Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Grassland Management
2.2. Crop Status
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NH3 | Ammonia |
CO2 | Carbon dioxide |
CH4 | Methane |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
MSAVI | Modified Soil Adjusted Vegetation Index |
DMY | Dry matter yield |
NEL | Net energy for lactation |
RFV | Relative feed value |
EU | European Union |
GHG | Greenhouse gas |
masl. | Meters above sea level |
USDA | United States Department of Agriculture |
DM | Dry matter |
NIR | Near-infrared |
SWIR | Shortwave infrared |
DDMI | Digestible dry matter intake |
ANOVA | Analysis of variance |
GWP | Global warming potential |
References
- United Nations. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100; United Nations: New York, NY, USA, 2023.
- Tunca, E.; Köksal, E.S. Evaluating the Impact of Different UAV Thermal Sensors on Evapotranspiration Estimation. Infrared Phys. Technol. 2024, 136, 105093. [Google Scholar] [CrossRef]
- Stolte, J.; Tesfai, M.; Panagos, P.; Damme, L.; Daliakopoulos, I.N.; Torres, L.C.; Lamandé, M.; Papadimitriou, D. Europe. In Soil Constraints on Crop Production; Dang, Y., Menzies, N., Dalal, R., Eds.; Cambridge Scholars Publishing: Cambridge, UK, 2022; pp. 415–441. ISBN 1-5275-8706-1. [Google Scholar]
- Mohammed, S.; Alsafadi, K.; Takács, I.; Harsányi, E. Contemporary Changes of Greenhouse Gases Emission from the Agricultural Sector in the EU-27. Geol. Ecol. Landsc. 2020, 4, 282–287. [Google Scholar] [CrossRef]
- Directorate-General for Climate Action Study on Options for Mitigating Climate Change in Agriculture by Putting a Price on Emissions and Rewarding Carbon Farming. Available online: https://climate.ec.europa.eu/news-your-voice/news/looking-how-mitigate-emissions-agriculture-2023-11-13_en (accessed on 27 October 2024).
- Mielcarek-Bocheńska, P.; Rzeźnik, W. Greenhouse Gas Emissions from Agriculture in EU Countries—State and Perspectives. Atmosphere 2021, 12, 1396. [Google Scholar] [CrossRef]
- Reuland, G.; Sleutel, S.; Li, H.; Dekker, H.; Sigurnjak, I.; Meers, E. Quantifying CO2 Emissions and Carbon Sequestration from Digestate-Amended Soil Using Natural 13C Abundance as a Tracer. Agronomy 2023, 13, 2501. [Google Scholar] [CrossRef]
- Pastorelli, R.; Valboa, G.; Lagomarsino, A.; Fabiani, A.; Simoncini, S.; Zaghi, M.; Vignozzi, N. Recycling Biogas Digestate from Energy Crops: Effects on Soil Properties and Crop Productivity. Appl. Sci. 2021, 11, 750. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Pochwatka, P.; Mazurkiewicz, J.; Pulka, J.; Kępowicz, B.; Janczak, D.; Dach, J. Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate. J. Ecol. Eng. 2023, 24, 312–319. [Google Scholar] [CrossRef]
- Suciu, N.A.; De Vivo, R.; Rizzati, N.; Capri, E. Cd Content in Phosphate Fertilizer: Which Potential Risk for the Environment and Human Health? Curr. Opin. Environ. Sci. Health 2022, 30, 100392. [Google Scholar] [CrossRef]
- Radawiec, W.; Gołaszewski, J.; Kalisz, B.; Przemieniecki, S. Chemical, Biological and Respirometry Properties of Soil under Perennial Crops Fertilized with Digestate. Int. Agrophysics 2023, 37, 111–128. [Google Scholar] [CrossRef]
- Abdalla, N.; Bürck, S.; Fehrenbach, H.; Köppen, S.; Staigl, T.J. Biomethane in Europe; Institut für Energie- und Umweltforschung: Heidelberg, Germany, 2022; Volume 49. [Google Scholar]
- Akhiar, A.; Ahmad Zamri, M.F.M.; Torrijos, M.; Shamsuddin, A.H.; Battimelli, A.; Roslan, E.; Mohd Marzuki, M.H.; Carrere, H. Anaerobic Digestion Industries Progress throughout the World. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 12074. [Google Scholar] [CrossRef]
- Lubańska, A.; Kazak, J.K. The Role of Biogas Production in Circular Economy Approach from the Perspective of Locality. Energies 2023, 16, 3801. [Google Scholar] [CrossRef]
- Jurgutis, L.; Šlepetienė, A.; Šlepetys, J.; Cesevičienė, J. Towards a Full Circular Economy in Biogas Plants: Sustainable Management of Digestate for Growing Biomass Feedstocks and Use as Biofertilizer. Energies 2021, 14, 4272. [Google Scholar] [CrossRef]
- Rizzioli, F.; Bertasini, D.; Bolzonella, D.; Frison, N.; Battista, F. A Critical Review on the Techno-Economic Feasibility of Nutrients Recovery from Anaerobic Digestate in the Agricultural Sector. Sep. Purif. Technol. 2023, 306, 122690. [Google Scholar] [CrossRef]
- Sobhi, M.; Elsamahy, T.; Zakaria, E.; Gaballah, M.S.; Zhu, F.; Hu, X.; Zhou, C.; Guo, J.; Huo, S.; Dong, R. Characteristics, Limitations and Global Regulations in the Use of Biogas Digestate as Fertilizer: A Comprehensive Overview. Sci. Total Environ. 2024, 957, 177855. [Google Scholar] [CrossRef] [PubMed]
- Czatzkowska, M.; Rolbiecki, D.; Korzeniewska, E.; Harnisz, M. Heavy Metal and Antimicrobial Residue Levels in Various Types of Digestate from Biogas Plants—A Review. Sustainability 2025, 17, 416. [Google Scholar] [CrossRef]
- Czekała, W. Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water 2022, 14, 4067. [Google Scholar] [CrossRef]
- Zielińska, M.; Bułkowska, K. Sustainable Management and Advanced Nutrient Recovery from Biogas Energy Sector Effluents. Energies 2024, 17, 3705. [Google Scholar] [CrossRef]
- Rolka, E.; Wyszkowski, M.; Żołnowski, A.C.; Skorwider-Namiotko, A.; Szostek, R.; Wyżlic, K.; Borowski, M. Digestate from an Agricultural Biogas Plant as a Factor Shaping Soil Properties. Agronomy 2024, 14, 1528. [Google Scholar] [CrossRef]
- Mayerová, M.; Šimon, T.; Stehlík, M.; Madaras, M.; Koubová, M.; Smatanová, M. Long-Term Application of Biogas Digestate Improves Soil Physical Properties. Soil Tillage Res. 2023, 231, 105715. [Google Scholar] [CrossRef]
- Eickenscheidt, T.; Freibauer, A.; Heinichen, J.; Augustin, J.; Drösler, M. Short-Term Effects of Biogas Digestate and Cattle Slurry Application on Greenhouse Gas Emissions Affected by N Availability from Grasslands on Drained Fen Peatlands and Associated Organic Soils. Biogeosciences 2014, 11, 6187–6207. [Google Scholar] [CrossRef]
- Nicholson, F.A.; Bhogal, A.; Rollett, A.; Taylor, M.; Williams, J.R. Precision Application Techniques Reduce Ammonia Emissions Following Food-Based Digestate Applications to Grassland. Nutr. Cycl. Agroecosystems 2018, 110, 151–159. [Google Scholar] [CrossRef]
- Lovanh, N.; Warren, J.; Sistani, K. Determination of Ammonia and Greenhouse Gas Emissions from Land Application of Swine Slurry: A Comparison of Three Application Methods. Bioresour. Technol. 2010, 101, 1662–1667. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.; Hafner, S.D. Ammonia Emissions after Field Application of Anaerobically Digested Animal Slurry: Literature Review and Perspectives. Agric. Ecosyst. Environ. 2023, 357, 108697. [Google Scholar] [CrossRef]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The Impacts of Manure Application Methods on Emissions of Ammonia, Nitrous Oxide and on Crop Response—A Review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; Berge, H.; Bertora, C.; et al. Permanent Grasslands in Europe: Land Use Change and Intensification Decrease Their Multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Pergola, M.; De Falco, E.; Cerrato, M. Grassland Ecosystem Services: Their Economic Evaluation through a Systematic Review. Land 2024, 13, 1143. [Google Scholar] [CrossRef]
- Holatko, J.; Hammerschmiedt, T.; Kucerik, J.; Kintl, A.; Baltazar, T.; Malicek, O.; Latal, O.; Brtnicky, M. Fertilisation of Permanent Grasslands with Digestate and Its Effect on Soil Properties and Sustainable Biomass Production. Eur. J. Agron. 2023, 149, 126914. [Google Scholar] [CrossRef]
- Pawlett, M.; Owen, A.; Tibbett, M. Amenity Grassland Quality Following Anaerobic Digestate Application. Grassl. Sci. 2018, 64, 185–189. [Google Scholar] [CrossRef]
- Parker, D.B.; Gilley, J.; Woodbury, B.; Kim, K.-H.; Galvin, G.; Bartelt-Hunt, S.L.; Li, X.; Snow, D.D. Odorous VOC Emission Following Land Application of Swine Manure Slurry. Atmos. Environ. 2013, 66, 91–100. [Google Scholar] [CrossRef]
- Papadopoulos, G.; Arduini, S.; Uyar, H.; Psiroukis, V.; Kasimati, A.; Fountas, S. Economic and Environmental Benefits of Digital Agricultural Technologies in Crop Production: A Review. Smart Agric. Technol. 2024, 8, 100441. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI, Grassland Production, and Crop Yield in the Central Great Plains. Geocarto Int. 2005, 20, 5–11. [Google Scholar] [CrossRef]
- Milazzo, F.; Brocca, L.; Vanwalleghem, T. NDVI Prediction of Mediterranean Permanent Grasslands Using Soil Moisture Products. Agronomy 2024, 14, 1798. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A Five-year Analysis of MODIS NDVI and NDWI for Grassland Drought Assessment over the Central Great Plains of the United States. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef]
- Zandler, H.; Faryabi, S.P.; Ostrowski, S. Contributions to Satellite-Based Land Cover Classification, Vegetation Quantification and Grassland Monitoring in Central Asian Highlands Using Sentinel-2 and MODIS Data. Front. Environ. Sci. 2022, 10, 1–19. [Google Scholar] [CrossRef]
- Rouse, R.W.H.; Haas, J.A.W.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1974; NASA SP-351, 1974; Volume I, pp. 309–317. [Google Scholar]
- JRC European Commission. NDWI (Normalized Difference Water Index). Prod. Fact Sheet 2011, 5, 6–7. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Jeon, S.; Kang, H.; Park, S.; Seo, S. Evaluation of the Equations to Predict Net Energy Requirement for Lactation in the Cattle Feeding System: Based on the Literature Database. Agriculture 2022, 12, 654. [Google Scholar] [CrossRef]
- Hackmann, T.J.; Sampson, J.D.; Spain, J.N. Comparing Relative Feed Value with Degradation Parameters of Grass and Legume Forages1. J. Anim. Sci. 2008, 86, 2344–2356. [Google Scholar] [CrossRef]
- Třináctý, J. Evaluation of Quality of Perennial Forage Crops for Dairy Cows; Zemědělský vžzkum, spol. s.r.o.: Troubsko, Czechia, 2011; ISBN 978-80-86908-28-1. [Google Scholar]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006; ISBN 4-88788-032-4. [Google Scholar]
- Lescot, J.-M. Why It Is Important to Reduce Ammonia Pollution from Agricultural Sector Ammonia (NH3)—A Pollutant That Affects Air Quality; EEA: Tbilisi, Georgia, 2024. [Google Scholar]
- European Environment Agency (EEA). Ammonia (NH3) Emissions; EEA: Tbilisi, Georgia, 2015.
- Dieterich, B.; Finnan, J.; Frost, P.; Gilkinson, S.; Müller, C. The Extent of Methane (CH4) Emissions after Fertilisation of Grassland with Digestate. Biol. Fertil. Soils 2012, 48, 981–985. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Caruso, C.; Sambo, P.; Borin, M. Effects of Digestate Solid Fraction Fertilisation on Yield and Soil Carbon Dioxide Emission in a Horticulture Succession. Ital. J. Agron. 2017, 12, 116–123. [Google Scholar] [CrossRef]
- Pedersen, J.; Nyord, T. Effect of Low-Dose Acidification of Slurry Digestate on Ammonia Emissions after Field Application (Short Communication). Atmos. Environ. X 2023, 17, 100205. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A. Emissions of Carbon Dioxide and Methane from Fields Fertilized with Digestate from an Agricultural Biogas Plant. Int. Agrophysics 2018, 32, 29–37. [Google Scholar] [CrossRef]
- Korba, J.; Šařec, P.; Novák, V.; Brož, P.; Dolan, A.; Dědina, M. Digestate Application Methods and Rates with Regard to Greenhouse Gas Emissions and Crop Conditions. Agronomy 2024, 14, 336. [Google Scholar] [CrossRef]
- Dietrich, M.; Fongen, M.; Foereid, B. Greenhouse Gas Emissions from Digestate in Soil. Int. J. Recycl. Org. Waste Agric. 2020, 9, 1–19. [Google Scholar] [CrossRef]
- Shakoor, A.; Pendall, E.; Macdonald, C.A. Microbial Mechanisms of Interactive Climate-Driven Changes in Soil N2O and CH4 Fluxes: A Global Meta-Analysis. J. Environ. Manag. 2025, 376, 124380. [Google Scholar] [CrossRef]
- Zhang, Q.; Tang, J.; Angel, R.; Wang, D.; Hu, X.; Gao, S.; Zhang, L.; Tang, Y.; Zhang, X.; Koide, R.T.; et al. Soil Properties Interacting With Microbial Metagenome in Decreasing CH4 Emission From Seasonally Flooded Marshland Following Different Stages of Afforestation. Front. Microbiol. 2022, 13, 830019. [Google Scholar] [CrossRef]
- Möller, K. Effects of Anaerobic Digestion on Soil Carbon and Nitrogen Turnover, N Emissions, and Soil Biological Activity. A Review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Meng, X.; Liu, S.; Zou, J.; Osborne, B. The Effect of Substituting Inorganic Fertilizer with Manure on Soil N2O and CH4 Emissions and Crop Yields: A Global Meta-Analysis. Field Crops Res. 2025, 326, 109831. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Dodin, M.; Levavasseur, F.; Savoie, A.; Martin, L.; Foulon, J.; Vaudour, E. Sentinel-2 Satellite Images for Monitoring Cattle Slurry and Digestate Spreading on Emerging Wheat Crop: A Field Spectroscopy Experiment. Geocarto Int. 2023, 38, 2245371. [Google Scholar] [CrossRef]
- Möller, K.; Müller, T. Effects of Anaerobic Digestion on Digestate Nutrient Availability and Crop Growth: A Review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Głowacka, A.; Szostak, B.; Klebaniuk, R. Effect of Biogas Digestate and Mineral Fertilisation on the Soil Properties and Yield and Nutritional Value of Switchgrass Forage. Agronomy 2020, 10, 490. [Google Scholar] [CrossRef]
- Walsh, J.J.; Jones, D.L.; Chadwick, D.R.; Williams, A.P. Repeated Application of Anaerobic Digestate, Undigested Cattle Slurry and Inorganic Fertilizer N: Impacts on Pasture Yield and Quality. Grass Forage Sci. 2018, 73, 758–763. [Google Scholar] [CrossRef]
- Tampere, M.; Viiralt, R. The Efficiency of Biogas Digestate on Grassland Compared to Mineral Fertilizer and Cattle Slurry. Res. Rural Dev. 2014, 1, 89–94. [Google Scholar]
- Kovačić, Đ.; Lončarić, Z.; Jović, J.; Samac, D.; Popović, B.; Tišma, M. Digestate Management and Processing Practices: A Review. Appl. Sci. 2022, 12, 9216. [Google Scholar] [CrossRef]
- De Boever, J.L.; De Campeneere, S. Important Feeding Value Parameters in Ruminant Nutrition. In Breeding in a World of Scarcity; Roldán-Ruiz, I., Baert, J., Reheul, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 179–186. ISBN 978-3-319-28932-8. [Google Scholar]
- Hrabě, F.; Knot, P. The Effect of Trophism Level and Exploitation Intensity on the Production Characteristics of Grassland Community Dominated by Festuca Arundinacea Schreb. Plant Soil Environ. 2011, 57, 160–165. [Google Scholar] [CrossRef]
- Kolackova, I.; Smolkova, B.; Latal, O.; Skalickova, S.; Skladanka, J.; Horky, P.; Knot, P.; Hammerschmiedt, T.; Kintl, A.; Holatko, J.; et al. Does Digestate Dose Affect Fodder Security and Nutritive Value? Agriculture 2022, 12, 133. [Google Scholar] [CrossRef]
- Sezmis, G.; Gursoy, E. Determination of relative feed value, net energy lactation and metabolic energy contents of alfalfa (Medicago sativa L.). Fresenius Environ. Bull. 2020, 29, 1637–1642. [Google Scholar]
Soil Property | Value |
---|---|
Total carbon (%) | 4.3 ± 0.7 |
Total nitrogen (%) | 0.4 ± 0.1 |
C/N ratio (-) | 10.6 ± 0.6 |
K (mg·kg−1) | 345.0 ± 95.9 |
Ca (mg·kg−1) | 2674.8 ± 525.6 |
Mg (mg·kg−1) | 321.3 ± 47.2 |
P (mg·kg−1) | 34.3 ± 9.6 |
pH (-) | 6.7 ± 0.2 |
Year | DM | Ntot | P | K |
---|---|---|---|---|
(%) | (g kg−1 DM) | |||
2019 | 4.50 ± 0.12 | 31.96 ± 0.69 | 7.72 ± 1.07 | 80.37 ± 0.17 |
2020 | 5.27 ± 0.21 | 26.20 ± 1.05 | 10.24 ± 0.37 | 31.71 ± 1.27 |
2021 | 5.30 ± 0.35 | 31.52 ± 1.72 | 8.39 ± 1.40 | 68.62 ± 0.56 |
2022 | 5.37 ± 0.38 | 37.47 ± 1.75 | 8.36 ± 0.32 | 89.41 ± 1.22 |
Number of Mowing | Term of Mowing | Term of Digestate Application |
---|---|---|
I. | 2 June 2019 | 7 June 2019 |
II. | 31 July 2019 | 8 August 2019 |
III. | 1 November 2019 | |
I. | 21 May 2020 | 9 June 2020 |
II. | 7 July 2020 | 7 August 2020 |
III. | 31 October 2020 | |
I. | 2 June 2021 | 8 June 2021 |
II. | 11 August 2021 | 2 September 2021 |
III. | 9 November 2021 | |
I. | 1 June 2022 | 9 June 2022 |
II. | 18 July 2022 | 25 July 2022 |
III. | 10 October 2022 |
Flux Measurement Date | Temperature °C | Humidity % |
---|---|---|
8 June 2021 after cutting 1 | 25.795 a ± 2.281 | 56.56 b ± 13.84 |
25 July 2022 after cutting 2 | 33.286 b ± 2.904 | 41.10 a ± 10.39 |
Vegetation Index | Abbreviation | Formula | Reference |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | [38] | |
Normalized Difference Water Index | NDWI | [39] | |
Modified Soil Adjusted Vegetation Index | MSAVI | [40] |
Flux | Effect | F (df1; df2) | p-Value | Partial η2 |
---|---|---|---|---|
NH3 | Method | 171.54 (1; 287) | <0.001 | 0.374 |
Rate | 142.35 (3; 287) | <0.001 | 0.598 | |
Date | 18.57 (1; 287) | <0.001 | 0.061 | |
Method × Rate | 55.17 (3; 287) | <0.001 | 0.366 | |
Method × Date | 3.76 (1; 287) | 0.053 | 0.013 | |
Rate × Date | 5.49 (3; 287) | 0.001 | 0.054 | |
Method × Rate × Date | 1.06 (3; 287) | 0.368 | 0.011 | |
CO2 | Method | 367.28 (1; 287) | <0.001 | 0.561 |
Rate | 111.28 (3; 287) | <0.001 | 0.538 | |
Date | 24.33 (1; 287) | <0.001 | 0.078 | |
Method × Rate | 46.66 (3; 287) | <0.001 | 0.328 | |
Method × Date | 6.22 (1; 287) | 0.013 | 0.021 | |
Rate × Date | 1.52 (3; 287) | 0.209 | 0.016 | |
Method × Rate × Date | 1.22 (3; 287) | 0.302 | 0.013 | |
CH4 | Method | 31.91 (1; 287) | <0.001 | 0.100 |
Rate | 14.28 (3; 287) | <0.001 | 0.130 | |
Date | 9.34 (1; 287) | 0.002 | 0.032 | |
Method × Rate | 1.39 (3; 287) | 0.247 | 0.014 | |
Method × Date | 1.54 (1; 287) | 0.215 | 0.005 | |
Rate × Date | 0.65 (3; 287) | 0.584 | 0.007 | |
Method × Rate × Date | 1.6 (3; 287) | 0.189 | 0.016 |
Effect | F (df1, df2) | p-Value | Partial η2 | |
---|---|---|---|---|
DMY | Variant | 16.58 (7, 288) | <0.001 | 0.287 |
Cutting | 4077.33 (2, 288) | <0.001 | 0.966 | |
Year | 1236 (3, 288) | <0.001 | 0.928 | |
Variant × Cutting | 8.31 (14, 288) | <0.001 | 0.288 | |
Variant × Year | 1.01 (21, 288) | 0.455 | 0.068 | |
Cutting × Year | 567.35 (6, 288) | <0.001 | 0.922 | |
Variant × Cutting × Year | 1.2 (42, 288) | 0.194 | 0.149 | |
NEL | Variant | 8.68 (7, 288) | <0.001 | 0.174 |
Cutting | 2492.75 (2, 288) | <0.001 | 0.945 | |
Year | 631.28 (3, 288) | <0.001 | 0.868 | |
Variant × Cutting | 8.63 (14, 288) | <0.001 | 0.296 | |
Variant × Year | 1.02 (21, 288) | 0.443 | 0.069 | |
Cutting × Year | 273.85 (6, 288) | <0.001 | 0.851 | |
Variant × Cutting × Year | 1.42 (42, 288) | 0.053 | 0.172 | |
RFV | Variant | 8.92 (7, 288) | <0.001 | 0.178 |
Cutting | 791.33 (2, 288) | <0.001 | 0.846 | |
Year | 297.71 (3, 288) | <0.001 | 0.756 | |
Variant × Cutting | 7.09 (14, 288) | <0.001 | 0.256 | |
Variant × Year | 8.61 (21, 288) | <0.001 | 0.386 | |
Cutting × Year | 717.19 (6, 288) | <0.001 | 0.937 | |
Variant × Cutting × Year | 7.21 (42, 288) | <0.001 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šařec, P.; Novák, V.; Látal, O.; Dědina, M.; Korba, J. Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance. Agronomy 2025, 15, 1243. https://doi.org/10.3390/agronomy15051243
Šařec P, Novák V, Látal O, Dědina M, Korba J. Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance. Agronomy. 2025; 15(5):1243. https://doi.org/10.3390/agronomy15051243
Chicago/Turabian StyleŠařec, Petr, Václav Novák, Oldřich Látal, Martin Dědina, and Jaroslav Korba. 2025. "Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance" Agronomy 15, no. 5: 1243. https://doi.org/10.3390/agronomy15051243
APA StyleŠařec, P., Novák, V., Látal, O., Dědina, M., & Korba, J. (2025). Digestate Application on Grassland: Effects of Application Method and Rate on GHG Emissions and Forage Performance. Agronomy, 15(5), 1243. https://doi.org/10.3390/agronomy15051243