Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Design
2.2. Soil and Slurry Sampling
2.3. Isolation and Quantification of Soil Organic Matter Fractions
2.4. Pyrolysis–Gas Chromatography–Mass Spectrometry
2.5. Van Krevelen Surface Density Plots
3. Results
3.1. Quantitative Changes in the Abundances of the Main Families of Pyrolysis Compounds
3.2. Surface Density Plots
4. Discussion
4.1. Abundances of the Main Families of Pyrolysis Compounds
4.2. Surface Density Plots for HAs from Soils Treated with Progressive Doses of Pig Slurry
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
HA | Humic acid |
PS | Pig slurry |
References
- MedECC (Mediterranean Experts on Climate and Environmental Change). Summary for policemakers. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Marini, K., Guiot, J., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 11–40. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to be Drawn up by Member States Under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R2115 (accessed on 23 January 2025).
- European Commission. Forging a Climate-Resilient Europe—The New EU Strategy on Adaptation to Climate Change. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52021DC0082. (accessed on 23 January 2025).
- Pegoraro, V.; Bachmeier, O.; Lorenzon, C.; Conde, B.; Ortiz, J.; Barbosa, A.; Zubillaga, M. Cambios en los atributos del suelo por aplicación continua de efluente porcino. Cienc. Suelo 2023, 41, 218–224. [Google Scholar]
- Pagliai, M.; Antisari, V. Influence of waste organic matter on soil micro and macro structure. Bioresour. Technol. 1993, 43, 205–213. [Google Scholar] [CrossRef]
- Santos, C.; Loss, A.; Piccolo, M.C.; Girotto, E.; Ludwig, M.P.; Decarli, J.; Rodrigues Torres, J.L.; Brunetto, G. Aggregation index and carbon and nitrogen contents in aggregates of pasture soils under successive applications of pig slurry in Southern Brazil. Agronomy 2022, 12, 320. [Google Scholar] [CrossRef]
- Yost, J.L.; Schmidt, A.M.; Koelsch, R.; Schott, L.R. Effect of swine manure on soil health properties: A systematic review. Soil Sci. Soc. Am. J. 2022, 86, 450–486. [Google Scholar] [CrossRef]
- Maffia, A.; Marra, F.; Canino, F.; Battaglia, S.; Mallamaci, C.; Oliva, M.; Muscolo, A. Humic substances from waste-based fertilizers for improved soil fertility. Agronomy 2024, 14, 2657. [Google Scholar] [CrossRef]
- Oldfield, E.E.; Wood, S.A.; Bradford, M.A. Direct effects of soil organic matter on productivity mirror those observed with organic amendments. Plant Soil 2018, 423, 363–373. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation. EU Mission, Soil Deal for Europe; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Mrabet, R.; Savé, R.; Toreti, A.; Caiola, N.; Chentouf, M.; Llasat, M.C.; Mohamed, A.A.A.; Santeramo, F.G.; Sanz-Cobena, A.; Tsikliras, A. Food. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 237–264. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Senesi, N.; Plaza, C.; Brunetti, G.; Polo, A. A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol. Biochem. 2007, 39, 1244–1262. [Google Scholar] [CrossRef]
- Jiménez-de-Santiago, D.E.; Almendros, G.; Bosch-Serra, À.D. Structural changes in humic substances after long-term fertilisation of a calcareous soil with pig slurries. Soil Use Manag. 2023, 39, 1351–1363. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Friedel, J.K.; Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 2000, 32, 1485–1498. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Fox, R.H.; Rayner, J.H. Interactions between fertilizer nitrogen and soil nitrogen—The so-called ‘priming’ effect. J. Soil Sci. 1985, 36, 425–444. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fertil. Soils 2008, 45, 115–131. [Google Scholar] [CrossRef]
- Benedet, L.; Dick, D.P.; Brunetto, G.; dos Santos Júnior, E.; Ferreira, G.W.; Lourenzi, C.R.; Comin, J.J. Copper and Zn distribution in humic substances of soil after 10 years of pig manure application in south of Santa Catarina, Brazil. Environ. Geochem. Health 2020, 42, 3281–3301. [Google Scholar] [CrossRef] [PubMed]
- Furtado e Silva, J.A.M.; Do Amaral Sobrinho, N.M.B.; Lima, E.S.A.; García, A.C. Modifications of soil organic matter structure by long-term pig slurry amendment of tropical soil. Arch. Agron. Soil Sci. 2022, 68, 61–75. [Google Scholar] [CrossRef]
- Furtado e Silva, J.A.M.; García, A.C.; Lima, E.S.A.; Souza, C.C.B.M.; Amaral Sobrinho, N.M.B. Effect of short-term pig slurry amendment of soil on humified organic matter and its relationship with the dynamics of heavy metals and metals uptake by plants. J. Environ. Sci. Health—Part A 2022, 57, 958–969. [Google Scholar] [CrossRef]
- Sacomori, W.; Cassol, P.C.; Mafra, M.S.H.; Erdemann, L.F.; de Almeida, J.A. Accumulation of humic substances in an oxisol fertilized with pig slurry for 15 years. Rev. Bras. Eng. Agric. Ambient. 2021, 25, 109–115. [Google Scholar] [CrossRef]
- Dorado, J.; Zancada, M.C.; Almendros, G.; López-Fando, C. Changes in soil properties and humic substances after long-term amendments with manure and crop residues in dryland farming systems. J. Plant Nutr. Soil Sci. 2003, 166, 31–38. [Google Scholar] [CrossRef]
- García-Gil, J.C.; Plaza, C.; Senesi, N.; Brunetti, G.; Polo, A. Effects of sewage sludge amendment on humic acids and microbiological properties of a semiarid Mediterranean soil. Biol. Fertil. Soil. 2004, 39, 320–328. [Google Scholar] [CrossRef]
- Vishnyakova, O.; Ubugunov, L. Changes in molecular structure of humic substances in Cambisols under agricultural use. Agronomy 2023, 13, 2299. [Google Scholar] [CrossRef]
- Ma, L.; Xiao, B. Characteristic of molecular weight-fractions of soil organic matter from calcareous soil and yellow soil. Sustainability 2023, 15, 1537. [Google Scholar] [CrossRef]
- Jenkinson, D.S. The Rothamsted long-term experiments: Are they still of use? Agron. J. 1991, 83, 2–10. [Google Scholar] [CrossRef]
- Almendros, G.; Hernández, Z.; Sanz, J.; Rodríguez-Sánchez, S.; Jiménez-González, M.A.; González-Pérez, J.A. Graphical statistical approach to soil organic matter resilience using analytical pyrolysis data. J. Chromatogr. A 2018, 1533, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-González, M.A.; Álvarez, A.M.; Carral, P.; González-Pérez, J.A.; Almendros, G. Climate variability in Mediterranean ecosystems is reflected by soil organic matter pyrolytic fingerprint. Geoderma 2020, 374, 114443. [Google Scholar] [CrossRef]
- Dorado, J.; González-Vila, F.J.; Zancada, M.C.; Almendros, G.; López-Fando, C. Pyrolytic descriptors responsive to changes in humic acid characteristics after long-term sustainable management of dryland farming systems in Central Spain. J. Anal. Appl. Pyrolysis 2003, 68–69, 299–314. [Google Scholar] [CrossRef]
- Aust, M.O.; Thiele-Bruhn, S.; Eckhardt, K.U.; Leinweber, P. Composition of organic matter in particle size fractionated pig slurry. Bioresour. Technol. 2009, 100, 5736–5743. [Google Scholar] [CrossRef]
- Cavallo, O.; de la Rosa, J.M.; González-Pérez, J.A.; Knicker, H.; Pezzolla, D.; Gigliotti, G.; Provenzano, M.R. Molecular characterization of digestates from solid-state anaerobic digestion of pig slurry and straw using analytical pyrolysis. J. Anal. Appl. Pyrolysis 2018, 134, 73–182. [Google Scholar] [CrossRef]
- Van Krevelen, D.W. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 1950, 29, 269–284. [Google Scholar]
- Ikeya, K.; Sleighter, R.L.; Hatcher, P.G.; Watanabe, A. Characterization of the chemical composition of soil humic acids using Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta 2015, 153, 169–182. [Google Scholar] [CrossRef]
- Jiménez-Morillo, N.T.; de la Rosa, J.M.; Waggoner, D.; Almendros, G.; González-Vila, F.J.; González-Pérez, J.A. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 2016, 1445, 266–273. [Google Scholar] [CrossRef]
- Ohno, T.; Parr, T.B.; Gruselle, M.-C.I.; Fernandez, I.J.; Sleighter, R.L.; Hatcher, P.G. Molecular composition and biodegradability of soil organic matter: A case study comparing two New England forest types. Environ. Sci. Technol. 2014, 48, 7229–7236. [Google Scholar] [CrossRef]
- QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.org. (accessed on 14 March 2025).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Alemañ, C.J.D. Decreto 153/2019, de 3 de julio, de gestión de la fertilización del suelo y de las deyecciones ganaderas y de aprobación del programa de actuación en las zonas vulnerables en relación con la contaminación por nitratos procedentes de fuentes agrarias. Actual. Jurídica Ambient. 2019, 62–64. [Google Scholar]
- APHA. Standard Methods. Nitrogen (ammonia): 4500-NH3B, preliminary distillation step and 4500-NH3C, titrimetric method. In Standard Methods for the Examination of Water and Wastewater, 2nd ed.; Rice, E.W., Bridgewater, L., Eds.; APHA, AWWA and WEF: Washington, DC, USA, 2012; pp. 110–111. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Yeomans, J.C.; Bremner, J.M. A rapid and precise method for routine determination of organic carbon in soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- Dabin, B. Étude d’une méthode de fractionnement des matières humiques du sol. Sci. Sol. 1971, 18, 47–63. [Google Scholar]
- Statgraphics® Centurion XIX. Available online: https://www.statgraphics.com/ (accessed on 1 March 2025).
- Antezana, W.; De Blas, C.; García-Rebollar, P.; Rodríguez, C.; Beccaccia, A.; Ferrer, P.; Cerisuelo, A.; Moset, V.; Estellés, F.; Cambra-López, M.; et al. Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. Nutr. Cycl. Agroecosyst. 2016, 104, 159–173. [Google Scholar] [CrossRef]
- Ibrahim, H.; Gaieb, S.; Brahim, N.; Blavet, D.; Van den Meersche, K.; Pansu, M. Modelling the organic evolution of a Mediterranean limestone soil under usual cropping of durum wheat and faba bean. Agronomy 2021, 11, 1688. [Google Scholar] [CrossRef]
- González-Vila, F.J.; Almendros, G.; Madrid, F. Molecular alterations of organic fractions from urban waste in the course of composting and their further transformation in amended soil. Sci. Total Environ. 1999, 236, 215–299. [Google Scholar] [CrossRef]
- Koishi, A.; Bragazza, L.; Maltas, A.; Guillaume, T.; Sokrat, S. Long-term effects of organic amendments on soil organic matter quantity and quality in conventional cropping systems in Switzerland. Agronomy 2020, 10, 1977. [Google Scholar] [CrossRef]
- Schimel, J.P.; Weintraub, M.N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. Soil Biol. Biochem. 2003, 35, 549–563. [Google Scholar] [CrossRef]
- Farina, R.; Coleman, K.; Whitmore, A.P. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma 2013, 200–201, 18–30. [Google Scholar] [CrossRef]
- Valdez-Ibañez, A.S.; Bosch-Serra, À.D.; Yagüe-Carrasco, M.R. Fertilization with pig slurry: Impacts on earthworms in rainfed agriculture. Investig. Agrar. 2019, 21, 1–10. [Google Scholar] [CrossRef]
- Dall’Orsoletta, D.J.; Gatiboni, L.C.; Mumbach, G.L.; Schmitt, D.E.; Boitt, G.; Smyth, T.J. Soil slope and texture as factors of phosphorus exportation from pasture areas receiving pig slurry. Sci. Total Environ. 2021, 761, 144004. [Google Scholar] [CrossRef] [PubMed]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
Sample | PS (Mg ha−1) | Organic matter (kg ha−1) | Total-N (kg ha−1) | Organic-N (kg ha−1) | NH4+-N (kg ha−1) | GYB (Mg ha−1) | SYB (Mg ha−1) |
---|---|---|---|---|---|---|---|
PS-00 | 0 | 0 (±0) | 120 (±0) | 0 (±0) | 60 (±0) | 3.75 (±1.50) | 5.52 (±2.42) |
PS-10 | 20 | 959 (±355) | 124 (±33) | 43 (±22) | 81 (±19) | 3.69 (±0.89) | 4.64 (±2.30) |
PS-16 | 30 | 1611 (±530) | 185 (±40) | 60 (±13) | 126 (±34) | 3.95 (±1.27) | 6.07 (±3.31) |
PS-48 | 90 | 4802 (±1249) | 586 (±116) | 192 (±61) | 393 (±76) | 4.06 (±1.64) | 7.92 (±3.46) |
Compound Families and Main Ratios | PS | Treatments (kg OM ha−1) | |||
---|---|---|---|---|---|
0 | 960 | 1610 | 4800 | ||
Total alkanes and alkenes | 3.88 | 7.04 | 6.97 | 7.64 | 8.62 |
Total steroids | 3.01 | 0.00 | 15.24 | 4.24 | 1.84 |
Fatty acids | 47.37 | 13.35 | 12.84 | 16.22 | 10.38 |
Fatty acid methyl esters | 3.28 | 1.16 | 1.27 | 0.71 | 0.82 |
Guaiacyl lignin phenols (LG) | 13.34 | 27.50 | 22.62 | 29.05 | 28.45 |
p-hydroxybenzyl lignin phenols (LH) | 1.22 | 2.33 | 1.66 | 2.35 | 2.71 |
Syringyl lignin phenols (LS) | 6.81 | 13.46 | 11.17 | 16.50 | 15.29 |
Non-methoxylated aromatics (ARO) | 7.46 | 10.30 | 9.44 | 6.95 | 9.69 |
Nitrogen compounds | 5.54 | 16.00 | 12.59 | 12.38 | 14.98 |
Polysaccharide-derived | 8.09 | 8.58 | 5.94 | 3.70 | 7.10 |
LG/LS | 1.96 | 2.04 | 2.03 | 1.76 | 1.86 |
(LG + LS + LH)/ARO | 2.86 | 4.20 | 3.75 | 6.89 | 4.79 |
Total aliphatic (ALI) | 65.62 | 30.13 | 42.25 | 32.51 | 28.76 |
Total aromatic | 28.83 | 53.60 | 44.89 | 54.85 | 56.14 |
Aromatic/aliphatic | 0.44 | 1.78 | 1.06 | 1.69 | 1.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosch-Serra, À.D.; Jiménez-de-Santiago, D.E.; González-Pérez, J.A.; Almendros, G. Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil. Agronomy 2025, 15, 725. https://doi.org/10.3390/agronomy15030725
Bosch-Serra ÀD, Jiménez-de-Santiago DE, González-Pérez JA, Almendros G. Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil. Agronomy. 2025; 15(3):725. https://doi.org/10.3390/agronomy15030725
Chicago/Turabian StyleBosch-Serra, Àngela D., Diana E. Jiménez-de-Santiago, José A. González-Pérez, and Gonzalo Almendros. 2025. "Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil" Agronomy 15, no. 3: 725. https://doi.org/10.3390/agronomy15030725
APA StyleBosch-Serra, À. D., Jiménez-de-Santiago, D. E., González-Pérez, J. A., & Almendros, G. (2025). Pig Slurry Fertilization Changes the Pyrolytic Signature of Humic Substances in Calcareous Soil. Agronomy, 15(3), 725. https://doi.org/10.3390/agronomy15030725