Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae)
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing and RNA Extraction
2.2. Sequence Characterization and Multiple Sequence Alignment of TabsOBP45 and TabsOBP46
2.3. Tissue Expression Pattern of TabsOBP45 and TabsOBP46
2.4. Expression and Purification of TabsOBP45 and TabsOBP46
2.5. Fluorescence Competitive Binding Assays
2.6. Molecular Docking
2.7. Statistics
3. Results
3.1. Sequence Analysis of TabsOBP45 and TabsOBP46
3.2. Relative Expression Analysis of TabsOBP45 and TabsOBP46
3.3. Binding Properties of TabsOBP45 and TabsOBP46
3.4. Modelling and Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hansson, B.S.; Stensmyr, M.C. Evolution of insect olfaction. Neuron 2011, 72, 698–711. [Google Scholar] [CrossRef]
- Touhara, K.; Vosshall, L.B. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 2009, 71, 307–332. [Google Scholar] [CrossRef] [PubMed]
- Leal, W.S. Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef] [PubMed]
- Vogt, R.G.; Riddiford, L.M. Pheromone binding and inactivation by moth antennae. Nature 1981, 293, 161–163. [Google Scholar] [CrossRef]
- Fleischer, J.; Pregitzer, P.; Breer, H.; Krieger, J. Access to the odor world: Olfactory receptors and their role for signal transduction in insects. Cell Mol. Life Sci. 2018, 75, 485–508. [Google Scholar] [CrossRef] [PubMed]
- Rihani, K.; Ferveur, J.-F.; Briand, L. The 40-year mystery of insect odorant-binding proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, G.; Xu, X.; Wu, J. Molecular and functional characterization of odorant binding protein 7 from the oriental fruit moth Grapholita molesta (Busck) (Lepidoptera: Tortricidae). Front. Physiol. 2018, 9, 1762. [Google Scholar] [CrossRef]
- Brito, N.F.; Moreira, M.F.; Melo, A.C.A. A look inside odorant-binding proteins in insect chemoreception. J. Insect Physiol. 2016, 95, 51–65. [Google Scholar] [CrossRef]
- Sun, J.S.; Xiao, S.; Carlson, J.R. The diverse small proteins called odorant-binding proteins. Open Biol. 2018, 8, 180208. [Google Scholar] [CrossRef]
- Sánchez-Gracia, A.; Vieira, F.G.; Rozas, J. Molecular evolution of the major chemosensory gene families in insects. Heredity 2009, 103, 208–216. [Google Scholar] [CrossRef]
- Pelosi, P.; Zhou, J.J.; Ban, L.P.; Calvello, M. Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 2006, 63, 1658–1676. [Google Scholar] [CrossRef] [PubMed]
- Venthur, H.; Zhou, J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 2018, 9, 1163. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, Q.; Li, L.; Xu, J.; Mang, D.; Wang, X.; Hoh, H.; Ma, Y.; Liang, M.; Zhang, Y.; et al. Different binding properties of two general-odorant binding proteins in Athetis lepigone with sex pheromones, host plant volatiles and insecticides. Pest. Biochem. Physiol. 2020, 164, 173–182. [Google Scholar] [CrossRef]
- Ou, X.; Li, X.; Xu, B.; Wang, Y.; Zhang, G.; Liu, W.; Wan, F.; Jiang, H.; Haddi, K.; Huang, C.; et al. Expression and sex pheromone-binding characteristics of pheromone-binding protein 3 in Tuta absoluta (Lepidoptera: Gelechiidae). Pestic. Biochem. Physiol. 2025, 210, 106404. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tan, S.; Wang, Q.; Wang, F.; Zhang, Y. Key amino acids in odorant-binding protein OBP7 enable Bradysia odoriphaga to recognize host plant volatiles. Int. J. Biol. Macromol. 2025, 284, 138179. [Google Scholar] [CrossRef]
- Xiao, S.; Sun, J.S.; Carlson, J.R. Robust olfactory responses in the absence of odorant binding proteins. eLife 2019, 8, e51040. [Google Scholar] [CrossRef] [PubMed]
- Biondi, A.; Guedes, R.N.C.; Wan, F.-H.; Desneux, N. Ecology, worldwide spread, and management of the invasive south american tomato pinworm, Tuta absoluta: Past, present, and future. Annu. Rev. Entomol. 2018, 63, 239–258. [Google Scholar] [CrossRef]
- Han, P.; Bayram, Y.; Shaltiel-Harpaz, L.; Sohrabi, F.; Saji, A.; Esenali, U.T.; Jalilov, A.; Ali, A.; Shashank, P.R.; Ismoilov, K.; et al. Tuta absoluta continues to disperse in Asia: Damage, ongoing management and future challenges. J. Pest Sci. 2019, 92, 1317–1327. [Google Scholar] [CrossRef]
- Desneux, N.; Han, P.; Mansour, R.; Arnó, J.; Brévault, T.; Campos, M.R.; Chailleux, A.; Guedes, R.N.C.; Karimi, J.; Konan, K.A.J.; et al. Integrated pest management of Tuta absoluta: Practical implementations across different world regions. J. Pest Sci. 2022, 95, 17–39. [Google Scholar] [CrossRef]
- Caparros Megido, R.; De Backer, L.; Ettaïb, R.; Brostaux, Y.; Fauconnier, M.L.; Delaplace, P.; Lognay, G.; Belkadhi, M.S.; Haubruge, E.; Francis, F.; et al. Role of larval host plant experience and solanaceous plant volatile emissions in Tuta absoluta (Lepidoptera: Gelechiidae) host finding behavior. Arthropod-Plant Interact. 2014, 8, 293–304. [Google Scholar] [CrossRef]
- Idriss, G.E.A.; du Plessis, H.; Khamis, F.M.; Ekesi, S.; Tanga, C.M.; Mohamed, S.A. Host range and effects of plant species on preference and fitness of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 2020, 113, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Proffit, M.; Birgersson, G.; Bengtsson, M.; Reis, R.; Witzgall, P.; Lima, E. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J. Chem. Ecol. 2011, 37, 565–574. [Google Scholar] [CrossRef]
- Subramani, V.; Pagadala Damodaram, K.J.; Goravale Krishnegowda, R.; Parepally, S.K.; Kempraj, V.; Thimmappa, R.; Kodthalu Seetharamaiah, S.; Vaddi, S.; Hookunda Boregowda, L. Volatile chemical signals underlying the host plant preferences of Tuta absoluta. Entomol. Exp. Appl. 2021, 169, 997–1007. [Google Scholar] [CrossRef]
- De Backer, L.; Bawin, T.; Schott, M.; Gillard, L.; Markó, I.E.; Francis, F.; Verheggen, F. Betraying its presence: Identification of the chemical signal released by Tuta absoluta-infested tomato plants that guide generalist predators toward their prey. Arthropod-Plant Interact. 2017, 11, 111–120. [Google Scholar] [CrossRef]
- Chen, T.; Chen, L.; Wang, J.; Cheng, J.; Yi, S.; Hafeez, M.; Zhou, S.; Li, Y.; Li, X.; Lu, Y. Development of attractants and repellents for Tuta absoluta based on plant volatiles from tomato and eggplant. Front. Sustain. Food Syst. 2023, 7, 1155317. [Google Scholar] [CrossRef]
- Yarou, B.B.; Bawin, T.; Boullis, A.; Heukin, S.; Lognay, G.; Verheggen, F.J.; Francis, F. Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Sci. Pollut Res. Int. 2018, 25, 29880–29888. [Google Scholar] [CrossRef]
- Weber, N.C.; Sant’Ana, J.; Redaelli, L.R.; de Assis, L.S. Chemotaxis of Tuta absoluta to tomato plants exposed to methyl jasmonate and conspecific injuries. J. Appl. Entomol. 2024, 148, 508–517. [Google Scholar] [CrossRef]
- Anastasaki, E.; Drizou, F.; Milonas, P.G. Electrophysiological and oviposition responses of Tuta absoluta females to herbivore-induced volatiles in tomato plants. J. Chem. Ecol. 2018, 44, 288–298. [Google Scholar] [CrossRef]
- Ma, R.; Li, D.; Peng, C.; Wang, S.; Chen, Y.; Gui, F.; Sun, Z. Genome-wide identification of the genes of the odorant-binding protein family reveal their role in the olfactory response of the tomato leaf miner (Tuta absoluta) to a repellent plant. Agronomy 2024, 14, 231. [Google Scholar] [CrossRef]
- Genc, H. The tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae): Pupal key characters for sexing individuals. Turk. J. Zool. 2016, 40, 801–805. [Google Scholar] [CrossRef]
- Yang, A.; Wang, Y.; Huang, C.; Lv, Z.; Liu, W.; Bi, S.-Y.; Wan, F.; Wu, Q.; Zhang, G. Screening potential reference genes in Tuta absoluta with real-time quantitative PCR analysis under different experimental conditions. Genes 2021, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Tuccori, E.; He, X.; Gazzano, A.; Field, L.; Zhou, J.-J.; Pelosi, P. Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 2009, 39, 414–419. [Google Scholar] [CrossRef]
- Jarmoskaite, I.; AlSadhan, I.; Vaidyanathan, P.P.; Herschlag, D. How to measure and evaluate binding affinities. eLife 2020, 9, e57264. [Google Scholar] [CrossRef]
- Cui, X.; Liu, D.; Sun, K.; He, Y.; Shi, X. Expression profiles and functional characterization of two odorant-binding proteins from the Apple Buprestid Beetle Agrilus mali (Coleoptera: Buprestidae). J. Econ. Entomol. 2018, 111, 1420–1432. [Google Scholar] [CrossRef]
- Xu, Y.; He, P.; Zhang, L.; Fang, S.; Dong, S.; Zhang, Y.; Li, F. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genom. 2009, 10, 632. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Yan, J.; Zhang, M.; Chen, R.; Li, S.; Palli, S.R.; Gao, Y. Expression and functional analysis of an odorant binding protein PopeOBP16 from Phthorimaea operculella (Zeller). Int. J. Biol. Macromol. 2023, 242, 124939. [Google Scholar] [CrossRef]
- Du, Y.; Xu, K.; Zhao, H.; Jiang, Y.; Li, H. Identification and functional characterization of AcerOBP15 from Apis cerana (Hymenoptera: Apidae). Apidologie 2021, 52, 668–683. [Google Scholar] [CrossRef]
- Ishida, Y.; Ishibashi, J.; Leal, W.S. Fatty acid solubilizer from the oral disk of the blowfly. PLoS ONE 2013, 8, e51779. [Google Scholar] [CrossRef]
- Thistle, R.; Cameron, P.; Ghorayshi, A.; Dennison, L.; Scott, K. Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell 2012, 149, 1140–1151. [Google Scholar] [CrossRef]
- Pentzold, S.; Burse, A.; Boland, W. Contact chemosensation of phytochemicals by insect herbivores. Nat. Prod. Rep. 2017, 34, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Gadenne, C.; Barrozo, R.B.; Anton, S. Plasticity in insect olfaction: To smell or not to smell? Annu. Rev. Entomol. 2016, 61, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Conchou, L.; Lucas, P.; Meslin, C.; Proffit, M.; Staudt, M.; Renou, M. Insect odorscapes: From plant volatiles to natural olfactory scenes. Front. Physiol. 2019, 10, 972. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiao, S.; Hong, X.; Wei, Y. Deciphering the olfactory mechanisms of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae): Insights from transcriptome analysis and molecular docking. Insects 2025, 16, 461. [Google Scholar] [CrossRef]
- Wu, C.; Yin, N.; Guo, Y.; Wang, Z.; Liu, N. Two antenna-enriched odorant binding proteins in Dioryctria abietella tuned to general odorants and insecticides. Insects 2022, 13, 1145. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Chen, Y.; Siemann, E.; Ji, X.; Jiang, J.; Wan, N. Beta-ionone is a functional plant volatile that attracts the parasitic wasp, Microplitis pallidipes. BioControl 2022, 67, 1–13. [Google Scholar] [CrossRef]
- Khuhro, S.A.; Liao, H.; Zhu, G.-H.; Li, S.-M.; Ye, Z.-F.; Dong, S.-L. Tissue distribution and functional characterization of odorant binding proteins in Chilo suppressalis (Lepidoptera: Pyralidae). J. Asia Pac. Entomol. 2017, 20, 1104–1111. [Google Scholar] [CrossRef]
- Vogel, J.T.; Tieman, D.M.; Sims, C.A.; Odabasi, A.Z.; Clark, D.G.; Klee, H.J. Carotenoid content impacts flavor acceptability in tomato (Solanum lycopersicum). J. Sci. Food Agric. 2010, 90, 2233–2240. [Google Scholar] [CrossRef]
- Silva, D.B.; Weldegergis, B.T.; Van Loon, J.J.A.; Bueno, V.H.P. Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J. Chem. Ecol. 2017, 43, 53–65. [Google Scholar] [CrossRef]
- Shivaramu, S.; Damodaram, K.J.P.; Bhatnagar, A.; Naga, K.C.; Byregowda, V.Y.; Bairwa, A.; Sharma, S.; Singh, R.K.; Singh, B.; Kempraj, V. Influence of Bemisia tabaci-induced plant volatiles on the host-choice behavior of Tuta absoluta. J. Chem. Ecol. 2025, 51, 3. [Google Scholar] [CrossRef]
- Showler, A.T.; Harlien, J.L. Lethal and repellent effects of the botanical p-anisaldehyde on musca domestica (Diptera: Muscidae). J. Econ. Entomol. 2018, 112, 485–493. [Google Scholar] [CrossRef]
- Zaio, Y.P.; Gatti, G.; Ponce, A.A.; Saavedra Larralde, N.A.; Martinez, M.J.; Zunino, M.P.; Zygadlo, J.A. Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against (Motsch.). A chemical structure-bioactivity relationship. J. Sci. Food Agric. 2018, 98, 5822–5831. [Google Scholar] [CrossRef] [PubMed]
- Prates, L.H.F.; Faroni, L.R.D.A.; Heleno, F.F.; de Queiroz, M.E.L.R.; de Sousa, A.H.; Silva, M.V.d.A. Eugenol diffusion coefficient and its potential to control Sitophilus zeamais in rice. Sci. Rep. 2019, 9, 11161. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, C.; Wang, X.; Wang, T.; Dong, J.; Lu, Y. Odorant-binding proteins as recognition elements for smell exploration. Biochem. Eng. J. 2024, 205, 109284. [Google Scholar] [CrossRef]
- Li, L.; Huang, J.; Xu, J.-W.; Yao, W.; Yang, H.; Shao, L.; Zhang, H.; Dewer, Y.; Zhu, X.; Zhang, Y. Ligand-binding properties of odorant-binding protein 6 in Athetis lepigone to sex pheromones and maize volatiles. Pest Manag. Sci. 2022, 78, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hou, M.; Liang, C.; Xu, Q.; Lu, Y.; Zhao, Z. Role of odorant binding protein C12 in the response of Tribolium castaneum to chemical agents. Pestic. Biochem. Physiol. 2024, 201, 105861. [Google Scholar] [CrossRef]
- Zhou, J.; Robertson, G.; He, X.; Dufour, S.; Hooper, A.M.; Pickett, J.A.; Keep, N.H.; Field, L.M. Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J. Mol. Biol. 2009, 389, 529–545. [Google Scholar] [CrossRef]
- Yi, S.C.; Chen, X.H.; Wu, Y.H.; Wu, J.; Wang, J.Q.; Wang, M.Q. Identification of odorant-binding proteins and functional analysis of antenna-specific BhorOBP28 in (Hope). Pest Manag. Sci. 2024, 80, 4055–4068. [Google Scholar] [CrossRef]
- Msisi, D.; Matojo, N.D.; Kimbokota, F. Attraction of female tomato leaf miner, Tuta absoluta (Meyrick, 1917) (Lepidoptera:Gelechiidae) to shared compounds from hosts. Phytoparasitica 2021, 49, 153–162. [Google Scholar] [CrossRef]
- Sarkar, S.C.; Wang, E.; Wu, S.; Lei, Z. Application of trap cropping as companion plants for the management of agricultural pests: A review. Insects 2018, 9, 128. [Google Scholar] [CrossRef]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Wang, L.; Liu, P.; Li, L.; Ning, J.; Zhang, T. Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae). Agronomy 2025, 15, 1539. https://doi.org/10.3390/agronomy15071539
Liu Q, Wang L, Liu P, Li L, Ning J, Zhang T. Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae). Agronomy. 2025; 15(7):1539. https://doi.org/10.3390/agronomy15071539
Chicago/Turabian StyleLiu, Qingyu, Liuyang Wang, Panjing Liu, Lingrui Li, Jun Ning, and Tao Zhang. 2025. "Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae)" Agronomy 15, no. 7: 1539. https://doi.org/10.3390/agronomy15071539
APA StyleLiu, Q., Wang, L., Liu, P., Li, L., Ning, J., & Zhang, T. (2025). Antenna-Specific TabsOBP45 and TabsOBP46 Mediate Plant Volatile Recognition in Tuta absoluta (Lepidoptera: Gelechiidae). Agronomy, 15(7), 1539. https://doi.org/10.3390/agronomy15071539