Soil Organic Matter Quality and Carbon Sequestration Potential Affected by Straw Return in 11-Year On-Farm Trials in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Chemical Analysis of Soil
Fractionation of Soil Organic Carbon
2.3. Computations
2.4. Statistical Analysis
3. Results
3.1. SOM Quality in Individual Soil Types
3.2. SOM Quality in Individual Soil Texture Categories
4. Discussion
5. Conclusions
- No significant correlation between the total carbon input and both parameters of SOM quality and soil organic carbon content was found.
- Neither a percentage of humic acid carbon (PHA), carbon stability (DOC/SOC ratio), nor soil organic carbon (SOC) content correlated significantly with organic fertilization expressed by straw carbon input, proportion of carbon applied in straw, and weighted mean C/N ratio of organic fertilizers applied. Conversely, the E4/E6 ratio and humification index (HI) showed the strongest correlation with organic fertilization. However, the E4/E6 ratio was most significantly affected by the altitude of the experimental site.
- The E4/E6 ratio and CHA/CFA ratio were more significantly different among soil types (cambisol, fluvisol, chernozem, and luvisol), while the humification index differed more significantly among soil texture categories (clay loam, loam, sandy loam, and silt loam) compared to the soil type. The variation in the humification rate was equally significant among soil types and among categories of soil texture.
- Increased average doses of carbon applied in straw from less than 3.3 t C/ha/11 years to ca. 12.0 t C/ha/11 years caused an increase in the humification index in clay loamy soils and sandy loams and a decrease in the E4/E6 ratio in cambisols and luvisols.
- When almost all carbon (97–100%) was applied in straw, a decrease in the E4/E6 ratio was observed in fluvisols and chernozems compared to the average carbon applied in straw of 0–70%. An increase in the proportion of carbon applied in straw from 0–40% to 97–100% resulted in an increase in the humification index in loamy soils and sandy loamy soils.
- When the weighted mean C/N ratio of the fertilizers applied exceeded the value of ca. 65, there was a decrease in the E4/E6 ratio in fluvisols and luvisols and an increase in the humification index in loamy soils, sandy loamy soils, and silt loamy soils compared to the C/N ratio ≤ 50.
- Comparison of 12 plots with an average of 33.5% leguminose content in the crop rotation with 12 plots completely without leguminose cultivation did not reveal significant differences in soil organic matter quality, i.e., E4/E6 ratio, CHA/CFA ratio, humification index, and humification ratio.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and Human Security in the 21st Century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Rahman, M.L.; Rahman, M.M.; Rahman, G.K.M.M.; Solaiman, A.R.M.; Karim, M.A.; Bokhtiar, S.M.; Hossain, M.B.; Meena, R.S. Influence of Tillage and Organic Amendments on Terrace Soil Bio-Physico-Chemical Properties and Carbon Sequestration Index. Commun. Soil Sci. Plant Anal. 2020, 51, 2683–2700. [Google Scholar] [CrossRef]
- Koishi, A.; Bragazza, L.; Maltas, A.; Guillaume, T.; Sinaj, S. Long-Term Effects of Organic Amendments on Soil Organic Matter Quantity and Quality in Conventional Cropping Systems in Switzerland. Agronomy 2020, 10, 1977. [Google Scholar] [CrossRef]
- Sedlar, O.; Balik, J.; Cerny, J.; Kulhanek, M.; Smatanova, M. Long-Term Application of Organic Fertilizers in Relation to Soil Organic Matter Quality. Agronomy 2023, 13, 175. [Google Scholar] [CrossRef]
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the Role of Humic Acids on Crop Performance and Soil Health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Andreetta, A.; Ciampalini, R.; Moretti, P.; Bonifacio, E.; Vidal, C.; Pelfini, M.; Carnicelli, S. Forest Humus Forms as Potential Indicators of Soil Carbon Storage in Mediterranean Environments. Biol. Fertil. Soils 2011, 47, 31–40. [Google Scholar] [CrossRef]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land-Use Changes Influencing C Sequestration and Quality in Topsoil and Subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef]
- Datta, A.; Choudhury, M.; Sharma, P.C.; Priyanka; Jat, H.S.; Jat, M.L.; Kar, S. Stability of Humic Acid Carbon under Conservation Agriculture Practices. Soil Tillage Res. 2022, 216, 105240. [Google Scholar] [CrossRef]
- Segnini, A.; Xavier, A.A.P.; Otaviani, P.L.; Oliveira, P.P.A.; Pedroso, A.D.; Praes, M.F.F.M.; Rodrigues, P.H.M.; Milori, D.M.B.P. Soil Carbon Stock and Humification in Pastures under Different Levels of Intensification in Brazil. Sci. Agric. 2019, 76, 33–40. [Google Scholar] [CrossRef]
- Wang, C.Y.; He, N.P.; Zhang, J.J.; Lv, Y.L.; Wang, L. Long-Term Grazing Exclusion Improves the Composition and Stability of Soil Organic Matter in Inner Mongolian Grasslands. PLoS ONE 2015, 10, e0128837. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.P.; Wang, X.J.; Zhang, W.X. Total and Dissolved Soil Organic and Inorganic Carbon and Their Relationships in Typical Loess Cropland of Fenggu Basin. Geosci. Lett. 2020, 7, 17. [Google Scholar] [CrossRef]
- Zhao, M.; Li, Y.C.; Wang, Y.J.; Sun, Y.R.; Chen, Y.M. High Stand Density Promotes Soil Organic Carbon Sequestration in Robinia pseudoacacia Plantations in the Hilly and Gully Region of the Loess Plateau in China. Agric. Ecosyst. Environ. 2023, 343, 108256. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Klimkowicz-Pawlas, A.; Smreczak, B. Characterization of Organic Matter Fractions in the Top Layer of Soils under Different Land Uses in Central-Eastern Europe. Soil Use Manag. 2019, 35, 595–606. [Google Scholar] [CrossRef]
- Ji, G.; Hou, Y.; Zhang, Y.; Han, Z.; Sun, Q.; Ji, R.; Li, Z.; Han, J.; Cheng, H.; Song, Y.; et al. Engineered Biochar with Ultrahigh Surface Areas Derived from Postpyrolysis with Urea for Efficient Removal of Plasticizer. Fuel 2024, 369, 131702. [Google Scholar] [CrossRef]
- Li, X.S.; Zhu, W.L.; Xu, F.Y.; Du, J.L.; Tian, X.H.; Shi, J.L.; Wei, G.H. Organic Amendments Affect Soil Organic Carbon Sequestration and Fractions in Fields with Long-Term Contrasting Nitrogen Applications. Agric. Ecosyst. Environ. 2021, 322, 107643. [Google Scholar] [CrossRef]
- Hlisnikovsky, L.; Mensík, L.; Kunzová, E. The Effect of Soil-Climate Conditions, Farmyard Manure and Mineral Fertilizers on Potato Yield and Soil Chemical Parameters. Plants 2021, 10, 2473. [Google Scholar] [CrossRef]
- Horacek, J.; Novak, P.; Liebhard, P.; Strosser, E.; Babulicova, M. The Long-Term Changes in Soil Organic Matter Contents and Quality in Chernozems. Plant Soil Environ. 2017, 63, 8–13. [Google Scholar] [CrossRef]
- Song, X.-Y.; Liu, S.-T.; Liu, Q.-H.; Zhang, W.-J.; Hu, C.-G. Carbon Sequestration in Soil Humic Substances under Long-Term Fertilization in a Wheat-Maize System from North China. J. Integr. Agric. 2014, 13, 562–569. [Google Scholar] [CrossRef]
- Alcántara, V.; Don, A.; Well, R.; Nieder, R. Deep Ploughing Increases Agricultural Soil Organic Matter Stocks. Glob. Change Biol. 2016, 22, 2939–2956. [Google Scholar] [CrossRef]
- Skadell, L.E.; Schneider, F.; Gocke, M.I.; Guigue, J.; Amelung, W.; Bauke, S.L.; Hobley, E.U.; Barkusky, D.; Honermeier, B.; Kögel-Knabner, I. Twenty Percent of Agricultural Management Effects on Organic Carbon Stocks Occur in Subsoils—Results of Ten Long-Term Experiments. Agric. Ecosyst. Environ. 2023, 356, 108619. [Google Scholar] [CrossRef]
- Balik, J.; Kulhanek, M.; Cerny, J.; Sedlar, O.; Suran, P.; Procházková, S.; Asrade, D.A. The Impact of the Long-Term Application of Mineral Nitrogen and Sewage Sludge Fertilizers on the Quality of Soil Organic Matter. Chem. Biol. Technol. Agric. 2022, 9, 86. [Google Scholar] [CrossRef]
- Cerny, J.; Balik, J.; Suran, P.; Sedlar, O.; Prochazkova, S.; Kulhanek, M. The Content of Soil Glomalin Concerning Selected Indicators of Soil Fertility. Agronomy 2024, 14, 1731. [Google Scholar] [CrossRef]
- Madaras, M.; Klir, J.; Muhlbachova, G.; Simon, T.; Mensik, L.; Munoz, J.; Ustak, S.; Kas, M.; Ruzek, P.; Kunzova, E. Application of Carbon Farming Practices in the Czech Republic—Legislative Base; Crop Research Institute in Prague: Prague, Czech Republic, 2022; 25p. (In Czech) [Google Scholar]
- Raiesi, F. The Quantity and Quality of Soil Organic Matter and Humic Substances Following Dry-Farming and Subsequent Restoration in an Upland Pasture. Catena 2021, 202, 105249. [Google Scholar] [CrossRef]
- Iqbal, M.K.; Shafiq, T.; Hussain, A.; Ahmed, K. Effect of Enrichment on Chemical Properties of MSW Compost. Bioresour. Technol. 2010, 101, 5969–5977. [Google Scholar] [CrossRef]
- Bottino, F.; Souza, B.P.; Rocha, R.J.S.; Cunha-Santino, M.B.; Bianchini Jr, I. Characterization of Humic Substances from Five Macrophyte Species Decomposed under Different Nutrient Conditions. Limnetica 2021, 40, 267–278. [Google Scholar] [CrossRef]
- Balik, J.; Suran, P.; Sedlar, O.; Cerny, J.; Kulhanek, M.; Prochazkova, S.; Asrade, D.A.; Smatanova, M. Long-Term Application of Manure and Different Mineral Fertilization in Relation to the Soil Organic Matter Quality of Luvisols. Agronomy 2023, 13, 2678. [Google Scholar] [CrossRef]
- Fernández, J.M.; Hockaday, W.C.; Plaza, C.; Polo, A.; Hatcher, P.G. Effects of Long-Term Soil Amendment with Sewage Sludges on Soil Humic Acid Thermal and Molecular Properties. Chemosphere 2008, 73, 1838–1844. [Google Scholar] [CrossRef] [PubMed]
- Gondek, K.; Mierzwa, M. Quantity and Quality of Organic Matter in Soil after Application of Various Organic Materials. Ecol. Chem. Eng. S 2014, 21, 477–485. [Google Scholar] [CrossRef]
- Khasawneh, A.R.; Othman, Y.A. Organic Farming and Conservation Tillage Influenced Soil Health Component. Fresenius Environ. Bull. 2020, 29, 895–902. [Google Scholar]
- Liang, Z.Y.; Li, Y.N.; Wang, J.Y.Z.; Hao, J.Q.; Jiang, Y.H.; Shi, J.L.; Meng, X.T.; Tian, X.H. Effects of the Combined Application of Livestock Manure and Plant Residues on Soil Organic Carbon Sequestration in the Southern Loess Plateau of China. Agric. Ecosyst. Environ. 2024, 368, 109011. [Google Scholar] [CrossRef]
- Zhang, J.W.; Huang, M.S.; Petropoulos, E.; Song, L.; He, S.Y. Animal Manure Functions as Soil Amendment for Urban Green Space in the Loess Plateau. Appl. Ecol. Environ. Res. 2020, 18, 3861–3872. [Google Scholar] [CrossRef]
- Bai, X.; Tang, J.; Wang, W.; Ma, J.; Shi, J.; Ren, W. Organic Amendment Effects on Cropland Soil Organic Carbon and Its Implications: A Global Synthesis. Catena 2023, 231, 107343. [Google Scholar] [CrossRef]
- Castellano, M.J.; Mueller, K.E.; Olk, D.C.; Sawyer, J.E.; Six, J. Integrating Plant Litter Quality, Soil Organic Matter Stabilization, and the Carbon Saturation Concept. Glob. Change Biol. 2015, 21, 3200–3209. [Google Scholar] [CrossRef]
- Oktaba, L.; Odrobińska, D.; Uzarowicz, Ł. The Impact of Different Land Uses in Urban Area on Humus Quality. J. Soils Sediments 2018, 18, 2823–2832. [Google Scholar] [CrossRef]
- Hevia, G.G.; Buschiazzo, D.E.; Hepper, E.N.; Urioste, A.M.; Antón, E.L. Organic Matter in Size Fractions of Soils of the Semiarid Argentina: Effects of Climate, Soil Texture and Management. Geoderma 2003, 116, 265–277. [Google Scholar] [CrossRef]
- Li, T.; Liang, C.; He, B.; Li, S. Effects of Cornstalk Mulching and Rainfall Intensity on the Quantity and Quality of Dissolved Organic Carbon in Runoff: A Field Rainfall Simulation at the Plot Scale. Land Degrad. Dev. 2023, 34, 3920–3931. [Google Scholar] [CrossRef]
- Larionova, A.A.; Maltseva, A.N.; de Gerenyu, V.O.L.; Kvitkina, A.K.; Bykhovets, S.S.; Zolotareva, B.N.; Kudeyarov, V.N. Effect of Temperature and Moisture on the Mineralization and Humification of Leaf Litter in a Model Incubation Experiment. Eurasian Soil Sci. 2017, 50, 422–431. [Google Scholar] [CrossRef]
- Radmanovic, S.; Dordevic, A.; Nikolic, N. Humus Composition of Rendzina Soils in Different Environmental Conditions of Serbia. Arch. Technol. Sci. 2018, 19, 57–64. [Google Scholar] [CrossRef]
- Blonska, E.; Lasota, J. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests 2017, 8, 448. [Google Scholar] [CrossRef]
- Fan, W.; Wu, J.G.; Li, J.M.; Hu, J. Comparative Effects of Different Maize Straw Returning Modes on Soil Humus Composition and Humic Acid Structural Characteristics in Northeast China. Chem. Ecol. 2018, 34, 355–370. [Google Scholar] [CrossRef]
- Zheng, S.; Dou, S.; Duan, H.M. Effects of Straw Enrichment and Deep Incorporation on Humus Composition and Humic Acid Structure of Black Soil Profile in Northeast China. Appl. Ecol. Environ. Res. 2022, 20, 1051–1063. [Google Scholar] [CrossRef]
- Anning, D.K.; Ghanney, P.; Qiu, H.; Abalori, T.A.; Zhang, C.; Luo, C. Stimulation of Soil Organic Matter Fractions by Maize Straw Return and Nitrogen Fertilization in the Loess Plateau of Northwest China. Appl. Soil Ecol. 2023, 191, 105061. [Google Scholar] [CrossRef]
- Li, T.; Zhang, J.; Zhang, H.; Christie, P.; Zhang, J. Fractionation of Soil Organic Carbon in a Calcareous Soil after Long-Term Tillage and Straw Residue Management. J. Integr. Agric. 2022, 21, 3611–3625. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, W.J.; Wei, W.J.; He, Z.L.; Kuzyakov, Y.; Bol, R.; Hu, R.G. Soil Organic Matter Priming and Carbon Balance after Straw Addition Is Regulated by Long-Term Fertilization. Soil Biol. Biochem. 2019, 135, 383–391. [Google Scholar] [CrossRef]
- Banach-Szott, M.; Debska, B.; Tobiasova, E. Properties of Humic Acids Depending on the Land Use in Different Parts of Slovakia. Environ. Sci. Pollut. Res. 2021, 28, 58068–58080. [Google Scholar] [CrossRef]
- Martins, T.; Saab, S.C.; Milori, D.M.B.P.; Brinatti, A.M.; Rosa, J.A.; Cassaro, F.A.M.; Pires, L.F. Soil Organic Matter Humification under Different Tillage Managements Evaluated by Laser Induced Fluorescence (LIF) and C/N Ratio. Soil Tillage Res. 2011, 111, 231–235. [Google Scholar] [CrossRef]
- Haering, V.; Fischer, H.; Cadisch, G.; Stahr, K. Implication of Erosion on the Assessment of Decomposition and Humification of Soil Organic Carbon after Land Use Change in Tropical Agricultural Systems. Soil Biol. Biochem. 2013, 65, 158–167. [Google Scholar] [CrossRef]
- Di, X.; Dong, H.; An, X.; Tang, H.; Xiao, B. The Effects of Soil Sand Contents on Characteristics of Humic Acids along Soil Profiles. Acta Geochim. 2016, 35, 251–261. [Google Scholar] [CrossRef]
- Pavlu, L.; Balik, J.; Prochazkova, S.; Galuskova, I.; Boruvka, L. How to measure soil quality? A case study conducted on cropland in the Czech Republic. Soil Water Res. 2024, 19, 229–243. [Google Scholar] [CrossRef]
- Ding, Y.-D.; Song, C.-C.; Chen, G.-J.; Zhang, X.-H.; Mao, R. Effects of Long-Term Nitrogen Addition on Dissolved Organic Matter Characteristics in a Temperate Wetland of Northeast China. Ecotoxicol. Environ. Saf. 2021, 226, 112822. [Google Scholar] [CrossRef] [PubMed]
- Mensik, L.; Hlisnikovsky, L.; Pospisilova, L.; Kunzova, E. The Effect of Application of Organic Manures and Mineral Fertilizers on the State of Soil Organic Matter and Nutrients in the Long-Term Field Experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Duan, J.; Liu, G.; Nie, X.; Li, Z. Leguminous Cover Orchard Improves Soil Quality, Nutrient Preservation Capacity, and Aggregate Stoichiometric Balance: A 22-Year Homogeneous Experimental Site. Agric. Ecosyst. Environ. 2024, 363, 108876. [Google Scholar] [CrossRef]
- Arlauskiene, A.; Slepetiene, A.; Liaudanskiene, I.; Sarunaite, L.; Amaleviciute, K.; Velykis, A. The Influence of Short-Lived Legume Swards and Straw on Soil Humic Substances in a Clay Loam Cambisol. Fresenius Environ. Bull. 2015, 24, 1636–1640. [Google Scholar]
- Amaleviciute-Volunge, K.; Tripolskaja, L.; Kazlauskaite-Jadzevice, A.; Slepetiene, A.; Baksiene, E. Effect of Long-Term Different Land Uses on Improving Stable Humic Compounds in Arenosol. Agriculture 2024, 14, 250. [Google Scholar] [CrossRef]
Variable | Quartile 25% | Quartile 75% | Average | Median |
---|---|---|---|---|
pH (CaCl2) | 5.75 | 7.10 | 6.34 | 6.20 |
altitude (m) | 323 | 299 | 240 | 406 |
average daily air temperature (°C) | 9.58 | 9.58 | 9.08 | 10.12 |
average annual precipitation (mm) | 568 | 564 | 511 | 622 |
CEC (mmol+/kg) | 207 | 190 | 162 | 244 |
C Input Total | Straw C Input | % C Input in Straw | Weighted C/N Ratio of org. fert. | Altitude | Annual Air Temperature | Annual Rainfall | |
---|---|---|---|---|---|---|---|
straw C input | 0.663 *** | ||||||
% C input in straw | −0.020 | 0.479 *** | |||||
weighted C/N ratio of org. fertilizers | 0.088 | 0.521 *** | 0.909 *** | ||||
altitude | 0.051 | −0.172 | −0.345 ** | −0.380 ** | |||
annual air temperature | −0.037 | 0.121 | 0.316 * | 0.318 * | −0.419 *** | ||
annual rainfall | −0.082 | −0.055 | −0.163 | −0.148 | 0.068 | −0.505 *** | |
E4/E6 | −0.147 | −0.352 ** | −0.279 * | −0.254 | 0.563 *** | −0.360 ** | 0.134 |
CHA/CFA | 0.024 | 0.168 | 0.186 | 0.261 * | −0.288 * | 0.238 | −0.295 * |
HR = CHS/SOC | 0.058 | 0.190 | 0.159 | 0.279 * | 0.073 | 0.157 | −0.204 |
HI = CHA/SOC | 0.006 | 0.243 | 0.312 * | 0.380 ** | −0.032 | 0.276 * | −0.316 * |
PHA = CHA/CHS | −0.119 | 0.030 | 0.134 | 0.064 | −0.125 | 0.116 | −0.045 |
DOC/SOC | −0.111 | −0.087 | 0.076 | 0.013 | 0.051 | 0.161 | 0.138 |
SOC | 0.062 | 0.096 | 0.062 | 0.041 | 0.099 | −0.270 * | −0.123 |
E4/E6 | CHA/CFA | HR = CHS/SOC | HI = CHA/SOC | |
---|---|---|---|---|
Soil type | *** | *** | ** | * |
Soil texture | ** | n.s. | ** | ** |
Average Straw C Input (t/ha/11 yrs) | n | E4/E6 | CHA/CFA | HR | |
---|---|---|---|---|---|
cambisol | 1.49 | 15 | 6.64 b | 0.925 a | 0.297 a |
11.6 | 15 | 5.50 a | 1.123 a | 0.299 a | |
fluvisol | 2.52 | 15 | 5.05 a | 1.366 a | 0.268 a |
16.3 | 12 | 5.51 a | 1.166 a | 0.261 a | |
chernozem | 3.33 | 12 | 4.28 a | 1.568 a | 0.287 a |
14.9 | 15 | 4.52 a | 1.669 a | 0.336 b | |
luvisol | 3.14 | 27 | 6.37 b | 0.890 a | 0.277 a |
11 | 27 | 5.85 a | 0.891 a | 0.289 a | |
Average % C applied in straw (%) | |||||
cambisol | 40 | 15 | 6.20 a | 0.846 a | 0.313 a |
99 | 15 | 5.94 a | 1.202 b | 0.283 a | |
fluvisol | 54.5 | 15 | 5.53 b | 1.341 a | 0.274 a |
100 | 12 | 4.92 a | 1.197 a | 0.254 a | |
chernozem | 69.2 | 9 | 4.49 b | 1.347 a | 0.275 a |
100 | 12 | 4.12 a | 1.155 a | 0.332 a | |
luvisol | 43.3 | 18 | 6.48 a | 0.971 a | 0.300 a |
97.1 | 12 | 6.04 a | 0.832 a | 0.291 a | |
Average C/N ratio of fertilizers | |||||
cambisol | 35.6 | 12 | 5.94 a | 0.869 a | 0.277 a |
69.6 | 15 | 5.93 a | 1.217 b | 0.315 a | |
fluvisol | 50.1 | 15 | 5.53 b | 1.341 a | 0.274 a |
75 | 12 | 4.92 a | 1.197 a | 0.254 a | |
chernozem | 51.4 | 12 | 4.40 a | 1.244 a | 0.284 a |
75 | 12 | 4.42 a | 1.683 a | 0.315 a | |
luvisol | 42.2 | 27 | 6.35 b | 0.858 a | 0.282 a |
67.9 | 21 | 5.80 a | 0.891 a | 0.288 a |
Average Straw C Input (t/ha/11 yrs) | n | HI | HR | |
---|---|---|---|---|
clay loam | 1.93 | 12 | 0.107 a | 0.202 a |
13.1 | 12 | 0.133 b | 0.299 b | |
loam | 1.91 | 33 | 0.114 a | 0.291 a |
12.9 | 30 | 0.125 a | 0.281 a | |
sandy loam | 0.32 | 12 | 0.110 a | 0.292 a |
14 | 9 | 0.153 b | 0.318 a | |
silt loam | 2.97 | 15 | 0.142 a | 0.324 a |
13 | 18 | 0.144 a | 0.335 a | |
Average % C applied in straw (%) | ||||
clay loam | 38.6 | 12 | 0.115 a | 0.238 a |
100 | 12 | 0.125 a | 0.263 a | |
loam | 33.2 | 27 | 0.103 a | 0.266 a |
97.6 | 24 | 0.130 b | 0.290 a | |
sandy loam | 0 | 15 | 0.112 a | 0.306 a |
99.6 | 12 | 0.140 b | 0.280 a | |
silt loam | 41.2 | 12 | 0.136 a | 0.330 a |
100 | 15 | 0.167 a | 0.343 a | |
Average C/N ratio of fertilizers | ||||
clay loam | 39.5 | 12 | 0.115 a | 0.238 a |
75 | 12 | 0.125 a | 0.263 a | |
loam | 33.2 | 33 | 0.107 a | 0.271 a |
70.9 | 30 | 0.130 b | 0.297 b | |
sandy loam | 23.3 | 15 | 0.106 a | 0.309 a |
66.7 | 12 | 0.140 b | 0.280 a | |
silt loam | 42.8 | 18 | 0.121 a | 0.312 a |
75 | 21 | 0.151 b | 0.323 a |
Average Proportion of Leguminose in Crops Grown (%) | 1 | 2 | |
---|---|---|---|
33.5 b | 0.0 a | ||
n | 12 | 12 | |
cereals in crops grown (%) | 42.9 a | 60.8 b | |
canola in crops grown (%) | 9.2 a | 14.1 a | |
root plant in crops grown (%) | 14.4 a | 25.1 a | |
altitude (m) | 388 a | 372 a | |
annual air temperature (°C) | 9.25 a | 9.39 a | |
annual rainfall (mm) | 600 b | 544 a | |
C input total (t/ha/11 yrs) | 7.32 a | 15.75 a | |
straw C input (t/ha/11 yrs) | 2.60 a | 7.64 b | |
average % C applied in straw (%) | 49.5 a | 50.9 a | |
weighted average of C/N ratio of org. fertilizers | 42.4 a | 47.8 a | |
E4/E6 | 6.35 a | 6.20 a | |
CHA/CFA | 0.944 a | 0.945 a | |
HI = CHA/SOC | 0.108 a | 0.132 a | |
HR = CHS/SOC | 0.282 a | 0.280 a | |
number of sites with a particular soil type | Cambisol | 4 | 4 |
Fluvisol | 2 | 2 | |
Luvisol | 2 | 4 | |
Gleysol | 1 | 0 | |
Planosol | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sedlář, O.; Balík, J.; Černý, J.; Suran, P.; Kulhánek, M.; Bihun, T. Soil Organic Matter Quality and Carbon Sequestration Potential Affected by Straw Return in 11-Year On-Farm Trials in the Czech Republic. Agronomy 2025, 15, 1277. https://doi.org/10.3390/agronomy15061277
Sedlář O, Balík J, Černý J, Suran P, Kulhánek M, Bihun T. Soil Organic Matter Quality and Carbon Sequestration Potential Affected by Straw Return in 11-Year On-Farm Trials in the Czech Republic. Agronomy. 2025; 15(6):1277. https://doi.org/10.3390/agronomy15061277
Chicago/Turabian StyleSedlář, Ondřej, Jiří Balík, Jindřich Černý, Pavel Suran, Martin Kulhánek, and Tetiana Bihun. 2025. "Soil Organic Matter Quality and Carbon Sequestration Potential Affected by Straw Return in 11-Year On-Farm Trials in the Czech Republic" Agronomy 15, no. 6: 1277. https://doi.org/10.3390/agronomy15061277
APA StyleSedlář, O., Balík, J., Černý, J., Suran, P., Kulhánek, M., & Bihun, T. (2025). Soil Organic Matter Quality and Carbon Sequestration Potential Affected by Straw Return in 11-Year On-Farm Trials in the Czech Republic. Agronomy, 15(6), 1277. https://doi.org/10.3390/agronomy15061277