 291 | 13.88 | 23.93 | 1.42 | 7.24 | 0.04 | 49.1 | 220.14 | |
Max | 9.01 | 8.93 | 451 | 51.81 | 89.32 | 6.09 | 20.93 | 33.73 | 349.3 | 4700.38 | |
GLS | ± SD | 6.20 ± 1.23 | 5.84 ± 1.43 | 361 ± 52 | 33.74 ± 12.73 | 58.17 ± 21.95 | 3.27 ± 1.37 | 10.78 ± 3.47 | 5.43 ± 6.36 | 188.50 ± 94.63 | 1083.24 ± 1286.40 |
Min | 4.84 | 3.98 | 291 | 15.00 | 25.86 | 1.42 | 7.24 | 0.04 | 71.69 | 220.14 | |
Max | 9.01 | 8.93 | 451 | 51.81 | 89.32 | 6.09 | 20.93 | 22.83 | 349.30 | 4700.38 | |
GLP | ± SD | 6.57 ± 0.63 | 6.06 ± 0.70 | 368 ± 36 | 22.21 ± 5.16 | 38.28 ± 8.89 | 2.02 ± 0.40 | 11.15 ± 2.10 | 11.30 ± 10.33 | 187.01 ± 86.64 | 495.90 ± 282.37 |
Min | 5.36 | 5.08 | 317 | 13.88 | 23.93 | 1.42 | 7.27 | 2.87 | 49.11 | 238.08 | |
Max | 7.44 | 7.19 | 448 | 31.48 | 54.27 | 2.72 | 13.94 | 33.73 | 319.35 | 1078.60 | |
AL | ± SD | 6.33 ± 0.59 | 5.59 ± 0.65 | 349 ± 29 | 25.21 ± 14.62 | 43.96 ± 26.19 | 2.31 ± 0.94 | 10.25 ± 1.62 | 28.45 ± 7.97 | 409.90 ± 472.49 | 513.40 ± 270.32 |
Min | 5.34 | 4.84 | 289 | 10.50 | 18.10 | 1.23 | 8.54 | 13.88 | 126.66 | 127.36 | |
Max | 7.15 | 6.70 | 379 | 53.63 | 95.46 | 3.99 | 13.44 | 38.23 | 1461.37 | 949.12 | |
FL | ± SD | 5.88 ± 0.71 | 5.02 ± 1.11 | 381 ± 66 | 74.43 ± 39.18 | 128.31 ± 67.55 | 4.62 ± 1.41 | 15.40 ± 4.32 | 5.73 ± 4.96 | 252.97 ± 126.37 | 640.13 ± 332.46 |
Min | 5.16 | 3.84 | 247 | 30.00 | 51.72 | 3.16 | 7.13 | 0.04 | 106.79 | 283.41 | |
Max | 7.25 | 7.12 | 443 | 145.44 | 250.74 | 7.38 | 19.71 | 13.49 | 437.73 | 1273.57 | |
RZ | ± SD | 7.22 ± 0.46 | 6.69 ± 0.67 | 448 ± 220 | 27.38 ± 3.21 | 47.19 ± 5.53 | 2.40 ± 0.53 | 11.82 ± 2.17 | 17.58 ± 13.96 | 244.53 ± 123.54 | 645.06 ± 351.06 |
Min | 6.26 | 5.30 | 300 | 23.76 | 40.96 | 1.66 | 8.62 | 4.63 | 97.70 | 266.36 | |
Max | 7.65 | 7.20 | 935 | 33.45 | 57.67 | 3.34 | 14.31 | 46.67 | 420.92 | 1164.62 |
Eco- system | Statistical Characteristics | Clay (%) | Silt (%) | Sand (%) | Gravel (%) | BD (g cm−3) | PD (g cm−3) | ST (°C) | SM (%) | PR (MPa. cm−1) | DPR (cm) |
---|---|---|---|---|---|---|---|---|---|---|---|
GLSP | ± SD | 12.2 ± 7.8 | 46.2 ± 14.7 | 41.5 ± 16.2 | 9.3 ± 11.5 | 1.23 ± 0.13 | 2.34 ± 0.14 | 15.1 ± 6.9 | 26.7 ± 9.2 | 1.2 ± 0.2 | 23.1 ± 16.6 |
Min | 5.3 | 22.7 | 12.2 | 1.1 | 0.95 | 2.06 | 4.3 | 12.9 | 0.8 | 4.4 | |
Max | 38.3 | 76.0 | 70.4 | 50.0 | 1.47 | 2.61 | 28.3 | 47.6 | 1.7 | 62.0 | |
GLS | ± SD | 14.4 ± 9.6 | 50.8 ± 15.6 | 34.7 ± 15.9 | 11.1 ± 13.9 | 1.24 ± 0.12 | 2.33 ± 0.15 | 14.2 ± 7.1 | 25.7 ± 9.1 | 1.2 ± 0.2 | 26.5 ± 18.9 |
Min | 5.3 | 24.1 | 12.2 | 1.1 | 1.05 | 2.06 | 4.3 | 12.9 | 0.8 | 4.4 | |
Max | 38.3 | 76.0 | 68.6 | 50.0 | 1.43 | 2.56 | 24.2 | 40.4 | 1.7 | 62.0 | |
GLP | ± SD | 9.5 ± 2.8 | 40.7 ± 10.6 | 49.8 ± 11.6 | 7.0 ± 6.7 | 1.22 ± 0.13 | 2.34 ± 0.12 | 16.1 ± 6.2 | 27.8 ± 8.7 | 1.1 ± 0.2 | 18.9 ± 11.2 |
Min | 6.3 | 22.7 | 33.0 | 2.0 | 0.95 | 2.16 | 7.4 | 16.6 | 0.8 | 7.4 | |
Max | 15.2 | 57.9 | 70.4 | 20.0 | 1.47 | 2.61 | 28.3 | 47.6 | 1.6 | 38.3 | |
AL | ± SD | 14.8 ± 5.8 | 48.9 ± 10.8 | 36.4 ± 15.9 | 5.6 ± 5.3 | 1.21 ± 0.14 | 2.48 ± 0.16 | 17.3 ± 9.0 | 15.7 ± 6.1 | 0.9 ± 0.2 | 31.5 ± 25.2 |
Min | 8.2 | 36.1 | 13.1 | 0.0 | 0.97 | 2.24 | 4.6 | 6.1 | 0.5 | 6.8 | |
Max | 25.2 | 67.5 | 55.8 | 15.0 | 1.39 | 2.68 | 26.5 | 22.7 | 1.2 | 72.9 | |
FL | ± SD | 15.5 ± 10.1 | 55.7 ± 6.7 | 28.8 ± 11.6 | 25.3 ± 16.7 | 0.98 ± 0.30 | 2.10 ± 0.29 | 13.3 ± 6.8 | 20.8 ± 10.0 | 1.1 ± 0.4 | 15.1 ± 7.0 |
Min | 9.3 | 48.1 | 9.2 | 1.5 | 0.46 | 1.58 | 3.5 | 7.9 | 0.5 | 5.7 | |
Max | 38.0 | 68.5 | 41.2 | 50.0 | 1.46 | 2.50 | 20.9 | 34.9 | 1.4 | 27.4 | |
RZ | ± SD | 7.8 ± 1.9 | 37.3 ± 10.0 | 54.9 ± 11.0 | 15.0 ± 9.1 | 1.07 ± 0.14 | 2.38 ± 0.13 | 14.8 ± 4.8 | 21.7 ± 4.4 | 0.9 ± 0.3 | 35.2 ± 26.6 |
Min | 5.5 | 16.5 | 46.8 | 5.0 | 0.92 | 2.18 | 6.7 | 16.0 | 0.4 | 5.4 | |
Max | 11.3 | 47.0 | 78.0 | 30.0 | 1.31 | 2.59 | 21.8 | 30.3 | 1.2 | 76.8 |
Eco- system | Statistical Characteristics | EN (ind.m−2) | EB (g.m−2) | H | NCER (µmol CO2.m−2s−1) |
---|---|---|---|---|---|
GLSP | ± SD | 150.18 ± 132.28 | 50.81 ± 52.66 | 0.60 ± 0.45 | 2.26 ± 1.30 |
Min | 0.00 | 0.00 | 0.00 | 0.24 | |
Max | 438.40 | 211.80 | 1.28 | 5.26 | |
GLS | ± SD | 87.58 ± 84.64 | 28.05 ± 22.85 | 0.36 ± 0.46 | 2.15 ± 1.22 |
Min | 0.00 | 0.00 | 0.00 | 0.45 | |
Max | 307.20 | 67.80 | 1.28 | 5.26 | |
GLP | ± SD | 222.68 ± 132.43 | 78.62 ± 60.87 | 0.88 ± 0.20 | 2.40 ± 1.31 |
Min | 19.60 | 7.20 | 0.56 | 0.24 | |
Max | 438.40 | 211.80 | 1.16 | 4.45 | |
AL | ± SD | 49.63 ± 71.73 | 17.39 ± 24.32 | 0.42 ± 0.45 | 0.93 ± 0.72 |
Min | 0.00 | 0.00 | 0.00 | 0.18 | |
Max | 204.80 | 67.50 | 1.06 | 2.36 | |
FL | ± SD | 22.33 ± 15.23 | 6.48 ± 4.46 | 0.49 ± 0.53 | 2.44 ± 0.81 |
Min | 3.30 | 0.70 | 0.00 | 1.34 | |
Max | 51.20 | 11.80 | 1.39 | 3.47 | |
RZ | ± SD | 141.73 ± 121.29 | 52.75 ± 45.21 | 0.56 ± 0.44 | 3.38 ± 1.29 |
Min | 0.00 | 0.00 | 0.00 | 0.81 | |
Max | 374.40 | 128.70 | 1.24 | 4.77 |
A | pH/H2O | pH/KCl | Eh | SOC | SOM | NT | C/N | NCER | Clay | Silt | Sand | Gravel | BD | PD | ST | SM | PR | DPR | EN | EB | H | P | K | Mg | FWC | WP | AWP | SWDI | CS | NS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 1 | ||||||||||||||||||||||||||||||
pH/H2O | −0.049 | 1 | |||||||||||||||||||||||||||||
pH/KCl | 0.004 | 0.921 ** | 1 | ||||||||||||||||||||||||||||
Eh | −0.001 | −0.454 ** | −0.523 ** | 1 | |||||||||||||||||||||||||||
SOC | 0.262 | −0.171 | −0.143 | −0.098 | 1 | ||||||||||||||||||||||||||
SOM | 0.262 | −0.171 | −0.143 | −0.098 | 1.000 ** | 1 | |||||||||||||||||||||||||
NT | 0.449 ** | −0.252 | −0.16 | −0.052 | 0.858 ** | 0.858 ** | 1 | ||||||||||||||||||||||||
C/N | −0.17 | 0.04 | −0.109 | 0.06 | 0.524 ** | 0.524 ** | 0.063 | 1 | |||||||||||||||||||||||
NCER | −0.342 * | 0.136 | 0.175 | −0.132 | 0.293 | 0.293 | 0.129 | 0.366 * | 1 | ||||||||||||||||||||||
Clay | 0.099 | −0.139 | −0.16 | −0.193 | 0.09 | 0.09 | 0.196 | −0.209 | −0.281 | 1 | |||||||||||||||||||||
Silt | 0.323 * | −0.296 | −0.227 | −0.174 | 0.374 * | 0.374 * | 0.338 * | 0.036 | −0.213 | 0.346 * | 1 | ||||||||||||||||||||
Sand | −0.21 | 0.312 | 0.301 | 0.189 | −0.378 * | −0.378 * | −0.360 * | −0.033 | 0.248 | −0.661 ** | −0.881 ** | 1 | |||||||||||||||||||
Gravel | 0.252 | 0.222 | 0.218 | 0.086 | 0.077 | 0.077 | 0.139 | −0.029 | 0.088 | −0.076 | −0.125 | 0.142 | 1 | ||||||||||||||||||
BD | −0.248 | 0.052 | 0.016 | 0.28 | −0.256 | −0.256 | −0.215 | −0.248 | −0.323 * | 0.254 | −0.161 | −0.029 | −0.154 | 1 | |||||||||||||||||
PD | −0.239 | 0.127 | 0.118 | −0.056 | −0.219 | −0.219 | −0.193 | −0.157 | −0.244 | 0.023 | −0.149 | 0.095 | −0.27 | 0.353 ** | 1 | ||||||||||||||||
ST | −0.312 | −0.036 | −0.063 | −0.072 | 0.037 | 0.037 | −0.162 | 0.177 | −0.108 | 0.162 | 0.235 | −0.21 | −0.078 | 0.07 | −0.108 | 1 | |||||||||||||||
SM | −0.13 | 0.081 | 0.065 | −0.03 | 0.146 | 0.146 | 0.213 | −0.03 | 0.303 | −0.204 | −0.081 | 0.046 | −0.320 * | 0.144 | 0.111 | −0.399 * | 1 | ||||||||||||||
PR | −0.003 | −0.438 ** | −0.352 ** | 0.445 ** | 0.143 | 0.143 | 0.209 | −0.122 | −0.161 | 0.159 | 0.225 | −0.24 | 0.3 | 0.283 | −0.224 | 0.231 | −0.197 | 1 | |||||||||||||
DPR | 0.058 | −0.083 | −0.125 | 0.06 | −0.067 | −0.067 | 0.007 | −0.063 | 0.015 | 0.137 | −0.038 | −0.092 | −0.445 ** | 0.041 | −0.029 | −0.196 | 0.267 | −0.053 | 1 | ||||||||||||
EN | −0.097 | 0.072 | 0.162 | 0.021 | −0.214 | −0.214 | −0.058 | −0.294 | −0.166 | 0.074 | −0.109 | 0.068 | −0.265 | 0.166 | 0.038 | −0.12 | 0.257 | 0.168 | 0.447 ** | 1 | |||||||||||
EB | −0.012 | 0.095 | 0.156 | −0.016 | −0.232 | −0.232 | −0.054 | −0.312 | −0.091 | 0.01 | −0.095 | 0.073 | −0.265 | 0.051 | 0.002 | −0.242 | 0.337 * | 0.036 | 0.515 ** | 0.921 ** | 1 | ||||||||||
H | 0.004 | 0.2 | 0.206 | 0.049 | −0.028 | −0.028 | −0.006 | 0.021 | −0.016 | 0.156 | −0.105 | 0.008 | −0.115 | 0.188 | 0.274 | −0.335 * | 0.306 | 0.031 | 0.313 | 0.516 ** | 0.539 * | 1 | |||||||||
P | −0.08 | 0.341 * | 0.238 | −0.204 | −0.317 | −0.317 | −0.256 | −0.139 | −0.141 | 0.153 | −0.326 * | 0.205 | −0.097 | 0.038 | 0.243 | −0.137 | −0.154 | −0.284 | 0.105 | 0.093 | 0.118 | 0.172 | 1 | ||||||||
K | 0.317 | −0.166 | −0.064 | 0.214 | 0.255 | 0.255 | 0.359 * | 0.001 | −0.066 | 0.019 | −0.068 | 0.032 | 0.157 | −0.176 | 0.009 | −0.189 | −0.216 | 0.175 | 0.049 | −0.015 | 0.077 | 0.206 | 0.275 | 1 | |||||||
Mg | 0.122 | 0.438 ** | 0.449 ** | −0.388 * | 0.370 * | 0.370 * | 0.262 | 0.213 | 0.142 | −0.066 | 0.159 | −0.081 | 0.028 | 0.017 | 0.128 | 0.027 | 0.129 | −0.297 | −0.287 | −0.197 | −0.184 | 0.022 | −0.093 | −0.117 | 1 | ||||||
FWC | 0.226 | −0.328 * | −0.311 | −0.188 | 0.431 ** | 0.431 ** | 0.435 ** | 0.039 | −0.216 | 0.751 ** | 0.791 ** | −0.967 ** | −0.121 | 0.023 | −0.118 | 0.209 | −0.098 | 0.229 | 0.11 | −0.079 | −0.083 | −0.019 | −0.124 | 0.089 | 0.048 | 1 | |||||
WP | 0.207 | −0.286 | −0.298 | −0.19 | 0.408 * | 0.408 * | 0.438 ** | 0.006 | −0.23 | 0.857 ** | 0.667 ** | −0.910 ** | −0.138 | 0.106 | −0.082 | 0.166 | −0.1 | 0.197 | 0.139 | −0.046 | −0.064 | 0.035 | −0.026 | 0.093 | 0.032 | 0.973 ** | 1 | ||||
AWC | 0.390 * | −0.222 | −0.149 | −0.199 | 0.362 * | 0.362 * | 0.307 | 0.099 | −0.088 | 0.119 | 0.925 ** | −0.698 ** | −0.011 | −0.406 * | −0.249 | 0.193 | −0.117 | 0.108 | −0.096 | −0.177 | −0.098 | −0.159 | −0.319 | −0.008 | 0.129 | 0.617 ** | 0.469 ** | 1 | |||
SWDI | −0.174 | 0.227 | 0.235 | 0.041 | −0.073 | −0.073 | −0.031 | −0.017 | 0.344 * | −0.636 ** | −0.338 * | 0.483 ** | −0.188 | −0.002 | 0.185 | −0.439 * | 0.818 ** | −0.241 | 0.102 | 0.252 | 0.339 * | 0.279 | −0.074 | −0.172 | 0.08 | −0.568 ** | −0.591 ** | −0.238 | 1 | ||
CS | 0.111 | −0.13 | −0.107 | −0.092 | 0.829 ** | 0.829 ** | 0.694 ** | 0.381 * | 0.074 | 0.223 | 0.358 * | −0.437 * | −0.234 | 0.155 | −0.033 | 0.132 | 0.284 | 0.18 | 0.124 | 0.062 | 0.015 | 0.171 | −0.274 | 0.154 | 0.324 * | 0.462 ** | 0.469 ** | 0.229 | 0.001 | 1 | |
NS | 0.19 | −0.147 | −0.075 | −0.075 | 0.579 ** | 0.579 ** | 0.697 ** | −0.107 | −0.116 | 0.294 | 0.28 | −0.375 * | −0.313 | 0.319 | 0.089 | −0.053 | 0.445 ** | 0.182 | 0.212 | 0.205 | 0.165 | 0.231 | −0.124 | 0.155 | 0.256 | 0.395 ** | 0.433 ** | 0.095 | 0.133 | 0.837 ** | 1 |
Soil Characteristic | Land Use | |
---|---|---|
F-Value | p-Value | |
pH/H2O | 4.998 | 0.004 |
pH/KCl | 3.214 | 0.029 |
Silt | 6.795 | ˂0.001 |
Sand | 5.948 | 0.002 |
ST | 0.311 | 0.868 |
SM | 1.129 | 0.365 |
PR | 2.413 | 0.076 |
FWC | 6.802 | ˂0.001 |
AWC | 5.529 | 0.002 |
SWDI | 2.567 | 0.063 |
NCER | 4.362 | 0.008 |
Land Use | pH/H2O | pH/KCl | Silt (%) | Sand (%) | ST (°C) | SM (%) | PR (MPa. cm−1) | FWC (%) | AWC (%) | SWDI | NCER (µmol CO2. m−2s−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
GLS | 5.77 a ± 0.87 | 5.56 ab ± 1.00 | 62.72 c ± 6.69 | 24.72 a ± 8.29 | 58.17 a ± 21.95 | 24.27 a ± 10.80 | 1.35 a ± 0.21 | 54.27 b ± 3.15 | 38.22 b ± 1.15 | −7.82 a ± 3.36 | 1.96 ab ± 0.42 |
GLP | 6.85 ab ± 0.53 | 6.31 ab ± 0.76 | 39.38 ab ± 12.27 | 50.25 bc ± 14.12 | 17.47 a ± 7.04 | 25.13 a ± 7.73 | 1.15 a ± 0.31 | 46.02 a ± 4.47 | 34.62 a ± 1.91 | −6.02 a ± 2.63 | 2.25 ab ± 1.33 |
AL | 6.33 ab ± 0.64 | 5.59 ab ± 0.71 | 48.88 abc ± 11.78 | 36.38 abc ± 17.38 | 17.28 a ± 9.83 | 15.70 a ± 6.74 | 0.87 a ± 0.25 | 51.03 ab ± 5.82 | 35.85 ab ± 1.46 | −9.82 a ± 2.49 | 0.93 a ± 0.79 |
FL | 5.88 a ± 0.77 | 5.02 a ± 1.21 | 55.68 bc ± 7.38 | 28.82 ab ± 12.73 | 13.28 a ± 7.40 | 20.82 a ± 10.98 | 1.07 a ± 0.38 | 55.53 b ± 5.26 | 37.28 ab ± 1.80 | −9.32 a ± 2.55 | 2.44 ab ± 0.88 |
RZ | 7.22 b ± 0.50 | 6.69 b ± 0.73 | 37.32 a ± 10.99 | 54.93 c ± 12.01 | 14.77 a ± 5.25 | 21.72 a ± 4.79 | 0.93 a ± 0.32 | 44.58 a ± 3.59 | 34.85 a ± 1.67 | −6.58 a ± 1.09 | 3.38 b ± 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanianska, R.; Kizeková, M. Variability of Grassland Soils’ Properties in Comparison to Soils of Other Ecosystems. Agronomy 2025, 15, 713. https://doi.org/10.3390/agronomy15030713
Kanianska R, Kizeková M. Variability of Grassland Soils’ Properties in Comparison to Soils of Other Ecosystems. Agronomy. 2025; 15(3):713. https://doi.org/10.3390/agronomy15030713
Chicago/Turabian StyleKanianska, Radoslava, and Miriam Kizeková. 2025. "Variability of Grassland Soils’ Properties in Comparison to Soils of Other Ecosystems" Agronomy 15, no. 3: 713. https://doi.org/10.3390/agronomy15030713
APA StyleKanianska, R., & Kizeková, M. (2025). Variability of Grassland Soils’ Properties in Comparison to Soils of Other Ecosystems. Agronomy, 15(3), 713. https://doi.org/10.3390/agronomy15030713