Grade Indicators and Distribution Characteristics of Heat Damage to Summer Maize in the Huang–Huai–Hai Plain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Meteorological Data
2.2.2. Summer Maize Growing Area Data
2.2.3. Disaster Data
2.3. Methods
2.3.1. Construction of Heat Damage Indicators for Different Grades
2.3.2. K-Means Clustering Algorithm
2.3.3. Validation of Heat Damage Indicators for Different Grades
2.3.4. Temporal and Spatial Distribution of Heat Damage
3. Results
3.1. Construction and Validation of Heat Damage Grade Indicators
3.1.1. Constructing Grade Indicators for Heat Damage
3.1.2. Validation Grade Indicators for Heat Damage
3.2. Characteristics of Spatial and Temporal Distribution of Heat Damage
3.2.1. Ratio of Stations with Different Levels of Heat Damage
3.2.2. The Temporal Changes in the Proportion of Stations Experiencing Different Levels
3.2.3. Spatial Variations in the Frequency of Heat Damage at Different Levels
3.2.4. Trends of Heat Damage in Different Grades
4. Discussion
4.1. The Duration Thresholds for Mild, Moderate, and Severe Heat Damage
4.2. Spatiotemporal Characteristics and Trends of Heat Damage
4.3. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Fu, Z.; Liu, Z.; Guo, S.; Zhang, Z.; Lu, X.; Gong, J.; Dong, M.; Yang, X. Impact assessment of heat stress during post-silking period of summer maize in the Huang-Huai-Hai Plain, China. J. Agric. Sci. 2023, 161, 318–327. [Google Scholar] [CrossRef]
- Guan, K.; Li, T.; Yang, F.; Guo, E.; Zhang, W.; Shi, Y.; Yang, X. Adaptation measures of the potential double cropping region in Northern China to future climate change. Sci. Total Environ. 2024, 927, 172203. [Google Scholar] [CrossRef]
- Li, T.; Wang, S.; Liu, Q.; Zhang, X.; Chen, L.; Chen, Y.; Gao, W.; Sui, P. Effects of changing assimilate supply on starch synthesis in maize kernels under high temperature stress. J. Integr. Agric. 2024, 2095–3119. [Google Scholar] [CrossRef]
- Zhao, Z.W.; Leng, P.; Han, X.J.; Shang, G.F. Global maize yield responses to essential climate variables: Assessment using atmospheric reanalysis and future climate scenarios. Comput. Electron. Agric. 2025, 232, 110140. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.; Zhou, L.; Zhou, H.; Zhang, Z.; Zhang, R. Characteristics of compound heat and drought events during the spring maize growing season in Northeast China Based on a novel daily-scale analysis framework. J. Hydrol. Reg. Stud. 2025, 57, 102140. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, R.; Zhang, Q. Differences in effects of varying compound extreme temperature and precipitation events on summer maize yield in North China. Agric. Water Manag. 2025, 307, 109237. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Food and Agriculture-Statistical Yearbook 2023; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Li, Q.; Wang, P.J.; Li, Y.; Tang, J.; Li, X.; Zhang, Y.; Han, D.; Wang, Q.; Zhao, Y.; Yang, Z. Hazard assessment of compound drought and heat events on summer maize from agricultural and meteorological perspectives. Agric. Water Manag. 2025, 313, 109479. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.J.; Chen, Y.; Yang, J.; Wu, D.; Ma, Y.; Huo, Z.; Liu, S. Daily dynamic thresholds of different agricultural drought grades for summer maize based on the Vegetation Water Index. J. Hydrol. 2023, 625, 130070. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Li, S.; Wang, C.; Yin, X.; Chu, Q.; Chen, F. Sustainable options for reducing carbon inputs and improving the eco-efficiency of smallholder wheat-maize cropping systems in the Huanghuaihai Farming Region of China. J. Clean. Prod. 2020, 244, 118887. [Google Scholar] [CrossRef]
- Niu, S.; Yu, L.; Li, J.; Qu, L.; Wang, Z.; Li, G.; Guo, J.; Lu, D. Effect of high temperature on maize yield and grain components: A meta-analysis. Sci. Total Environ. 2024, 952, 175898. [Google Scholar] [CrossRef]
- Lizaso, J.I.; Ruiz, R.M.; Rodríguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sánchez, D.; García, E.; Rodríguez, A. Impact of high temperatures in maize: Phenology and yield components. Field Crops Res. 2018, 216, 129–140. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Zhang, H.Y. Construction and Risk Assessment of High Temperature Heat Damage Index of Summer Maize in Huang-Huai-Hai Area. Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, 2023. [Google Scholar]
- Xiang, X.; Li, Y.; Wu, X.; Cao, H.; Lin, X. Delineating the predominant impact of rising temperature on the enhancement of severity in compound drought-hot events in China: An empirical Copula and path analysis-based approach. J. Hydrol. Reg. Stud. 2024, 53, 101769. [Google Scholar] [CrossRef]
- DB41/T 2094-2021; Local Standard of Henan Province—Meteorological Grade for High Temperature Warning During Flowering Stage of Summer Maize. Standardization Administration of China: Beijing, China, 2021. (In Chinese)
- DB37/T 4144.2-2020; Local Standard of Shandong Province—Identification and Evaluation Specifications for Meteorological Disasters in Summer Maize Part 2: High Temperature. Standardization Administration of China: Beijing, China, 2020. (In Chinese)
- GB/T21985-2008; Standards for the Meteorological Industry in China—Temperature Thresholds for Heat Damage to Major Crops. Standardization Administration of China: Beijing, China, 2008. (In Chinese)
- Li, M.; Zhou, H.; Miao, B.; Li, M.; Shi, C.; Jiang, M. Developing an early warning system and risk assessment based on model for heat damage in rice. Ecol. Indic. 2024, 167, 112657. [Google Scholar] [CrossRef]
- Sheng, D.Y.; Wang, Y.Y.; Huang, S.B.; Bin, T.; Pu, W. Effects of high Temperature on morphology and function, yield components and grain nutrients of maize plants. J. Maize Sci. 2020, 28, 86–92. (In Chinese) [Google Scholar]
- Xu, J.; Zhang, J.; Wei, X.; Zhi, F.; Zhao, Y.; Guo, Y.; Wei, S.; Cui, Z.; Ga, R. Study on frost damage index and hazard assessment of wheat in the Huanghuaihai region. Ecol. Indic. 2024, 167, 112679. [Google Scholar] [CrossRef]
- Wang, P.J.; Li, X.; Tang, J.; Yang, J.; Ma, Y.; Wu, D.; Huo, Z. Determining the critical threshold of meteorological heat damage to tea plants based on MODIS LST products for tea planting areas in China. Ecol. Inf. 2023, 77, 102235. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, J.; Wang, D.; Zhao, C.; Song, Z.; Guo, Y.; Liu, X.; Tong, Z. T Study on fine early warning of maize high wind lodging disaster risk in Jilin Province, China. Int. J. Disaster Risk Reduct. 2025, 119, 105311. [Google Scholar] [CrossRef]
- Li, Z.; Lu, H.R.; Yang, G.G.; Li, H.P.; Wang, P.; Li, C.; Zhou, G.; Lu, C.; Zhang, Y. Spatiotemporal characteristics of high temperature stress during the flowering stage of summer maize in Henan Province. Henan Agric. Sci. 2024, 53, 10–20. (In Chinese) [Google Scholar]
- Li, S.; Fang, W.; Liu, T.; Ma, Z.; Noor, M.A.; Liang, L.; Ma, W.; Xue, C. Meteorological Pre-warning Grade of High Temperature During Flowering Stage for Summer Maize in North China Plain. Int. J. Plant Prod. 2023, 17, 193–203. [Google Scholar] [CrossRef]
- Wang, X.P.; Fang, W.S.; Du, Z.X.; Du, Z. Spatiotemporal variation of flowering stage heat damage of summer maize. J. Maize Sci. 2021, 29, 61–68. (In Chinese) [Google Scholar]
- Dai, L.Q.; Wang, M.; Dong, H.Y.; Kang, X.Y.; Li, C. Spatio-temporal change characteristics and trend of high temperature damage to maize in Hebei province. Acta Agric. Jiangxi 2022, 34, 158–164. (In Chinese) [Google Scholar]
- Zhang, D. The Study on the Impact of High Temperature Heat Damage on Summer Maize in Hebei Province Under the Background of Climate Change. Master’s Thesis, Hebei Agricultural University, Baoding, China, 2024. [Google Scholar]
- Zhang, Q.; Han, J.; Yang, Z. Hazard assessment of extreme heat during summer maize growing season in Haihe Plain, China. Int. J. Climatol. 2021, 41, 4794–4803. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Wu, S.; Liu, J.; Luo, Y.; Ma, Y.; Pan, X. Prediction and spatial–temporal changes of soil organic matter in the Huanghuaihai Plain by combining legacy and recent data. Geoderma. 2024, 450, 117031. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, D.; Zhao, J.; Zhang, Q.; Li, X.; Zhao, Y.; Zheng, W.; Zhang, B.; Liu, Z. Biochar application does not improve crop growth and yield in a semi-humid region in the HuangHuaiHai Plain of China: A 7-year consecutive field experiment. Soil. Tillage Res. 2025, 247, 106367. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, P. High-resolution cropland mapping in China’s Huang-Huai-Hai Plain: The coupling of machine learning methods and prior information. Comput. Electron. Agric. 2024, 224, 109225. [Google Scholar] [CrossRef]
- Yang, L.; Jin, W.; Chen, X.; Song, W.; Yang, Y.; Zhou, J.; Kong, L.; Huang, Z.; Liu, R.; Du, X. Effect of soybean inclusion in cropping systems on productivity, profitability, and carbon footprints: A case study from the Huang-Huai-Hai Plain. Energy 2025, 316, 134422. [Google Scholar] [CrossRef]
- Yan, K.; Wang, D.; Feng, Y.; Hou, S.; Zhang, Y.; Yang, H. Digital mapping of soil organic carbon in a plain area based on time-series features. Ecol. Indic. 2025, 171, 113215. [Google Scholar] [CrossRef]
- Li, X.; Wang, P.J.; Tang, J.X.; Yang, J.; Ma, Y.; Wu, D.; Huo, Z. High temperature heat damage grade index of tea plants and its distribution characteristics in Southern Yangtze River and South China. J. Appl. Meteorol. Sci. 2024, 35, 57–67. (In Chinese) [Google Scholar]
- Li, Q.; Wang, P.; Li, Y.; Tang, J.; Li, X.; Zhang, Y.; Han, D.; Zhao, Y.; Wang, Q.; Yang, Z. Identifying trigger thresholds for heat damage at different growth stages of summer maize: A case study of the Huang-Huai-Hai Plain, China. Eur. J. Agron. 2025, 170, 127729. [Google Scholar] [CrossRef]
- Yu, H.; Wen, G.; Gan, J.; Zheng, W.; Lei, C. Self-paced Learning for K-means Clustering Algorithm. Pattern Recognit. Lett. 2020, 132, 69–75. [Google Scholar] [CrossRef]
- Hu, H.; Liu, J.; Zhang, X.; Fang, M. An Effective and Adaptable K-means Algorithm for Big Data Cluster Analysis. Pattern Recognit. 2023, 139, 109404. [Google Scholar] [CrossRef]
- Bai, Q.F.; Liang, Y.; Li, N.; Pan, Y. Analysis of freezing injury risk in Northern Expansion Area of Shannxi apple based on meteorological big data. Desert Oasis Meteorol. 2023, 17, 171–175. (In Chinese) [Google Scholar]
- Jin, H.; Chen, X.; Wu, P.; Song, C.; Xia, W. Evaluation of spatial-temporal distribution of precipitation in mainland China by statistic and clustering methods. Atmos. Res. 2021, 262, 105772. [Google Scholar] [CrossRef]
- Fischer, S.; Schumann, A.H. Temporal changes in the frequency of flood types and their impact on flood statistics. J. Hydrol. X 2024, 22, 100171. [Google Scholar] [CrossRef]
- Güçlü, Y.S.; Acar, R.; Saplıoğlu, K. Seasonally adjusted periodic time series for Mann-Kendall trend test. Phys. Chem. Earth 2025, 138, 103848. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Samikan Mazilamani, L.; Sa’adi, N.; Basri, M.H.A.; Alias, N.E.; Yusop, Z.; Zainon Noor, Z.; Kemarau, R.A.; Shiru, M.S.; Masood, A. The likelihood of a significant trend based on a family of Mann-Kendall tests for extreme rainfall in Borneo. Phys. Chem. Earth 2025, 139, 103959. [Google Scholar] [CrossRef]
- Mudelsee, M. Trend analysis of climate time series: A review of methods. Earth-Sci. Rev. 2019, 190, 310–322. [Google Scholar] [CrossRef]
- Gu, Z.; Duan, X.; Liu, B.; Hu, J.; He, J. The spatial distribution and temporal variation of rainfall erosivity in the Yunnan Plateau, Southwest China: 1960–2012. Catena 2016, 145, 291–300. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Li, K.; Aru, H.; Feng, Z.; Liu, X.; Tong, Z. Quantifying hazard of drought and heat compound extreme events during maize (Zea mays L.) growing season using Magnitude Index and Copula. Wea.Clim. Extrem. 2023, 40, 100566. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, X.; Zhang, J.; Wang, R.; Rong, G.; Liu, X.; Tong, Z. Joint analysis of drought and heat events during maize (Zea mays L.) growth periods using copula and cloud models: A case study of Songliao Plain. Agric. Water Manag. 2022, 259, 107238. [Google Scholar] [CrossRef]
- Mussabayev, R.; Mladenovic, N.; Jarboui, B.; Mussabayev, R. How to Use K-means for Big Data Clustering? Pattern Recognit. 2023, 137, 109269. [Google Scholar] [CrossRef]
- Miao, Y.; Li, S.; Wang, L.; Li, H.; Qiu, R.; Zhang, M. A single plant segmentation method of maize point cloud based on Euclidean clustering and K-means clustering. Comput. Electron. Agric. 2023, 210, 107951. [Google Scholar] [CrossRef]
- Bi, M.; Chen, H.; Zuo, M. Comprehensive quality grading and dynamic prediction of physicochemical indicators of maize during storage based on clustering and time-series prediction models. J. Cereal Sci. 2025, 123, 104187. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H. Multiple spatio-temporal scale runoff forecasting and driving mechanism exploration by K-means optimized XGBoost and SHAP. J. Hydrol. 2024, 630, 130650. [Google Scholar] [CrossRef]
- Dai, L.Q.; Kang, X.Y.; Yao, S.R.; Wang, M.; Meng, L. Monitoring and evalution indices of high temperature damage for maize in Hebei province. J. Arid. Land. Resour. Env. 2022, 36, 171–176. (In Chinese) [Google Scholar]
- Chen, H.L.; Li, S.Y. Prediction of high temperature disaster risks during summer maize flowering under future climate warming background in Henan Province. Chin. J. Eco-Agric. 2020, 28, 337–348. (In Chinese) [Google Scholar]
- Qian, C.; Ye, Y.; Jiang, J.; Zhong, Y.; Zhang, Y.; Pinto, I.; Huang, C.; Li, S.; Wei, K. Rapid attribution of the record-breaking heatwave event in North China in June 2023 and future risks. Environ. Res. Lett. 2023, 19, 014028. [Google Scholar] [CrossRef]
- Zhang, F.X.; Chen, X.; Huang, N.; Bi, P.; Gao, R.; Meng, J.; Huang, Z.; Yang, R.; Pan, Z. Spatio-temporal distribution of high-temperature, drought and their compound events during the critical fertility stages of single-season rice in the Yangtze River Basin. J. China Agric. Univ. 2025, 30, 1–14. (In Chinese) [Google Scholar]
Grades | Description of the Disaster |
---|---|
Mild | Plant leaves showed temporary curling and wilting, flowering and pollination were slightly affected by poor fruiting, grouting was hindered, the number of grains in spikes and the weight of 1000 grains were slightly reduced, and the yield was reduced by less than 10%. |
Moderate | The leaves of the whole plant curled and wilted for a long time, the female spike spitting was delayed, the male spike bloomed less, the number of grains in the spike and the weight of 1000 grains decreased significantly, and the yield was reduced by 10–30%. |
Severe | The leaves of the whole plant curled and wilted for a long time and then withered, the female ear could not spit silk normally, the male ear bloomed less, the pollen grain lost its vitality, grain filling did not occur normally, the kernels per ear and the 1000-kernel weight were seriously reduced, seriously affecting maize production, and the yield was reduced by more than 30%, or even complete crop failure in some cases. |
The Growth Stages of Summer Maize | Heat Damage Grade Indicators | ||
---|---|---|---|
Mild/d | Moderate/d | Severe/d | |
V0–VE | 2.5~4.7 | 4.7~7.7 | >7.7 |
VE–V6 | 3.7~5.9 | 5.9~8.6 | >8.6 |
V6–VT | 3.5~5.4 | 5.4~7.5 | >7.5 |
VT–R1 | 2.3~4.5 | 4.5~7.9 | >7.9 |
R1–R3 | 2.8~4.7 | 4.7~8.3 | >8.3 |
R3–R6 | 3.2~5.3 | 5.3~8.1 | >8.1 |
Grade Indicators | Verification Results | Summary | ||
---|---|---|---|---|
Fully Consistent | Generally Consistent | Inconsistent with Actual Conditions | ||
Mild | 13 | 4 | 0 | 17 |
Moderate | 13 | 9 | 0 | 22 |
Severe | 19 | 8 | 6 | 33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, P.; Li, X.; Tang, J.; Li, Y.; Zhang, Y.; Ma, Y. Grade Indicators and Distribution Characteristics of Heat Damage to Summer Maize in the Huang–Huai–Hai Plain. Agronomy 2025, 15, 1545. https://doi.org/10.3390/agronomy15071545
Li Q, Wang P, Li X, Tang J, Li Y, Zhang Y, Ma Y. Grade Indicators and Distribution Characteristics of Heat Damage to Summer Maize in the Huang–Huai–Hai Plain. Agronomy. 2025; 15(7):1545. https://doi.org/10.3390/agronomy15071545
Chicago/Turabian StyleLi, Qing, Peijuan Wang, Xin Li, Junxian Tang, Yang Li, Yuanda Zhang, and Yuping Ma. 2025. "Grade Indicators and Distribution Characteristics of Heat Damage to Summer Maize in the Huang–Huai–Hai Plain" Agronomy 15, no. 7: 1545. https://doi.org/10.3390/agronomy15071545
APA StyleLi, Q., Wang, P., Li, X., Tang, J., Li, Y., Zhang, Y., & Ma, Y. (2025). Grade Indicators and Distribution Characteristics of Heat Damage to Summer Maize in the Huang–Huai–Hai Plain. Agronomy, 15(7), 1545. https://doi.org/10.3390/agronomy15071545