Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stock Rearing of Plutella xylostella
2.2. Preparation of Aqueous Botanical Extracts
2.3. Plutella xylostella Oral Toxicity
2.4. Topical Toxicity on P. xylostella Larvae
2.5. Topical Toxicity on Plutella xylostella Pupae
2.6. Topical Toxicity on Plutella xylostella Eggs
2.7. Chemical Analysis of the Extract
2.7.1. Determination of Phenolic Commixture Contents
2.7.2. Determination of Flavonoid Contents
2.7.3. Determination of Tannin Levels
2.7.4. Determination of Alkaloid Contents
2.7.5. Semi-quantitative Phytochemical Prospecting
2.8. Statistical Analysis
3. Results
3.1. Oral Toxicity
3.2. Topic Toxicity
3.3. Chemical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stern, V.M.; Smith, R.F.; Van den Bosch, R.; Hagen, K.S. The integration of chemical and biological control of the spotted alfalfa aphid: The integrated control concept. Hilgardia 1959, 29, 81–101. [Google Scholar] [CrossRef]
- Smith, R.F.; Van den Bosch, R. Integrated control. In Pest Control: Biological, Physical and Selected Chemical Methods; Kilgore, W.W., Doutt, R.L., Eds.; Academic Press: Cambridge, MA, USA, 1967; pp. 295–340. [Google Scholar]
- Dent, D. Insect Pest Management, 2nd ed.; CABI: Wallingford, UK, 2000. [Google Scholar]
- Luckmann, W.H.; Metcalf, R.L. Introduction to Insect Pest Management, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1982. [Google Scholar]
- Kogan, M.; Jenson, P. Perspectives in Ecological Theory and Integrated Pest Management; Oxford University Press: Oxford, UK; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Panizzi, A.R.; Parra, J.R.P. Insect Bioecology and Nutrition for Integrated Pest Management, 1st ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Baldin, E.L.L. Resistência de Plantas a Insetos: Fundamentos e Aplicações; FEALQ: Piracicaba, Brazil, 2019. [Google Scholar]
- Ribeiro, L.P.; Vendramim, J.D.; Baldin, E.L. Inseticidas Botânicos no Brasil: Aplicações, Potencialidades e Perspectivas; FEALQ: Piracicaba, Brazil, 2023. [Google Scholar]
- Vendramim, J.D.; Castiglioni, E. Aleloquímicos, resistência e plantas inseticidas. In Bases e Técnicas do Manejo de Insetos; UFSM: Santa Maria, CA, USA, 2000. [Google Scholar]
- Embrapa Milho e Sorgo. Área de Refúgio: Recomendações de Uso Para o Plantio do Milho Transgênico Bt; Embrapa: Sete Lagoas, Brazil, 2014. [Google Scholar]
- Gullan, P.J.; Cranston, P.S. Insetos: Fundamentos da Entomologia, 5th ed.; Roca: Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Padial, I.M.P.M.; de Souza, S.A.; Malaquias, J.B.; Cardoso, C.A.L.; Pachú, J.K.S.; Fioratti, C.A.G.; Mussury, R.M. Leaf Extracts of Miconia albicans (Sw.) Triana (Melastomataceae) Prevent the Feeding and Oviposition of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Agronomy 2023, 13, 890. [Google Scholar] [CrossRef]
- Naimi, I.; Bouamama, H.; Ba M’hamed, T. Chemical Composition, Repellency, and Insecticidal Activity of Pinus halepensis Leaf Essential Oil from Morocco on Adults of Rhyzopertha dominica (Fabricius) (Coleoptera: Bostrichidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Plants 2025, 14, 407. [Google Scholar] [CrossRef]
- Isman, M.B.; Grieneisen, M.L. Botanical insecticide research: Many publications, limited useful data. Trends Plant Sci. 2014, 19, 140–145. [Google Scholar] [CrossRef]
- Popescu, I.E.; Gostin, I.N.; Blidar, C.F. An Overview of the Mechanisms of Action and Administration Technologies of Essential Oils Used as Green Insecticides. AgriEngineering 2024, 6, 1195–1217. [Google Scholar] [CrossRef]
- Ferreira, E.A.; de Souza, S.A.; Domingues, A.; da Silva, M.M.M.; Padial, I.M.P.M.; de Carvalho, E.M.; Cardoso, C.A.L.; da Silva, S.V.; Mussury, R.M. Phytochemical Screening and Bioactivity of Ludwigia spp. in the Control of Plutella xylostella (Lepidoptera: Plutellidae). Insects 2020, 11, 596. [Google Scholar] [CrossRef]
- De Souza, S.A.; Padial, I.M.P.M.; de Souza, T.S.; Domingues, A.; Ferreira, E.A.; Mauad, M.; Cardoso, C.A.L.; Malaquias, J.B.; Oliveira, L.V.Q.; Formagio, A.S.N.; et al. Evaluation of Bioinseticide in the Control of Plutella xylostella (Linnaeus, 1758): A Laboratory Study for Large-Scale Implementation. Sustainability 2025, 17, 1626. [Google Scholar] [CrossRef]
- De Souza, S.A.; Padial, I.M.P.M.; Domingues, A.; Mauad, J.R.C.; Formagio, A.S.N.; Campos, J.F.; Malaquias, J.B.; Mussury, R.M. An Interesting Relationship between the Insecticidal Potential of Simarouba sp. in the Biology of Diamondback Moth. Sustainability 2023, 15, 7759. [Google Scholar] [CrossRef]
- Rocha, J.D.; Carneiro, F.M.; Fernandes, A.S.; Morais, J.M.; Borges, L.L.; Chen-Chen, L.; de Almeida, L.M.; Bailão, E.F.L.C. Toxic Potential of Cerrado Plants on Different Organisms. Int. J. Mol. Sci. 2022, 23, 3413. [Google Scholar] [CrossRef]
- Furlong, M.J.; Wright, D.J.; Dosdall, L.M. Diamondback moth ecology and management: Problems, progress and prospects. Annu. Rev. Entomol. 2013, 58, 517–541. [Google Scholar] [CrossRef] [PubMed]
- Agriculture Victoria. Diamondback Moth. Available online: https://agriculture.vic.gov.au/biosecurity/pest-insects-and-mites/priority-pest-insects-and-mites/diamondback-moth (accessed on 10 January 2025).
- Mason, P. Plutella xylostella (diamondback moth). CABI Compend. 2022. Available online: https://www.cabi.org/cpc/datasheet/42318 (accessed on 10 January 2025). [CrossRef]
- Muthomi, P.K.; Seal, D.; Liburd, O.E. Diamondback Moth Management in Cole Crops: ENY2119/IN1443, 3/2025; EDIS, University of Florida IFAS Extension: Gainesville, FL, USA, 2025; Available online: https://edis.ifas.ufl.edu/publication/IN1443 (accessed on 6 June 2025).
- Capinera, J.L. Diamondback Moth, Plutella xylostella (Linnaeus) (Insecta: Lepidoptera: Plutellidae): EENY-119/IN276, rev. 5/2000. EDIS 2000, 2002. [Google Scholar] [CrossRef]
- APRD (Arthropod Pesticide Resistance Database). Plutella xylostella. 2025. Available online: https://www.pesticideresistance.org/display.php?page=speciesearId=571 (accessed on 10 May 2025).
- Dougoud, J.; Toepfer, S.; Bateman, M.L.; Jenner, W.H. Efficacy of Homemade Botanical Insecticides Based on Traditional Knowledge: A Review. Agron. Sustain. Dev. 2019, 39, 37. [Google Scholar] [CrossRef]
- Maguire, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- Santos, M.S.; Zanardi, O.Z.; Pauli, K.S.; Forim, M.R.; Yamamoto, P.T.; Vendramim, J.D. Toxicity of an azadirachtin-based biopesticide on Diaphorina citri kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Crop Prot. 2015, 74, 116–123. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Z.; Li, R.; Ni, S.; Sun, H.; Yin, F.; Li, Z.; Zhang, Y.; Li, Y. Key Contributions of the Overexpressed Plutella xylostella Sigma Glutathione S-Transferase 1 Gene (PxGSTs1) in the Resistance Evolution to Multiple Insecticides. J. Agric. Food Chem. 2024, 72, 2560–2572. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Pansera, M.R.; Santos, A.C.A.; Paese, K.; Wasum, R.; Rossato, M.; Rota, L.D.; Pauletti, G.F.; Serafini, L. Análise de taninos totais em plantas aromáticas e medicinais cultivadas no Rio Grande do Sul. Rev. Bras. Farmacogn. 2003, 13, 17–22. [Google Scholar] [CrossRef]
- Oliveira, M.A.C.; Albuquerque, M.M.; Xavier, H.S.; Strattmann, R.R.; Grangeiro Júnior, S.; Queiroz, A.T. Desenvolvimento e validação de metodologia para quantificação de alcalóides totais como berberina em fitoterápico contendo Berberis vulgaris L. Rev. Bras. Farmacogn. 2006, 16, 357–364. [Google Scholar] [CrossRef]
- Filho, A.C.P.M.; Filho, J.G.O.; Castro, C.F.S. Estudo físico-químico, fitoquímico e atividades biológicas do extrato do fruto maduro de Brosimum gaudichaudii Tréc. (Moraceae). Sci. Electron. Arch. 2021, 14, 1309. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 10 January 2025).
- Zhou, J.; Zhang, Z.; Liu, H.; Guo, M.; Deng, J. Inhibition Effect of Non-Host Plant Volatile Extracts on Reproductive Behaviors in the Diamondback Moth Plutella xylostella (Linnaeus). Insects 2024, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.d.N.; Souza, S.A.d.; Fioratti, C.A.G.; Mauad, J.R.C.; Mauad, M.; Mussury, R.M. Tradescantia pallida (Commelinaceae) Promotes Reductions in Plutella xylostella (Lepidoptera: Plutellidae) Populations. Agronomy 2022, 12, 2646. [Google Scholar] [CrossRef]
- Peres, L.L.S.; Sobreiro, A.I.; Couto, I.F.S.; Silva, R.M.; Pereira, F.F.; Heredia-Vieira, S.C.; Cardoso, C.A.L.; Mauad, M.; Scalon, S.P.Q.; Verza, S.S.; et al. Chemical Compounds and Bioactivity of Aqueous Extracts of Alibertia spp. in the Control of Plutella xylostella L. (Lepidoptera: Plutellidae). Insects 2017, 8, 125. [Google Scholar] [CrossRef] [PubMed]
- Faca, E.C.; Ferreira, E.A.; Pereira, H.C.; Rodrigues, A.; da Silva, R.M.; Fioratti, C.A.G.; Pereira, F.F.; Mussury, R.M. Selectivity of Water-Based Extracts of Serjania spp. on Tetrastichus howardi (Hymenoptera: Eulophidae), an Endoparasitoid of Plutella xylostella (Lepidoptera: Plutellidae). Braz. J. Biol. 2025, 85, e284440. [Google Scholar] [CrossRef]
- Glendinning, J.I.; Nelson, N.; Bernays, E.A. How do inositol and glucose modulate feeding in Manduca sexta caterpillars? J. Exp. Biol. 2000, 203, 1299–1315. [Google Scholar] [CrossRef]
- Schoonhoven, L.M. Long-term sensitivity changes in some insect taste receptors. Drug Res. 1978, 28, 23–77. [Google Scholar]
- Usher, B.F.; Bernays, E.A.; Barbehenn, R.V. Antifeedant tests with larvae of Pseudaletia unipuncta—Variability of behavioral response. Entomol. Exp. Appl. 1988, 48, 203–212. [Google Scholar] [CrossRef]
- Brattsten, L.B.; Wilkinson, C.F.; Eisner, T. Herbivore–plant interactions: Mixed function oxidases and secondary plant substances. Science 1977, 196, 1349–1352. [Google Scholar] [CrossRef]
- Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in Chemical Structures and Biological Properties of Plant Alkaloids. Molecules 2021, 26, 3374. [Google Scholar] [CrossRef]
- Yang, Y.; Saand, M.A.; Huang, L.; Abdelaal, W.B.; Zhang, J.; Wu, Y.; Li, J.; Sirohi, M.H.; Wang, F. Applications of Multi-Omics Technologies for Crop Improvement. Front. Plant Sci. 2021, 12, 563953. [Google Scholar] [CrossRef]
- Simmonds, M.S. Importance of Flavonoids in Insect-Plant Interactions: Feeding and Oviposition. Phytochemistry 2001, 56, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Huang, X.; Li, S.; Hao, K.; Chang, B.H.; Tu, X.; Pang, B.; Zhang, Z. Quercetin Affects the Growth and Development of the Grasshopper Oedaleus asiaticus (Orthoptera: Acrididae). J. Econ. Entomol. 2019, 112, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yang, S.; Huang, J.; Zhou, L. Insecticidal Triterpenes in Meliaceae: Plant Species, Molecules and Activities: Part (Aphanamixis-Chukrasia). Int. J. Mol. Sci. 2021, 22, 13262. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef]
- Chafino, S.; Ureña, E.; Casanova, J.; Casacuberta, E.; Franch-Marro, X.; Martín, D. Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum. Cell Rep. 2019, 27, 1039–1049. [Google Scholar] [CrossRef]
- Truman, J.W. The Evolution of Insect Metamorphosis. Curr. Biol. 2019, 29, 1252–1268. [Google Scholar] [CrossRef]
- Niitepõld, K.; Boggs, C. Carry-Over Effects of Larval Food Stress on Adult Energetics and Life History in a Nectar-Feeding Butterfly. Ecol. Entomol. 2022, 47, 391–399. [Google Scholar] [CrossRef]
- Salinas, P.J. Studies on the Ecology and Behavior of the Larvae Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae) III. Effects of Size and Shape of the Host Plant Leaves. Turrialba 1990, 40, 40–43. [Google Scholar]
- Moller, J. Investigations on a Laboratory Culture of the Diamond-Back Moth, Plutella maculipennis (Curt.) (Lep., Tineidae). J. Appl. Entomol. 1988, 105, 5. [Google Scholar] [CrossRef]
- Costa, D.C.M. Toxicidade de Extratos Botânicos de Fabácea e Rubiácea para Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae). Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2015. [Google Scholar]
- Qiao, Q.; Zheng, C.; Feng, H.; Huang, S.; Wang, B.; Zaheer, U.; He, W. HSC70-3 in the Gut Regurgitant of Diamondback Moth, Plutella xylostella: A Candidate Effector for Host Plant Adaptation. Insects 2025, 16, 489. [Google Scholar] [CrossRef]
- Gallo, D.; Nakano, O.; Silveira, N.S.; Carvalho, R.P.L.; Baptista, G.C.; Berti Filho, E.; Parra, J.R.P.; Zucchi, R.A.; Alves, S.B.; Vendramim, J.D.; et al. Entomologia Agrícola; FEALQ: Piracicaba, Brazil, 2002. [Google Scholar]
- Torres, A.L.; Júnior, A.L.B.; Medeiros, C.A.M.; Barros, R. Efeito de Extratos Aquosos de Azadirachta indica, Melia azedarach e Aspidosperma pyrifolium no Desenvolvimento e Oviposição de Plutella xylostella. Fitossanidade 2006, 65, 447–457. [Google Scholar] [CrossRef]
- Lei, Y.; Hussain, A.; Guan, Z.; Wang, D.; Jaleel, W.; Lyu, L.; He, Y. Unraveling the Mode of Action of Cordyceps fumosorosea: Potential Biocontrol Agent against Plutella xylostella (Lepidoptera: Plutellidae). Insects 2021, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Rafael, J.A.; Melo, G.A.R.d.; Carvalho, C.J.B.d.; Casari, S.A.; Constantino, R. Insetos do Brasil: Diversidade e Taxonomia, 2nd ed.; INPA: Manaus, Brazil, 2024. [Google Scholar] [CrossRef]
- Gajger, I.; Dar, S. Plant Allelochemicals as Sources of Insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, N.; Ferro, E.A. Bioactive Triterpenes and Related Compounds from Celastraceae. Stud. Nat. Prod. Chem. 2005, 30, 635–702. [Google Scholar] [CrossRef]
- González-Coloma, A.; López-Balboa, C.; Santana, O.; Reina, M.; Fraga, B.M. Triterpene-Based Plant Defenses. Phytochem. Rev. 2011, 10, 245–260. [Google Scholar] [CrossRef]
- Christenhusz, M.J.M.; Byng, J.W. The Number of Known Plants Species in the World and Its Annual Increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
Species | Family | Localization |
---|---|---|
Tapirira guianensis | Anacardiaceae | Assentamento Lagoa Grande 1 |
Coussarea hydrangeifolia | Rubiaceae | Assentamento Lagoa Grande 1 |
Duguetia furfuracea | Annonaceae | Assentamento Lagoa Grande 1 |
Anemopaegma arvense | Bignoniaceae | Assentamento Três Corações 2 |
Treatment | Larval Viability (%) | Larval Duration (Days) | (RANK KW) | MSI (Larvae/Days) |
---|---|---|---|---|
Control | 88.00 ± 4.64 a n = 50 | 6.18 ± 0.24 n = 50 | 159.60 a | 0.583 |
AETg | 54.16 ± 7.26 c n = 50 | 4.31 ± 0.25 n = 50 | 101.14 c | 2.444 |
AEDf | 56.00 ± 7.09 bc n = 50 | 3.28 ± 0.19 n = 50 | 62.22 d | 3.666 |
AEAa | 55.81 ± 7.66 bc n = 50 | 5.00 ± 0.28 n = 50 | 122.67 bc | 2.111 |
AECh | 75.60 ± 6.78 ab n = 50 | 6.02 ± 0.43 n = 50 | 141.63 ab | 0.750 |
DF * = 4 p = 0.0002 | DF = 4 p < 0.0001 |
Treatment | Pupal Viability (%) | Pupal Duration (Days) | (RANK KW) | Pupal Biomass (mg) | (RANK KW) |
---|---|---|---|---|---|
Control | 95.45 ± 3.17 a n = 44 | 4.61 ± 0.26 n = 44 | 83.01 b | 4.84 ± 0.17 n = 44 | 81.28 a |
AETg | 76.92 ± 8.42 b n = 16 | 3.38 ± 0.17 n = 26 | 56.88 c | 4.89 ± 0.12 n = 26 | 84.86 a |
AEDf | 88.46 ± 6.38 ab n = 26 | 3.19 ± 0.07 n = 26 | 44.32 c | 4.57 ± 0.17 n = 26 | 71.01 ab |
AEAa | 70.83 ± 9.47 b n = 24 | 3.20 ± 0.17 n = 24 | 49.79 c | 5.96 ± 1.61 n = 24 | 65.64 ab |
AECh | 100 ± 0 ab n = 26 | 6.46 ± 0.13 n = 26 | 125.07 a | 4.25 ± 0.25 n = 26 | 58.69 b |
DF * = 4 p = 0.0018 | DF = 4 p < 0.0001 | DF = 4 0.1128 |
Treatment | Eggs Viability (%) | (RANK KW) | Number of Eggs | Oviposition Period (Days) | (RANK KW) |
---|---|---|---|---|---|
Control | 70.60 ± 9.22 n = 10 | 18 a | 199.00 ± 13.98 a n = 10 | 10.60 ± 1.70 n = 10 | 18.05 b |
AETg | 77.87 ± 3.90 n = 6 | 17.83 a | 95.00 ± 11.17 bc n = 6 | 6.00 ± 0.93 n = 6 | 11.25 cd |
AEDf | 55.41 ± 5.35 n = 4 | 18.75 a | 75.50 ± 17.13 c n = 4 | 3.50 ± 0.50 n = 4 | 3.62 d |
AEAa | 69.69 ± 9.34 n = 4 | 14 ab | 78.50 ± 13.23 c n = 4 | 6.50 ± 0.86 n = 4 | 13.75 bc |
AECh | 55.41 ± 5.35 n = 6 | 7.83 ab | 140.16 ± 26.38 b n = 6 | 13.83 ± 1.74 n = 6 | 24.83 a |
DF * = 4 p = 0.1686 | DF = 4 p < 0.0001 | DF = 4 p < 0.0021 |
Treatment | Male Longevity | (RANK KW) | Female Longevity | (RANK KW) |
---|---|---|---|---|
Controle | 20.80 ± 2.84 n = 10 | 17.35 ab | 18.50 ± 1.97 n = 10 | 16.45 ab |
AETg | 14.50 ± 2.18 n = 6 | 11.00 b | 17.00 ± 1.57 n = 6 | 14.41 ab |
AEDf | 12.00 ± 1.78 n = 4 | 8.50 b | 13.75 ± 0.62 n = 4 | 9.75 b |
AEAa | 14.75 ± 2.17 n = 4 | 11.25 b | 15.00 ± 1.47 n = 4 | 10.37 b |
AECh | 27.20 ± 1.65 n = 5 | 23.30 a | 22.16 ± 2.30 n = 6 | 22.25 a |
DF * = 4 p = 0.0405 | DF = 4 p = 0.1420 |
Treatment | Egg Viability (%) | Larval Vitality (%) | Pupal Viability (%) |
---|---|---|---|
Control | 87.00 ± 3.37 b n = 10 | 93.33 ± 4.64 b n = 30 | 100 ± 0 ab n = 30 |
AETg | 73.33 ± 4.68 a n = 10 | 70.00 ± 8.50 a n = 30 | 86.66 ± 6.31 b n = 30 |
AEDf | 85.00 ± 4.01 ab n = 10 | 96.67 ± 3.33 b n = 30 | 56.66 ± 9.20 a n = 30 |
AEAa | 88.88 ± 3.33 b n = 10 | 85.00 ± 4.64 ab n = 30 | 95.00 ± 2.83 b n = 30 |
AECh | 83.00 ± 3.77 ab n = 10 | 93.33 ± 4.63 b n = 30 | 93.33 ± 4.63 b n = 30 |
DF * = 4 p = 0.0586 | DF = 4 p = 0.0171 | DF = 4 p < 0.0001 |
Treatment | Phenolic Compounds (µg AGE g−1) | Flavonoids (µg RE g−1) | Tannins (µg ATE g−1) | Alkaloids |
---|---|---|---|---|
Control | 198.76 ± 0.13 n = 3 | 84.71 ± 0.02 n = 3 | 27.48 ± 0.12 n = 3 | 66.42 ± 0.03 n = 3 |
AETg | 257.06 ± 0.04 n = 3 | 101.35 ± 0.06 n = 3 | 24.14 ± 0.02 n = 3 | 61.47 ± 0.06 n = 3 |
AEDf | 179.00 ± 0.04 n = 3 | 86.02 ± 0.01 n = 3 | 13.33 ± 0.01 n = 3 | 50.04 ± 0.04 n = 3 |
AEAa | 146.00 ± 0.02 n = 3 | 45.80 ± 0.02 n = 3 | 11.11 ± 0.01 n = 3 | 14.35 ± 0.06 n = 3 |
AECh | 198.76 ± 0.13 n = 3 | 84.71 ± 0.02 n = 3 | 27.48 ± 0.12 n = 3 | 66.42 ± 0.03 n = 3 |
Treatments * | Coumarins | Saponins | Anthraquinones | Steroids | Triterpenoids | Anthocyanidins |
---|---|---|---|---|---|---|
AETg | ++ | + | + | +++ | +++ | − |
AEDf | + | + | + | +++ | ++ | − |
AEAa | + | + | + | +++ | +++ | + |
AECh | + | + | + | ++ | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padial, I.M.P.M.; de Souza, S.A.; Cardoso, C.A.L.; Mauad, J.R.C.; Formagio, A.S.N.; Mussury, R.M. Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Agronomy 2025, 15, 1464. https://doi.org/10.3390/agronomy15061464
Padial IMPM, de Souza SA, Cardoso CAL, Mauad JRC, Formagio ASN, Mussury RM. Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Agronomy. 2025; 15(6):1464. https://doi.org/10.3390/agronomy15061464
Chicago/Turabian StylePadial, Isabella Maria Pompeu Monteiro, Silvana Aparecida de Souza, Claudia Andrea Lima Cardoso, Juliana Rosa Carrijo Mauad, Anelise Samara Nazari Formagio, and Rosilda Mara Mussury. 2025. "Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae)" Agronomy 15, no. 6: 1464. https://doi.org/10.3390/agronomy15061464
APA StylePadial, I. M. P. M., de Souza, S. A., Cardoso, C. A. L., Mauad, J. R. C., Formagio, A. S. N., & Mussury, R. M. (2025). Green Solutions for Agriculture: Topical and Oral Effect of Botanical Extracts in the Sustainable Management of Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Agronomy, 15(6), 1464. https://doi.org/10.3390/agronomy15061464