Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Specificities
2.2. Standard VCU Traits and Specific Traits for Cannabis Flower Varieties
2.3. Cannabinoid Analysis
2.4. CBD and THC Content Development During Flowering
3. Results
3.1. Comparison of Industrial and Flower-Type Varieties
3.2. Implementation of the Proposed Protocol for Flower-Type Varieties
3.3. Cannabinoid Content
4. Discussion
4.1. Insights from Two-Year Field Trials Regarding Variability and Trait Assessment
4.2. Cannabinoid Content and Legal Thresholds
4.3. Toward a VCU System for Flower-Type Cannabis
4.4. Experimental Limitations and Future Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- John, F. The history of hemp. In Industrial Hemp as a Modern Commodity Crop; D. W. Williams: Tewantin, Australia, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Li, Y.; Ridout, K.; Serrano-Serrano, M.L.; Yang, Y.; Liu, A.; Ravikanth, G.; Nawaz, M.A.; Mumtaz, A.S.; et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 2021, 7, eabg2286. [Google Scholar] [CrossRef] [PubMed]
- Balant, M.; Gras, A.; Gálvez, F.; Garnatje, T.; Vallès, J.; Vitales, D. Cannuse, a database of traditional cannabis uses—An opportunity for new research. Database 2021, 2021, baab024. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, S.; Bifulco, M. Medical cannabis: A plurimillennial history of an evergreen. J. Cell. Physiol. 2019, 234, 8342–8351. [Google Scholar] [CrossRef] [PubMed]
- Herer, J.; Bröckers, M. Das ende des legalen hanfanbaus. In Die Wiederentdeckung der Nutzpflanze Hanf, Cannabis, Marihuana; Zweitausendeins: Nördlingen, Germany, 1994; pp. 54–68. [Google Scholar]
- The Federal Assembly of the Swiss Confederation. Federal Act on Narcotics and Psychotropic Substances; 812.121; Federal Chancellery (Fedlex): Bern, Switzerland, 1951; pp. 1–28. Available online: https://www.fedlex.admin.ch/eli/cc/1952/241_241_245/en (accessed on 29 August 2024).
- Brown, J.D.; Rivera, K.J.R.; Hernandez, L.Y.C.; Doenges, M.R.; Auchey, I.; Pham, T.; Goodin, A.J. Natural and synthetic cannabinoids: Pharmacology, uses, adverse drug events, and drug interactions. J. Clin. Pharmacol. 2021, 61, S37–S52. [Google Scholar] [CrossRef]
- Pertwee, R.G. Cannabinoid pharmacology: The first 66 years. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S163–S171. [Google Scholar] [CrossRef]
- Gaoni, Y.; Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 1964, 86, 1646–1647. [Google Scholar] [CrossRef]
- Parliament of Canada. Bill c-45: An Act Respecting Cannabis and to Amend the Controlled Drugs and Substances Act, the Criminal Code and Other Acts; LEGISinfo: Ottawa, ON, Canada, 2018; pp. 1–139. [Google Scholar]
- Thorne, S. Cannabis Use in South Africa: Government Clears Up Confusion over Buying, Selling and Social Clubs. BusinessTech. 2024. Available online: https://businesstech.co.za/news/government/746509/cannabis-use-in-south-africa-government-clears-up-confusion-over-buying-selling-and-social-clubs-2/ (accessed on 28 November 2024).
- South African Government. Cannabis for Private Purposes Bill b19-2020; Minister of Justice and Correctional Services: Parramatta, NSW, Australia, 2020; pp. 1–25. Available online: https://www.gov.za/sites/default/files/gcis_document/202010/cannabis-private-purposes-bill-b19-2020.pdf (accessed on 28 November 2024).
- Jechtimi, A.E. Morocco Issues First Permits for Cannabis Production. Reuters. 2022. Available online: https://www.reuters.com/world/africa/morocco-issues-first-permits-cannabis-production-2022-10-05/ (accessed on 7 March 2024).
- Thurau, J. Cannabis in Germany: Legalization with Limits. Deutsche Welle (DW). 2024. Available online: https://www.dw.com/en/cannabis-in-germany-legalization-with-limits/a-68353166 (accessed on 25 April 2024).
- Kayali, L. Legal High: Germany’s Cannabis Law Comes into Effect. POLITICO. 2024. Available online: https://www.politico.eu/article/legal-high-germany-cannabis-law-come-into-effect-weed/ (accessed on 25 April 2024).
- Federal Office for Agriculture (FOAG). Hemp. Swiss Government. 2023. Available online: https://www.blw.admin.ch/blw/en/home/nachhaltige-produktion/pflanzliche-produktion/hanf.html (accessed on 14 September 2024).
- BLW. Verordnungspaket 2020. 2020. Available online: https://www.blw.admin.ch/blw/de/home/politik/agrarpolitik/agrarpakete-aktuell/verordnungspaket_2020.html (accessed on 17 August 2024).
- Federal Office of Public Health (FOPH). Pilot Trials with Cannabis. Swiss Government. 2024. Available online: https://www.bag.admin.ch/bag/en/home/gesund-leben/sucht-und-gesundheit/cannabis/pilotprojekte.html (accessed on 9 July 2024).
- Granville, A.; Grigg, J.; Kowalski, M.; Sevigny, E.; Zobel, F.; Fortin, D. What can we learn from low-thc cannabis growers in europe? A comparative transnational study of small-scale cannabis growers from italy and switzerland. Int. J. Drug Policy 2024, 2024, 104505. [Google Scholar] [CrossRef]
- Sawler, J.; Stout, J.M.; Gardner, K.M.; Hudson, D.; Vidmar, J.; Butler, L.; Page, J.E.; Myles, S. The genetic structure of marijuana and hemp. PLoS ONE 2015, 10, e0133292. [Google Scholar] [CrossRef]
- Lynch, R.C.; Vergara, D.; Tittes, S.; White, K.; Schwartz, C.J.; Gibbs, M.J.; Ruthenburg, T.C.; deCesare, K.; Land, D.P.; Kane, N.C. Genomic and chemical diversity in cannabis. Crit. Rev. Plant Sci. 2016, 35, 349–363. [Google Scholar] [CrossRef]
- Lewis, M.A.; Russo, E.B.; Smith, K.M. Pharmacological foundations of cannabis chemovars. Planta Medica 2018, 84, 225–233. [Google Scholar] [CrossRef]
- Smith, C.J.; Vergara, D.; Keegan, B.; Jikomes, N. The phytochemical diversity of commercial cannabis in the united states. PLoS ONE 2022, 17, e0267498. [Google Scholar] [CrossRef] [PubMed]
- Reimann-Philipp, U.; Speck, M.; Orser, C.; Johnson, S.; Hilyard, A.; Turner, H.; Stokes, A.J.; Small-Howard, A.L. Cannabis chemovar nomenclature misrepresents chemical and genetic diversity; survey of variations in chemical profiles and genetic markers in nevada medical cannabis samples. Cannabis Cannabinoid Res. 2020, 5, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Henry, P.; Shan, J.; Chen, J. Classification of cannabis strains in the canadian market with discriminant analysis of principal components using genome-wide single nucleotide polymorphisms. PLoS ONE 2021, 16, e0253387. [Google Scholar] [CrossRef] [PubMed]
- Vonlanthen, T.; Hiltbrunner, J. Hemp (Cannabis sativa L.). Agroscope. 2022. Available online: https://www.agroscope.admin.ch/agroscope/en/home/topics/plant-production/field-crops/crops/alternative-kulturpflanzen/hanf.html (accessed on 17 August 2024).
- EU-VCU Group. Insights in the future of variety testing in Europe. Proceedings of the 14th EU-VCU Expert Group Meeting. Available online: https://www.agroscope.admin.ch/agroscope/en/home/news/events/eu-vcu2021.html (accessed on 2 June 2025).
- Naim-Feil, E.; Pembleton, L.W.; Spooner, L.E.; Malthouse, A.L.; Miner, A.; Quinn, M.; Polotnianka, R.M.; Baillie, R.C.; Spangenberg, G.C.; Cogan, N.O.I. The characterization of key physiological traits of medicinal cannabis (Cannabis sativa L.) as a tool for precision breeding. BMC Plant Biol. 2021, 21, 294. [Google Scholar] [CrossRef]
- Malabadi, R.; Kolkar, K.; Chalannavar, R.; Baijnath, H. Cannabis sativa: Difference between medical cannabis (maijuana or drug type) and industrial hemp. GSC Biol. Pharm. Sci. 2023, 24, 377–381. [Google Scholar] [CrossRef]
- Ingvardsen, C.R.; Brinch-Pedersen, H. Challenges and potentials of new breeding techniques in Cannabis sativa. Front. Plant Sci. 2023, 14, 1154332. [Google Scholar] [CrossRef]
- Danziger, N.; Bernstein, N. Too dense or not too dense: Higher planting density reduces cannabinoid uniformity but increases yield/area in drug-type medical cannabis. Front. Plant Sci. 2022, 13, 713481. [Google Scholar] [CrossRef]
- Adesina, I.; Bhowmik, A.; Sharma, H.; Shahbazi, A. A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the united states. Agriculture 2020, 10, 129. [Google Scholar] [CrossRef]
- Desaulniers Brousseau, V.; Goldstein, B.P.; Sedlock, C.; Lefsrud, M. Environmental impact of outdoor cannabis production. ACS Agric. Sci. Technol. 2024, 4, 690–699. [Google Scholar] [CrossRef]
- Godin, C. Protocole D’expérimentation Chanvre: Essais de Valeur Agronomique Technologique et Environnmentale; GEVES: La Pouëze, France, 2023; pp. 1–10. [Google Scholar]
- CTPS. Règlement Technique D’examen des Variétés de Chanvre; CTPS: Beaucouzé, France, 2024; pp. 1–18.
- Italian Republic. Criteri per L’iscrizione di Varietà di Canapa al Registro Nazionale delle Varietà di Specie Agrarie; Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2011; pp. 17–40. [Google Scholar]
- Potter, D.J. A review of the cultivation and processing of cannabis (Cannabis sativa L.) for production of prescription medicines in the uk. Drug Test. Anal. 2014, 6, 31–38. [Google Scholar] [CrossRef]
- Canapuglia. Eletta Campana. 2024. Available online: https://www.canapuglia.it/ (accessed on 12 October 2024).
- Mandolino, G.; Carboni, A. Potential of marker-assisted selection in hemp genetic improvement. Euphytica 2004, 140, 107–120. [Google Scholar] [CrossRef]
- The International Union for the Protection of New Varieties of Plants (UPOV). Guidelines for the Conduct of Tests for Distinctness Uniformity and Stability. Hemp (Cannabis sativa L.); UPOV: Geneva, Switzerland, 2012. [Google Scholar]
- Agroscope. Variety Testing-Results. 2024. Available online: https://www.agroscope.admin.ch/agroscope/de/home/themen/pflanzenbau/ackerbau/kulturarten/mais/sortenversuche-resultate.html (accessed on 6 August 2024).
- Yang, R.; Berthold, E.C.; McCurdy, C.R.; da Silva Benevenute, S.; Brym, Z.T.; Freeman, J.H. Development of cannabinoids in flowers of industrial hemp (Cannabis sativa L.): A pilot study. J. Agric. Food Chem. 2020, 68, 6058–6064. [Google Scholar] [CrossRef] [PubMed]
- Stack, G.M.; Toth, J.A.; Carlson, C.H.; Cala, A.R.; Marrero-González, M.I.; Wilk, R.L.; Gentner, D.R.; Crawford, J.L.; Philippe, G.; Rose, J.K.C.; et al. Season-long characterization of high-cannabinoid hemp (Cannabis sativa L.) reveals variation in cannabinoid accumulation, flowering time, and disease resistance. GCB Bioenergy 2021, 13, 546–561. [Google Scholar] [CrossRef]
- Folina, A.; Kakabouki, I.; Tourkochoriti, E.; Roussis, I.; Pateroulakis, H.; Bilalis, D. Evaluation of the effect of topping on cannabidiol (cbd) content in two industrial hemp (Cannabis sativa L.) cultivars. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2020, 77, 7. [Google Scholar] [CrossRef]
- Kakabouki, I.; Kousta, A.; Folina, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Papastylianou, P. Effect of fertilization with urea and inhibitors on growth, yield and cbd concentration of hemp (Cannabis sativa L.). Sustainability 2021, 13, 2157. [Google Scholar] [CrossRef]
- ISO 9001:2021; Quality Management Systems—Requirements. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Glivar, T.; Eržen, J.; Kreft, S.; Zagožen, M.; Čerenak, A.; Čeh, B.; Benković, E.T. Cannabinoid content in industrial hemp (Cannabis sativa L.) varieties grown in slovenia. Ind. Crops Prod. 2020, 145, 112082. [Google Scholar] [CrossRef]
- Dowling, C.A.; Melzer, R.; Schilling, S. Timing is everything: The genetics of flowering time in Cannabis sativa. Biochemist 2021, 43, 34–38. [Google Scholar] [CrossRef]
- Chandra, S.; ElSohly, M.A.; Lata, H. Cannabis sativa L.: Botany and Biotechnology; Springer: Cham, Switzerland, 2017; pp. 1–474. [Google Scholar]
- Ahrens, A.; Llewellyn, D.; Zheng, Y. Longer photoperiod substantially increases indoor-grown cannabis’ yield and quality: A study of two high-thc cultivars grown under 12 h vs. 13 h days. Plants 2024, 13, 433. [Google Scholar] [CrossRef]
- Ahrens, A.; Llewellyn, D.; Zheng, Y. Is twelve hours really the optimum photoperiod for promoting flowering in indoor-grown cultivars of cannabis sativa? Plants 2023, 12, 2605. [Google Scholar] [CrossRef]
- Peterswald, T.J.; Mieog, J.C.; Halimi, R.A.; Magner, N.J.; Trebilco, A.; Kretzschmar, T.; Purdy, S.J. Moving away from 12:12; the effect of different photoperiods on biomass yield and cannabinoids in medicinal cannabis. Plants 2023, 12, 1061. [Google Scholar] [CrossRef]
- Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria (CREA). Elenco dei Testimoni per le Prove Agronomiche di Iscrizione al Registro Nazionale. 2024; Volume 2024, pp. 1–7. Available online: https://www.crea.gov.it/web/difesa-e-certificazione/-/iscrizione-al-registro-nazionale-di-nuove-variet%C3%A0 (accessed on 28 November 2024).
- Burgel, L.; Hartung, J.; Pflugfelder, A.; Graeff-Hönninger, S. Impact of growth stage and biomass fractions on cannabinoid content and yield of different hemp (Cannabis sativa L.) genotypes. Agronomy 2020, 10, 372. [Google Scholar] [CrossRef]
- Knight, G.; Hansen, S.; Connor, M.; Poulsen, H.; McGovern, C.; Stacey, J. The results of an experimental indoor hydroponic cannabis growing study, using the ‘screen of green’ (scrog) method—yield, tetrahydrocannabinol (thc) and DNA analysis. Forensic Sci. Int. 2010, 202, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Dong, Z.; Wang, C.; Wei, X.; Long, Y.; Wan, X. Genetic structure and molecular mechanism underlying the stalk lodging traits in maize (Zea mays L.). Comput. Struct. Biotechnol. J. 2023, 21, 485–494. [Google Scholar] [CrossRef]
- Rabieyan, E.; Darvishzadeh, R.; Alipour, H. Genetic analyses and prediction for lodging-related traits in a diverse iranian hexaploid wheat collection. Sci. Rep. 2024, 14, 275. [Google Scholar] [CrossRef]
- Folina, A.; Roussis, I.; Kouneli, V.; Kakabouki, I.; Karidogianni, S.; Bilalis, D.; Kadoglou, N. Evaluation of woven agrotextiles in the development of hemp (Cannabis sativa L.) in greenhouse. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Hortic. 2020, 77, 53–62. [Google Scholar] [CrossRef]
- Arsenault, T.L.; Prapayotin-Riveros, K.; Ammirata, M.A.; White, J.C.; Dimkpa, C.O. Compliance testing of hemp (Cannabis sativa L.) cultivars for total delta-9 thc and total cbd using gas chromatography with flame ionization detection. Plants 2024, 13, 519. [Google Scholar] [CrossRef]
- Pennypacker, S.D.; Cunnane, K.; Cash, M.C.; Romero-Sandoval, E.A. Potency and therapeutic thc and cbd ratios: U.S. Cannabis markets overshoot. Front. Pharmacol. 2022, 13, 921493. [Google Scholar] [CrossRef]
- Toth, J.A.; Smart, L.B.; Smart, C.D.; Stack, G.M.; Carlson, C.H.; Philippe, G.; Rose, J.K.C. Limited effect of environmental stress on cannabinoid profiles in high-cannabidiol hemp (Cannabis sativa L.). GCB Bioenergy 2021, 13, 1666–1674. [Google Scholar] [CrossRef]
- Campbell, B.J.; Berrada, A.F.; Hudalla, C.; Amaducci, S.; McKay, J.K. Genotype × environment interactions of industrial hemp cultivars highlight diverse responses to environmental factors. Agrosystems Geosci. Environ. 2019, 2, 180057. [Google Scholar] [CrossRef]
- James, M.S.; Vann, M.C.; Suchoff, D.H.; McGinnis, M.; Whipker, B.E.; Edmisten, K.L.; Gatiboni, L.C. Hemp yield and cannabinoid concentrations under variable nitrogen and potassium fertilizer rates. Crop Sci. 2023, 63, 1555–1565. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Botta, B.; Quaglio, D.; Ghirga, F.; Balducci, S.; Cammarone, S.; Campiglia, E.; Giusti, A.M.; et al. A multimethodological characterization of Cannabis sativa L. Inflorescences from seven dioecious cultivars grown in italy: The effect of different harvesting stages. Molecules 2021, 26, 2912. [Google Scholar] [CrossRef] [PubMed]
- GEVES. Inscription au Catalogue Français: Règlement D’inscription et Informations Disponibles; GEVES: Beaucouzé, France, 2021; pp. 1–2. Available online: https://www.geves.fr/wp-content/uploads/CHANVRE.pdf (accessed on 28 November 2024).
- Fischedick, J.T.; Hazekamp, A.; Erkelens, T.; Choi, Y.H.; Verpoorte, R. Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 2010, 71, 2058–2073. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.M.; Zager, J.J. Comprehensive inventory of cannabinoids in Cannabis sativa L.: Can we connect genotype and chemotype? Phytochem. Rev. 2022, 21, 1273–1313. [Google Scholar] [CrossRef]
- Naim-Feil, E.; Elkins, A.C.; Malmberg, M.M.; Ram, D.; Tran, J.; Spangenberg, G.C.; Rochfort, S.J.; Cogan, N.O.I. The cannabis plant as a complex system: Interrelationships between cannabinoid compositions, morphological, physiological and phenological traits. Plants 2023, 12, 493. [Google Scholar] [CrossRef]
Code | Name | Propagation Type | Dominant Chemotype | Testing Year |
---|---|---|---|---|
P1 | Puregene FM Auto | Seed | CBD (Chemotype III) | 2021 |
P2 | Puregene Red 3 | Vegetative cutting | CBD (Chemotype III) | 2021 |
P3 | Puregene Silver 6 | Vegetative cutting | CBD (Chemotype III) | 2021 |
P4 | V1 | Vegetative cutting | CBD (Chemotype II) | 2020/2021 |
P5 | Puregene FX | Seed | CBD (Chemotype III) | 2021 |
P6 | Puregene CBG 2 | Vegetative cutting | CBG (Chemotype IV) | 2021 |
P7 | Puregene FQ | Seed | CBD (Chemotype III) | 2020/2021 |
P8 | Puregene Silver 3 | Seed | CBD (Chemotype III) | 2021 |
P9 | Puregene CBG | Seed | CBG (Chemotype IV) | 2021 |
P10 | Puregene Red 3 | Seed | CBD (Chemotype II) | 2021 |
P11 | Eletta campana | Vegetative cutting | CBD (Chemotype III) | 2020 |
Year | 2020 | 2021 |
---|---|---|
Altitude | 420 m a.s.l | 420 m a.s.l |
Previous crop | Potatoes | Sorghum |
Plot size | 32.4 m2 | 14.4 m2 |
Plot replicates | 4 | 3 |
Planting density | 0.56 plants m−2 | 0.53 plants m−2 |
Sum of temperature (planting to harvest, base 0 °C) | 1873 °C | 1588 °C |
Precipitation (planting to harvest) | 270 mm | 189 mm |
Soil cover (weed control) | Plastic net (Aquatex black, Hortima) | Plastic net (Aquatex black, Hortima) |
Propagation date (greenhouse) | 3 June, clone propagation; 30 May, seed propagation | 10 June, clone propagation; 28 June, seed propagation |
Fertilization | 26 March, 40 kg P2O5 ha−1 (triple superphosphate) | 7 July, 40 kg N ha−1 (urea) |
Planting date (field) | 3 July | 15 July |
Irrigation | 3 July, 4.6 mm; 8 July, 0.1 mm *; 27 July, 0.1 mm * | 22 July, 10.2 mm; 23 July, 10.2 mm |
Pest control | No insecticides, no fungicides | No insecticides, no fungicides |
Harvest date | 6 October, P11; 21 October, P4 and P7 | 13 September, P1–P3; 26 October, P4–P10 |
Trait | Scale or Unit | Description or Equation | Type of Trait | Importance for VCU Trials |
---|---|---|---|---|
Early vigor (EV) | 1 = excellent (large, green, high plants); 9 = poor (narrow, yellowish, small plants) | A trait that is assessed in relation to other varieties. | Standard VCU trait | Moderate |
Anthesis | Days after planting | 50% of plants within a plot show the first distinct pistillate flowers [42]. | Standard VCU trait | Critical |
Plant height | cm | Standard VCU trait | Critical | |
Lodging | 1 = absent; 9 = present | The score is increased on the basis of the severity of the plant’s lodging. | Standard VCU trait | Critical |
Number of branches per plant (NBP) | counts | Flower variety trait | Moderate | |
Number of racemes per plant (NRP) | counts | See Figure 1 for definition of a raceme. | Flower variety trait | Minor |
Ease of harvest (EH) | 1 = easy (short bushy shape); 9 = difficult (tall/narrow shape) | The ease of harvesting depends on the position of the colas on the plants: a short, bushy form is easier to reach than a tall, narrow form. | Flower variety trait | Moderate |
Dry matter content (DM) | [%] | - | - | |
Dry flower and leaf yield (FLY) | [t ha−1] | Flower variety trait | Critical | |
Dry stem yield (SY) | [t ha−1] | Flower variety trait | Minor | |
Harvest index (HI) | [%] | Flower variety trait | Moderate | |
Raceme compactness index (RCI) | [g cm−1] | See Figure 1 for definition of a raceme. | Flower variety trait | Critical |
CBD yield | [t ha−1] | [43] | Flower variety trait | Moderate |
Variety | Anthesis | 4 Weeks Post-Anthesis | 6–7 Weeks Post-Anthesis |
---|---|---|---|
P4 | Sep 14 | 7 October—23 days post-anthesis | 21 October—37 days post-anthesis |
P7 | Sep 14 | 7 October—23 days post-anthesis | 21 October—37 days post-anthesis |
P11 | Aug 20 | 17 September—28 days post-anthesis | 6 October—47 days post-anthesis |
Variety | EV [Score 1–9] | Anthesis [Days After Planting] | Lodging [Score 1–9] | NBP | NRP | EH [Score 1–9] | FLY [t ha−1] | SY [t ha−1] | HI [%] | RCI [g cm−1] | CBD Yield [t ha−1] |
---|---|---|---|---|---|---|---|---|---|---|---|
P4 | 5.8 (0.8) b | 66.8 (0.4) b | 1.0 (0.0) a | 24.5 (1.1) b | 455.2 (28.9) b | 2.0 (0.0) a | 2.07 (0.62) b | 1.72 (0.65) ab | 61.6 (6.8) b | 0.33 (0.01) b | 0.350 (0.117) b |
P7 | 1.8 (0.4) a | 67.5 (0.5) b | 1.5 (0.5) a | 28.8 (0.8) c | 417.4 (54.0) b | 3.8 (0.4) b | 2.70 (0.68) b | 2.25 (0.24) b | 57.7 (6.5) ab | 0.46 (0.02) c | 0.323 (0.096) b |
P11 | 4.3 (0.8) b | 44.0 (0.0) a | 6.0 (2.0) b | 16.8 (1.5) a | 250.3 (41.9) a | 8.0 (0.7) c | 0.76 (0.14) a | 0.90 (0.20) a | 46.2 (3.0) a | 0.16 (0.02) a | 0.003 (0.001) a |
p-value | 0.0003 | <0.0001 | 0.0011 | <0.0001 | 0.0005 | <0.0001 | 0.0049 | 0.0099 | 0.0233 | <0.0001 | 0.0015 |
adjusted R2 | 0.8037 | 0.9985 | 0.7325 | 0.9355 | 0.77 | 0.9574 | 0.6251 | 0.5615 | 0.4698 | 0.9744 | 0.7137 |
Variety | CBD | THC | CBG | CBC | CBN |
---|---|---|---|---|---|
–––––––––––––––––––––––– [% w w−1] –––––––––––––––––––––––– | |||||
P1 | 7.03 (0.38) b | 0.23 (0.03) bc | 0.14 (0.02) a | 0.27 (0.04) c | ND |
P2 | 8.31 (0.56) bc | 0.30 (0.04) bcd | 0.24 (0.03) a | 0.34 (0.01) cd | ND |
P3 | 6.39 (0.55) b | 0.24 (0.01) bc | 0.35 (0.01) a | 0.22 (0.03) bc | ND |
P4 | 11.95 (0.80) d | 0.38 (0.04) d | 0.40 (0.03) a | 0.51 (0.03) e | ND |
P5 | 6.22 (1.71) b | 0.19 (0.04) bc | 0.52 (0.40) a | 0.27 (0.07) c | ND |
P6 | 0.17 (0.13) a | ND | 3.51 (0.38) b | 0.07 (0.01) a | ND |
P7 | 6.34 (0.81) b | 0.17 (0.03) b | 0.21 (0.01) a | 0.25 (0.03) c | ND |
P8 | 7.79 (0.93) b | 0.26 (0.07) bcd | 0.18 (0.06) a | 0.31 (0.06) c | ND |
P9 | 0.07 (0.02) a | ND | 2.88 (0.82) b | 0.09 (0.01) ab | ND |
P10 | 10.7 (0.68) cd | 0.31 (0.02) cd | 0.29 (0.03) a | 0.48 (0.03) de | ND |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
adjusted R2 | 0.93 | 0.88 | 0.90 | 0.89 |
Variety | CBD of Pooled and Single Plants | CBD of Single Plants | THC of Pooled and Single Plants | THC of Single Plants |
---|---|---|---|---|
––––––––––––––––––––– [% w w−1] –––––––––––––––––– | ||||
P2 | 7.47 (0.6) a | 7.26 (0.41) a | 0.29 (0.04) a | 0.29 (0.04) a |
P10 | 9.27 (1.48) b | 8.91 (1.41) b | 0.29 (0.07) a | 0.28 (0.08) a |
p-value | 0.0003 | 0.0012 | 0.9000 | 0.8000 |
adjusted R2 | 0.36 | 0.36 | −0.04 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vonlanthen, T.; Fuchs, Z.; Cronje, C.; Katsir, L.; Vogt, M.; George, G.; Ruckle, M.E.; Hiltbrunner, J. Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties. Agronomy 2025, 15, 1338. https://doi.org/10.3390/agronomy15061338
Vonlanthen T, Fuchs Z, Cronje C, Katsir L, Vogt M, George G, Ruckle ME, Hiltbrunner J. Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties. Agronomy. 2025; 15(6):1338. https://doi.org/10.3390/agronomy15061338
Chicago/Turabian StyleVonlanthen, Tiziana, Zora Fuchs, Christelle Cronje, Leron Katsir, Maximilian Vogt, Gavin George, Michael E. Ruckle, and Jürg Hiltbrunner. 2025. "Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties" Agronomy 15, no. 6: 1338. https://doi.org/10.3390/agronomy15061338
APA StyleVonlanthen, T., Fuchs, Z., Cronje, C., Katsir, L., Vogt, M., George, G., Ruckle, M. E., & Hiltbrunner, J. (2025). Study to Develop a Value for Cultivation and Use (VCU) Field Trial Protocol for Cannabis sativa L. Flower Varieties. Agronomy, 15(6), 1338. https://doi.org/10.3390/agronomy15061338