Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
- (1)
- Organic (manure) fertilization: without (control) and with pig slurry (PS);
- (2)
- NPK mineral fertilization: N0P0K0; N1P1K1; N3P2K2; and N4P2K2.
2.3. Soil Sampling and Analysis
2.4. Plant Material and Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Basic Soil Parameters
3.2. Phosphorus Fractions
3.3. Potassium Fractions
3.4. Plant-Available P and K
3.5. Relationships Between Soil Parameters
3.6. Crop Yield and Nutrient Balance
4. Discussion
4.1. Basic Soil Parameters
4.2. Phosphorus Fractions
4.3. Potassium Fractions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smit, A.L.; Bindraban, P.S.; Schröder, J.J.; Conijn, J.H.; van der Meer, H.G. Phosphorus in Agriculture: Global Resources, Trends and Developments. Report 282 to the Steering Committee Technology Assessment of the Ministry of Agriculture, Nature and Food Quality, The Netherlands and in Collaboration with the Nutrient Flow Task Group (NFTG), Supported by DPRN (Development Policy Network); Plant Research International: Wageningen, The Netherlands, 2009; p. 282. [Google Scholar]
- Cordell, D.; Drangert, J.-O.; White, S. The Story of Phosphorus: Global Food Security and Food for Thought. Glob. Environ. Change 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Wang, C.; Xie, Y.; Tan, Z. Soil potassium depletion in global cereal croplands and its implications. Sci. Total Environ. 2024, 10, 167875. [Google Scholar] [CrossRef] [PubMed]
- Harley, A.; Gilkes, R. Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview. Nutr. Cycl. Agroecosyst. 2000, 56, 11–36. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. Phosphorus. In Principles of Plant Nutrition; Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 453–479. [Google Scholar] [CrossRef]
- Dębicka, M. The Role of Organic Matter in Phosphorus Retention in Eutrophic and Dystrophic Terrestrial Ecosystems. Agronomy 2024, 14, 1688. [Google Scholar] [CrossRef]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture-status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Potassium Dynamics in Soils. In Advances in Soil Science; Stewart, B.A., Ed.; Springer: New York, NY, USA, 1987; Volume 6, pp. 1–63. [Google Scholar] [CrossRef]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Lu, D.; Dong, Y.; Chen, X.; Wang, H.; Zhou, J. Comparison of potential potassium leaching associated with organic and inorganic potassium sources in different arable soils in China. Pedosphere 2022, 32, 330–338. [Google Scholar] [CrossRef]
- Muntwyler, A.; Panagos, P.; Pfister, S.; Lugato, E. Assessing the phosphorus cycle in European agricultural soils: Looking beyond current national phosphorus budgets. Sci. Total Environ. 2024, 906, 167143. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; D’Imporzano, G.; Adani, F. Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 2017, 243, 1251–1256. [Google Scholar] [CrossRef]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Bhogal, A.; Nicholson, F.A.; Rollett, A.; Taylor, M.; Litterick, A.; Whittingham, M.J.; Williams, J.R. Improvements in the Quality of Agricultural Soils Following Organic Material Additions Depend on Both the Quantity and Quality of the Materials Applied. Front. Sustain. Food Syst. 2018, 2, 9. [Google Scholar] [CrossRef]
- Hlisnikovský, L.; Menšík, L.; Čermak, P.; Kunzová, E. Long-Term Effect of Pig Slurry and Mineral Fertilizer Additions on Soil Nutrient Content, Field Pea Grain and Straw Yield under Winter Wheat–Spring Barley–Field Pea Crop Rotation on Cambisol and Luvisol. Land 2022, 11, 187. [Google Scholar] [CrossRef]
- Boitt, G.; Schmitt, E.D.; Gatiboni, L.; Wakelin, S.; Black, A.; Sacomori, W.; Cassol, P.; Condron, L.M. Fate of phosphorus applied to soil in pig slurry under cropping in southern Brazil. Geoderma 2018, 321, 164–172. [Google Scholar] [CrossRef]
- Yost, J.L.; Schmidt, A.M.; Koelsch, R.; Schott, L.R. Effect of swine manure on soil health properties: A systematic review. Nutrient management & soil & plant analysis. Soil Sci. Soc. Am. J. 2021, 86, 450–486. [Google Scholar] [CrossRef]
- Bernal, M.P.; Roig, A.; Lax, A.; Navarro, A.F. Effect of the application of pig slurry on some physico-chemical and physical properties of calcareous soils. Bioresour. Technol. 1992, 42, 233–239. [Google Scholar] [CrossRef]
- Benedet, L.; Wilbert Ferreira, G.; Brunetto, G.; Loss, A.; Emílio Lovato, P.; Rogério Lourenzi, C.; Godinho Silva, S.H.; Curi, N.; José Comin, J. Use of Swine Manure in Agriculture in Southern Brazil: Fertility or Potential Contamination? In Soil Contamination-Threats and Sustainable Solutions; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen Limited: London, UK, 2020; Available online: https://www.intechopen.com/chapters/74212 (accessed on 17 February 2025).
- Martinez, E.; Maresma, A.; Biau, A.; Berenguer, P.; Cela, S.; Santiveri, F.; Michelena, A.; Lloveras, J. Long-term effects of liquid swine manure on soil organic carbon and Cu/Zn levels in soil and maize. Nutr. Cycl. Agroecosys. 2020, 118, 193–205. [Google Scholar] [CrossRef]
- Scheid, D.L.; da Silva, R.F.; da Silva, V.R.; Da Ros, C.O.; Pinto, M.A.B.; Gabriel, M.; Cherubin, M.R. Changes in soil chemical and physical properties in pasture fertilised with liquid swine manure. Sci. Agric. 2020, 77, e20190017. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Madaras, M.; Koubova, M. Potassium availability and soil extraction tests in agricultural soils with low exchangeable potassium content. Plant Soil Environ. 2015, 61, 234–239. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Ferreira, P.A.A.; Ceretta, C.A.; Lourenzi, C.R.; De Conti, L.; Marchezan, C.; Girotto, E.; Tiecher, T.L.; Palermo, N.M.; Parent, L.-É.; Brunetto, G. Long-Term Effects of Animal Manures on Nutrient Recovery and Soil Quality in Acid Typic Hapludalf under No-Till Conditions. Agronomy 2022, 12, 243. [Google Scholar] [CrossRef]
- Menšík, L.; Hlisnikovský, L.; Pospíšilová, L.; Kunzová, E. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. J. Soils Sediments 2018, 18, 2813–2822. [Google Scholar] [CrossRef]
- Auzins, A.; Leimane, I.; Krievina, A.; Morozova, I.; Miglavs, A.; Lakovskis, P. Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage. Agriculture 2023, 13, 1539. [Google Scholar] [CrossRef]
- de Oliveira, D.A.; Pinheiro, A.; da Veiga, M. Effects of pig slurry application on soil physical and chemical properties and glyphosate mobility. Rev. Bras. Ciência Solo 2014, 38, 1421–1431. [Google Scholar] [CrossRef]
- Ross, D.; Ketterings, Q. Recommended methods for determining soil cation exchange capacity [Chapter 9]. In Recommended Soil Testing Procedures for the Northeastern United States, 3rd ed.; No. 493; Northeastern Regional Publication; The Northeast Coordinating Committee for Soil Testing: Newark, DE, USA, 2011; pp. 75–86. [Google Scholar]
- Tiessen, H.; Moir, J.O. Characterization of available P by sequential extraction. In Soil Sampling and Methods of Analysis; Canadian Society of Soil Science; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, CA, USA, 1993; pp. 75–86. [Google Scholar]
- Cho, Y.H.; Nielsen, S.S. Phosphorus Determination by Murphy-Riley Method. In Food Analysis Laboratory Manual; Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 153–156. [Google Scholar] [CrossRef]
- Balík, J.; Kulhanek, M.; Černy, J.; Sedlař, O.; Suran, P. Potassium fractions in soil and simple K balance in long-term fertilising experiments. Soil Water Res. 2020, 15, 211–219. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Yanai, J.; Nakao, A. Evaluation of nonexchangeable potassium content of agricultural soils in Japan by the boiling HNO3 extraction method in comparison with exchangeable potassium. Soil Sci. Plant Nutr. 2018, 64, 116–122. [Google Scholar] [CrossRef]
- ISO 54321: 2020; International Standards. Soil, Treated Biowaste, Sludge and Waste—Digestion of Aqua Regia Soluble Fractions of Elements. ISO: Geneva, Switzerland, 2020. Available online: https://cdn.standards.iteh.ai/samples/75441/cf65d2ce8bc54b5aa2e373cca2737b2f/ISO-54321-2020.pdf (accessed on 8 January 2024).
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Iyyemperumal, K.; Shi, W. Soil microbial community com-position and structure: Residual effects of contrasting N fertilization of swine lagoon effluent versus ammonium nitrate. Plant Soil 2007, 292, 233–242. [Google Scholar] [CrossRef]
- Brunetto, G.; Comin, J.J.; Schmitt, D.E.; Guardini, R.; Mezzari, C.P.; Oliveira, B.S.; de Moraes, M.P.; Gatiboni, L.C.; Lovato, P.E.; Ceretta, C.A. Changes in soil acidity and organic carbon ina sandy typic hapludalf after medium-term pig-slurry and deep-litterapplication. Rev. Bras. Ciênc. Solo 2012, 36, 1620–1628. [Google Scholar] [CrossRef]
- Yanardag, A.B.; Mermut, A.; Cano, A.F.; Garrido, M.G. Academic Research and Reviews in Agriculture, Forestry and Aquaculture Sciences. In Changes in Soil Properties, Quality and Productivity Following Pig Slurry Application in Semiarid Region of Spain; Atík, A., Ed.; Duvar Publishing: Izmir, Turkey, 2021; pp. 77–97. [Google Scholar]
- Cote, D.; Ndayegamiye, A. Effect of long-term pig slurry and solid cattle manure application on soil chemical and biological prop-erties. Can. J. Soil Sci. 1989, 69, 39–47. [Google Scholar] [CrossRef]
- Plaza, C.; García-Gil, J.C.; Polo, A. Effects of pig slurry application on soil chemical properties under semiarid conditions. Agrochimica 2005, 49, 87–92. [Google Scholar]
- Comin, J.J.; Loss, A.; da Veiga, M.; Guardini, R.; Schmitt, D.E.; de Oliveira, V.; Filho, P.B.; da Rosa Couto, R.; Benedet, L.; Júnior, V.M.; et al. Physical properties and organic carbon content of a Typic Hapludult soil fertiliser with pig slurry and piglitter in a no-tillage system. Soil Res. 2013, 51, 459–470. [Google Scholar] [CrossRef]
- Körschens, M.; Rogasik, J.; Schulz, E. Balance and standard values of soil organic matter. Landbauforsch. Volkenrode 2005, 55, 1–10. [Google Scholar]
- Duncan, E.G.; O’Sullivan, C.A.; Roper, M.M.; Palta, J.A.; Whisson, K.; Peoples, M.B. Yield and nitrogen use efficiency of wheat increased with root length and biomass due to nitrogen, phosphorus, and potassium interactions. J. Plant Nutr. Soil Sci. 2018, 181, 364–373. [Google Scholar] [CrossRef]
- Song, X.; Fang, C.; Yuan, Z.Q.; Li, F.M. Long-Term Growth of Alfalfa Increased Soil Organic Matter Accumulation and Nutrient Mineralization in a Semi-Arid Environment. Front. Environ. Sci. 2021, 9, 649346. [Google Scholar] [CrossRef]
- Mazzoncini, M.; Sapkota, T.B.; Bàrberi, P.; Antichi, D.; Risaliti, R. Long-term effect of tillage, nitrogen fertilization and cover crops on soil organic carbon and total nitrogen content. Soil Tillage Res. 2011, 114, 165–174. [Google Scholar] [CrossRef]
- Kelner, D.J.; Vessey, J.K.; Entz, M.H. The nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping system. Agric. Ecosyst. Environ. 1997, 64, 1–10. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, F.; He, Z.; Guo, J.; Qu, X.; Xie, F.; Giesy, J.P.; Liao, H.; Guo, F. Characterization of organic phosphorus in lake sediments by sequential fractionation and enzymatic hydrolysis. Environ. Sci. Technol. 2013, 47, 7679–7687. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; McDowell, R.W.; Sims, T.J. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In Phosphorus: Agriculture and the Environment, Agronomy Monograph; No. 46; Sims, J.T., Sharpley, A.N., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2005; pp. 53–86. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.J.; Zhu, Y.M.; Wang, G.H.; Shi, D.C.; Christie, P. Surface water phosphorus dynamics in rice fields receiving fertilizer and manure phosphorus. Chemosphere 2001, 42, 209–214. [Google Scholar] [CrossRef] [PubMed]
- De Conti, L.; Ceretta, C.A.; Ferreira, P.A.A.; Lorensini, A.; Lourenzi, C.; Vidal, R.F.; Tassinari, A.; Brunetto, G. Effects of Pig Slurry Application and Crops on Phosphorus Content in Soil and the Chemical Species in Solution. Rev. Bras. Ciênc. Solo 2015, 39, 774–787. [Google Scholar] [CrossRef]
- Biassoni, M.M.; Vivas, H.; Gutiérrez-Boem, F.H.; Salvagiotti, F. Changes in soil phosphorus (P) fractions and P bioavailability after 10 years of continuous P fertilization. Soil Tillage Res. 2023, 232, 105777. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Müller, T.; Lakshmanan, P.; Liu, Y.; Liang, T.; Wang, L.; Yang, H.; Chen, X. Soil phosphorus availability and fractionation in response to different phosphorus sources in alkaline and acid soils: A short-term incubation study. Sci. Rep. 2023, 13, 5677. [Google Scholar] [CrossRef] [PubMed]
- Eghball, B.; Wienhold, B.J.; Woodbury, B.L.; Eigenberg, R.A. Plant Availability of Phosphorus in Swine Slurry and Cattle Feedlot Manure. Agron. J. 2005, 97, 542–548. Available online: https://digitalcommons.unl.edu/usdaarsfacpub/1186 (accessed on 11 April 2025). [CrossRef]
- Wienhold, B.J.; Miller, P.S. Phosphorus fractionation in manure from swine fed traditional and low phytate corn diets. J. Environ. Qual. 2004, 33, 389–393. [Google Scholar] [CrossRef]
- Lehmann, J.; Lan, Z.; Hyland, C.; Sato, S.; Solomon, D.; Ketterings, Q. Long-term dynamics of phosphorus forms and retention in manure amended soils. Environ. Sci. Technol. 2005, 39, 6672–6680. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, A.; Liang, B.; Zhang, T.; Drury, C. Soil test phosphorus and phosphorus fractions with long-term phosphorus addition and depletion. Soil Sci. Soc. Am. J. 2004, 68, 519–528. [Google Scholar] [CrossRef]
- Negassa, W.; Leinweber, P. How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: A review. J. Plant Nutr. Soil Sci. 2009, 172, 305–325. [Google Scholar] [CrossRef]
- Cross, A.F.; Schlesinger, W.H. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- van Es, H.M.; Schindelbeck, R.R.; Jokela, W.E. Effect of manure application timing, crop, and soil type on phosphorus leaching. J. Environ. Qual. 2004, 33, 1070–1080. [Google Scholar] [CrossRef] [PubMed]
- Marszałek, M.; Kowalski, Z.; Makara, A. Physicochemical and microbiological characteristics of pig slurry. Tech. Trans. Chem. 2014, 1, 81–91. [Google Scholar]
- Balík, J.; Černý, J.; Kulhánek, M.; Sedlář, O.; Suran, P. Balance of potassium in two long-term field experiments with different fertilization treatments. Plant Soil Environ. 2019, 65, 225–232. [Google Scholar] [CrossRef]
- Das, A.; Biswas, D.R.; Sharma, V.K.; Ray, P. Soil potassium fractions under two contrasting land use systems of Assam. Indian J. Agric. Sci. 2019, 89, 1340–1343. [Google Scholar] [CrossRef]
- Baruah, H.C.; Bora, D.K.; Baruah, T.C.; Nath, A.K. Fixation of potassium in three major soil orders of Assam. J. Pot. Res. 1991, 7, 170–175. [Google Scholar]
- Lalitha, M.; Dhakshinamoorthy, M. Forms of soil potassium—A review. Agric. Rev. 2014, 35, 64–68. [Google Scholar] [CrossRef]
- Andrews, E.M.; Kassama, S.; Smith, E.E.; Brown, P.H.; Khalsa, S.D.S. A Review of Potassium-Rich Crop Residues Used as Organic Matter Amendments in Tree Crop Agroecosystems. Agriculture 2021, 11, 580. [Google Scholar] [CrossRef]
- Simonsson, M.; Andersson, S.; Andrist-Rangel, Y.; Hillier, S.; Mattson, L.; Öborn, I. Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma 2007, 140, 188–198. [Google Scholar] [CrossRef]
- Chikuvire, T.J.; Muchaonyerwa, P.; Zengeni, R. Long-term effects of pig slurry application on selected soil quality parameters and tissue composition of maize in a subhumid subtropical environment. S. Afr. J. Plant Soil 2019, 36, 143–148. [Google Scholar] [CrossRef]
- Shakoor, A.; Bosch-Serra, À.D.; Alberdi, J.R.O.; Herrero, C. Seven years of pig slurry fertilization: Impacts on soil chemical properties and the element content of winter barley plants. Environ. Sci. Pollut. Res. 2022, 29, 74655–74668. [Google Scholar] [CrossRef]
- Madaras, M.; Koubova, M.; Lipavský, J. Stabilization of available potassium across soil and climatic conditions of the Czech Republic. Arch. Agron. Soil Sci. 2010, 56, 433–449. [Google Scholar] [CrossRef]
- Zbíral, J.; Němec, P. Integrating of Mehlich 3 extractant into the Czech soil testing scheme. Commun. Soil Sci. Plant Anal. 2000, 31, 2171–2182. [Google Scholar] [CrossRef]
Characteristics | Unit | Range | Mean |
---|---|---|---|
pH | - | 6.7–7.4 | 7.1 |
Dry matter (DM) | g kg−1 | 42.3–60.6 | 51.4 |
Ash | g kg−1 of DM | 166.8–226.3 | 196.5 |
Conductivity | mS m−1 | 2377–2441 | 2409 |
Total N | g kg−1 of DM | 25.1–26.0 | 25.5 |
Total P | g kg−1 of DM | 9.8–12.5 | 11.1 |
Total K | g kg−1 of DM | 23.2–26.9 | 25.1 |
Total Ca | g kg−1 of DM | 21.0–25.7 | 23.3 |
Total Mg | g kg−1 of DM | 7.0–9.7 | 8.3 |
Total Cu | mg kg−1 of DM | 136.1–159.7 | 147.9 |
Total Zn | mg kg−1 of DM | 384.5–657.6 | 521.0 |
Total Pb | mg kg−1 of DM | 1.09–1.60 | 1.35 |
Total Cd | mg kg−1 of DM | 0.276–0.477 | 0.376 |
Treatments | Alfalfa | Alfalfa | Winter Wheat | Sugar Beet | Spring Barley | Potatoes | Winter Wheat | Sugar Beet | Spring Barley | Mean |
---|---|---|---|---|---|---|---|---|---|---|
N0P0K0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 | 0-0-0 |
N1P1K1 | 0-22-133 | 0-31-183 | 40-21-80 | 80-28-125 | 30-21-66 | 50-22-120 | 40-21-80 | 80-28-125 | 30-21-66 | 39-24-109 |
N3P2K2 | 0-31-183 | 0-43-249 | 55-26-100 | 160-35-166 | 50-26-83 | 70-31-186 | 55-26-100 | 160-35-166 | 50-26-83 | 67-31-146 |
N4P2K2 | 0-31-183 | 0-43-249 | 75-26-100 | 200-35-166 | 70-26-83 | 110-31-186 | 75-26-100 | 200-35-166 | 70-26-83 | 91-31-146 |
PS + N0P0K0 | 0-0-0 | 0-0-0 | 0-0-0 | 89-39-88 | 0-0-0 | 64-28-63 | 0-0-0 | 89-39-88 | 0-0-0 | 27-12-27 |
PS + N1P1K1 | 0-22-133 | 0-31-183 | 40-21-80 | 169-67-213 | 30-21-66 | 114-50-183 | 40-21-80 | 169-67-213 | 30-21-66 | 66-36-135 |
PS + N3P2K2 | 0-31-183 | 0-43-249 | 55-26-100 | 249-74-254 | 50-26-83 | 134-59-249 | 55-26-100 | 249-74-254 | 50-26-83 | 94-43-173 |
PS + N4P2K2 | 0-31-183 | 0-43-249 | 75-26-100 | 289-74-254 | 70-26-83 | 174-59-249 | 75-26-100 | 289-74-254 | 70-26-83 | 116-43-173 |
Treatments | pH | TSC g kg−1 | TN g kg−1 | C:N | CEC mM kg−1 |
---|---|---|---|---|---|
Soil depth: 0–30 cm | |||||
N0P0K0 | 5.35 ± 0.03 ab | 13.35 ± 0.42 c | 1.20 ± 0.02 d | 11.1 ± 0.31 | 75.4 ± 4.05 |
N1P1K1 | 5.53 ± 0.19 a | 13.68 ± 0.25 abc | 1.20 ± 0.03 d | 11.5 ± 0.22 | 77.3 ± 4.21 |
N3P2K2 | 5.40 ± 0.15 ab | 13.56 ± 0.26 bc | 1.25 ± 0.01 cd | 10.8 ± 0.27 | 74.2 ± 4.24 |
N4P2K2 | 5.16 ± 0.17 ab | 13.49 ± 0.38 bc | 1.28 ± 0.01 bcd | 10.5 ± 0.25 | 74.8 ± 3.71 |
PS + N0P0K0 | 5.40 ± 0.11 ab | 13.93 ± 0.22 abc | 1.25 ± 0.06 cd | 11.3 ± 0.53 | 74.2 ± 2.87 |
PS + N1P1K1 | 5.26 ± 0.13 ab | 14.25 ± 0.21 abc | 1.33 ± 0.02 abc | 10.7 ± 0.08 | 73.1 ± 3.32 |
PS + N3P2K2 | 5.06 ± 0.10 ab | 14.88 ± 0.19 a | 1.39 ± 0.01 ab | 10.7 ± 0.10 | 76.4 ± 3.32 |
PS + N4P2K2 | 4.86 ± 0.07 b | 14.61 ± 0.16 ab | 1.41 ± 0.02 a | 10.4 ± 0.11 | 74.6 ± 2.34 |
Soil depth: 31–60 cm | |||||
N0P0K0 | 5.97 ± 0.19 ab | 9.54 ± 0.71 | 0.86 ± 0.03 | 10.9 ± 0.99 | 94.0 ± 5.67 |
N1P1K1 | 6.28 ± 0.22 a | 9.92 ± 0.87 | 0.89 ± 0.03 | 11.2 ± 0.91 | 98.1 ± 6.08 |
N3P2K2 | 5.79 ± 0.23 ab | 9.95 ± 0.72 | 0.91 ± 0.03 | 10.9 ± 0.70 | 87.9 ± 8.11 |
N4P2K2 | 5.61 ± 0.28 ab | 11.59 ± 1.29 | 0.97 ± 0.04 | 11.9 ± 1.20 | 85.3 ± 7.64 |
PS + N0P0K0 | 5.48 ± 0.08 ab | 9.60 ± 0.50 | 0.96 ± 0.05 | 10.0 ± 0.20 | 81.6 ± 3.76 |
PS + N1P1K1 | 5.54 ± 0.11 ab | 8.89 ± 0.38 | 0.91 ± 0.04 | 9.8 ± 0.18 | 83.8 ± 4.70 |
PS + N3P2K2 | 5.37 ± 0.12 b | 9.82 ± 0.50 | 0.98 ± 0.05 | 10.1 ± 0.30 | 85.3 ± 4.70 |
PS + N4P2K2 | 5.44 ± 0.16 ab | 10.13 ± 0.66 | 0.10 ± 0.07 | 9.9 ± 0.20 | 82.5 ± 3.69 |
Soil Depth | Treatment | H2O-P | NaHCO3-P | NaOH-P | HCl-P | Res-P | TP |
---|---|---|---|---|---|---|---|
0–30 cm | N0P0K0 | 2.38 ± 0.42 c | 23.2 ± 1.89 e | 181.7 ± 26.6 c | 132.0 ± 14.1 | 124.5 ± 8.6 | 463.8 ± 36.8 d |
N1P1K1 | 5.79 ± 0.89 bc | 54.2 ± 1.79 cd | 176.2 ± 25.1 c | 126.4 ± 15.5 | 127.0 ± 10.0 | 489.6 ± 36.0 cd | |
N3P2K2 | 8.60 ± 0.86 b | 64.5 ± 0.87 c | 268.0 ± 16.7 ab | 143.7 ± 5.8 | 139.7 ± 3.3 | 624.4 ± 20.3 ab | |
N4P2K2 | 8.49 ± 0.62 b | 60.6 ± 1.08 cd | 209.2 ± 13.9 bc | 126.5 ± 5.2 | 134.8 ± 3.5 | 539.6 ±12.4 bcd | |
PS | 4.98 ± 0.57 bc | 48.6 ± 3.06 d | 251.8 ± 26.4 ab | 150.2 ± 11.8 | 145.6 ± 6.2 | 601.2 ± 37.6 bc | |
PS + N1P1K1 | 14.98 ± 1.54 a | 80.2 ± 4.06 b | 231.9 ± 16.6 c | 140.9 ± 8.2 | 141.2 ± 14.1 | 609.3 ± 25.9 ab | |
PS + N3P2K2 | 19.25 ± 1.24 a | 94.1 ± 2.30 a | 284.2 ± 21.8 a | 146.3 ± 6.7 | 130.8 ± 9.8 | 674.6 ± 33.9 a | |
PS + N4P2K2 | 17.46 ± 1.80 a | 90.1 ± 4.26 ab | 256.8 ± 34.1 ab | 131.8 ± 11.1 | 145.9 ± 10.4 | 642.1 ± 49.4 ab | |
31–60 cm | N0P0K0 | 1.61 ± 0.19 c | 15.3 ± 2.9 d | 113.8 ± 20.5 | 78.9 ± 8.8 | 114.9 ± 7.3 | 324.5 ± 30.7 b |
N1P1K1 | 1.62 ± 0.21 c | 25.0 ± 2.1 cd | 96.8 ± 7.9 | 83.6 ± 5.3 | 114.7 ± 9.8 | 321.8 ± 13.1 ab | |
N3P2K2 | 2.38 ± 0.34 bc | 30.2 ± 2.6 c | 147.3 ± 17.7 | 85.4 ± 8.2 | 126.9 ± 2.2 | 392.2 ± 25.3 ab | |
N4P2K2 | 2.49 ± 0.29 bc | 31.8 ± 2.9 bc | 117.4 ± 9.1 | 83.7 ± 8.7 | 114.4 ± 6.2 | 349.9 ± 8.7 ab | |
PS | 1.99 ± 0.20 c | 23.4 ± 2.2 cd | 129.2 ± 18.0 | 87.7 ± 9.3 | 119.2 ± 1.3 | 361.6 ± 26.2 ab | |
PS + N1P1K1 | 2.29 ± 0.31 bc | 29.1 ± 1.9 cd | 123.9 ± 5.9 | 91.3 ± 5.5 | 124.1 ± 9.6 | 370.6 ± 8.0 ab | |
PS + N3P2K2 | 3.81 ± 0.59 ab | 47.0 ± 4.6 ab | 162.2 ± 18.8 | 94.3 ± 11.1 | 111.9 ± 9.3 | 419.2 ± 35.0 a | |
PS + N4P2K2 | 4.27 ± 0.74 a | 45.5 ± 6.4 a | 134.2 ± 13.6 | 79.8 ± 7.5 | 116.4 ± 6.1 | 380.2 ± 19.3 ab |
Soil Depth | Treatment | H2O-K | Ex-K | Ne-K | Res-K | TK |
---|---|---|---|---|---|---|
0–30 cm | N0P0K0 | 33.3 ± 4.7 b | 107.5 ± 10.0 b | 1041 ± 90 | 4149 ± 269 | 5331 ± 313 |
N1P1K1 | 40.4 ± 3.6 ab | 129.6 ± 7.2 ab | 998 ± 69 | 4532 ± 239 | 5701 ± 210 | |
N3P2K2 | 43.2 ± 2.2 ab | 137.7 ± 7.4 ab | 1103 ± 37 | 4745 ± 236 | 6029 ± 231 | |
N4P2K2 | 43.7 ± 2.1 ab | 131.5 ± 6.8 ab | 1039 ± 57 | 4663 ± 779 | 5877 ± 802 | |
PS | 38.6 ± 2.1 ab | 111.2 ± 11.9 b | 1120 ± 75 | 4140 ± 213 | 5410 ± 266 | |
PS + N1P1K1 | 44.1 ± 2.7 ab | 134.9 ± 7.3 ab | 1048 ± 52 | 4146 ± 588 | 5373 ± 581 | |
PS + N3P2K2 | 49.6 ± 1.7 a | 158.0 ± 8.8 a | 1143 ± 73 | 4071 ± 526 | 5422 ± 495 | |
PS + N4P2K2 | 47.3 ± 1.2 a | 148.5 ± 4.2 a | 1135 ± 56 | 5314 ± 883 | 6645 ± 916 | |
31–60 cm | N0P0K0 | 31.2 ± 4.9 | 99.0 ± 5.8 b | 984 ± 75 | 4539 ± 198 | 5653 ± 245 |
N1P1K1 | 35.8 ± 6.3 | 110.6 ± 7.2 ab | 1096 ± 97 | 4857 ± 282 | 6100 ± 269 | |
N3P2K2 | 30.4 ± 5.8 | 109.3 ± 5.7 ab | 991 ± 89 | 3952 ± 513 | 5083 ± 576 | |
N4P2K2 | 30.8 ± 4.6 | 123.7 ± 5.4 ab | 1037 ± 69 | 4774 ± 471 | 5966 ± 487 | |
PS | 38.2 ± 2.8 | 102.3 ± 3.0 ab | 1009 ± 54 | 4170 ± 503 | 5320 ± 539 | |
PS + N1P1K1 | 40.0 ± 4.9 | 114.6 ± 6.8 ab | 1052 ± 70 | 4967 ± 456 | 6174 ± 432 | |
PS + N3P2K2 | 42.9 ± 2.5 | 124.1 ± 6.3 ab | 1086 ± 57 | 4483 ± 525 | 5737 ± 561 | |
PS + N4P2K2 | 36.4 ± 3.6 | 125.1 ± 7.8 a | 1075 ± 73 | 5134 ± 810 | 6370 ± 830 |
Treatment | M3P | M3K | ||
---|---|---|---|---|
mg kg−1 | % in TP | mg kg−1 | % in TK | |
Soil depth: 0–30 cm | ||||
N0P0K0 | 43.4 ± 6.0 d | 10.1 ± 1.8 d | 177.5 ± 11.0 b | 3.4 ± 0.19 |
N1P1K1 | 87.0 ± 12.0 c | 17.7 ± 2.4 bc | 195.1 ± 10.0 ab | 3.4 ± 0.11 |
N3P2K2 | 114.7 ± 7.4 a | 18.7 ± 1.7 bc | 206.5 ± 10.9 ab | 3.5 ± 0.21 |
N4P2K2 | 103.6 ± 13.0 bc | 19.2 ± 2.3 bc | 195.6 ± 8.4 ab | 3.9 ± 0.81 |
PS | 85.5 ± 8.6 c | 14.8 ± 2.0 cd | 183.6 ± 13.0 b | 3.4 ± 0.23 |
PS + N1P1K1 | 145.4 ± 9.4 b | 23.7 ± 0.7 ab | 206.8 ± 11.4 ab | 4.4 ± 0.85 |
PS + N3P2K2 | 172.5 ± 5.3 a | 25.9 ± 1.1 a | 232.1 ± 7.4 a | 4.7 ± 0.71 |
PS + N4P2K2 | 164.0 ± 8.6 a | 26.4 ± 1.9 a | 218.0 ± 9.1 ab | 3.8 ± 0.62 |
Soil depth: 31–60 cm | ||||
N0P0K0 | 23.7 ± 4.0 c | 8.0 ± 1.7 | 160.8 ± 7.8 | 2.9 ± 0.2 |
N1P1K1 | 44.3 ± 5.2 bc | 14.0 ± 1.9 | 181.0 ± 13.7 | 3.0 ± 0.2 |
N3P2K2 | 46.4 ± 4.9 bc | 12.2 ± 1.6 | 169.0 ± 11.1 | 3.9 ± 0.8 |
N4P2K2 | 57.7 ± 5.5 ab | 16.4 ± 1.3 | 187.5 ± 11.6 | 3.2 ± 0.2 |
PS | 41.8 ± 3.4 bc | 12.1 ± 1.8 | 173.0 ± 4.3 | 3.8 ± 0.8 |
PS + N1P1K1 | 52.4 ± 5.8 ab | 14.1 ± 1.5 | 190.2 ± 5.8 | 3.2 ± 0.3 |
PS + N3P2K2 | 76.0 ± 7.0 a | 18.7 ± 1.9 | 196.9 ± 6.8 | 3.4 ± 0.6 |
PS + N4P2K2 | 76.7 ± 9.9 a | 20.2 ± 2.5 | 193.6 ± 9.1 | 3.3 ± 0.4 |
Treatment | Grain or Taproot Yield | Straw or Leaf Yield | Nutrient Removal | Nutrient Balance | ||||
---|---|---|---|---|---|---|---|---|
N | P | K | N | P | K | |||
t ha−1 | t ha−1 | kg ha−1 | kg ha−1 | |||||
Winter wheat | ||||||||
N0P0K0 | 5.14 ± 0.14 d | 4.00 ± 0.10 d | 107.4 ± 2.9 f | 21.5 ± 1.4 b | 56.7 ± 5.3 b | −107.4 ± 2.9 a | −21.5 ± 1.4 bc | −56.7 ± 5.3 b |
N1P1K1 | 7.04 ± 0.15 c | 5.76 ± 0.22 bc | 145.2 ± 3.0 e | 31.4 ± 3.0 a | 81.7 ± 8.1 ab | −105.2 ± 3.0 a | −10.4 ± 3.0 ab | −1.7 ± 8.1 a |
N3P2K2 | 7.32 ± 0.13 bc | 5.92 ± 0.11 bc | 162.0 ± 2.9 d | 31.7 ± 2.7 a | 85.0 ± 8.1 a | −107.0 ± 2.9 a | −5.7 ± 2.7 a | 15.0 ± 8.1 a |
N4P2K2 | 7.74 ± 0.17 ab | 6.35 ± 0.21 abc | 191.3 ± 4.1 bc | 33.7 ± 2.3 a | 93.2 ± 3.6 a | −116.3 ± 4.1 a | −7.7 ± 2.3 a | 6.8 ± 3.6 a |
PS + N0P0K0 | 7.70 ± 0.16 abc | 5.71 ± 0.24 c | 159.7 ± 3.4 de | 29.9 ± 1.1 ab | 77.3 ± 5.4 ab | −159.7 ± 3.4 c | −29.9 ± 1.1 c | −77.3 ± 5.4 b |
PS + N1P1K1 | 7.85 ± 0.09 ab | 6.37 ± 0.06 abc | 180.2 ± 2.0 c | 33.7 ± 1.2 a | 81.9 ± 5.7 a | −140.2 ± 2.0 b | −12.7 ± 1.2 a | −1.9 ± 5.7 a |
PS + N3P2K2 | 8.34 ± 0.15 a | 6.78 ± 0.13 a | 200.8 ± 3.7 b | 36.2 ± 1.0 a | 87.7 ± 5.3 a | −145.8 ± 3.7 bc | −10.2 ± 1.0 a | 12.3 ± 5.3 a |
PS + N4P2K2 | 8.26 ± 0.16 a | 6.50 ± 0.09 ab | 217.9 ± 4.0 a | 36.3 ± 1.4 a | 89.1 ± 4.9 a | −142.9 ± 4.0 b | −10.3 ± 1.4 a | 10.9 ± 4.9 a |
Sugar beet | ||||||||
N0P0K0 | 61.3 ± 2.01 c | 20.7 ± 0.90 d | 58.2 ± 1.9 e | 14.7 ± 0.48 d | 104.2 ± 3.42 c | −58.2 ± 1.9 f | −14.7 ± 0.5 e | −104.2 ± 3.4 f |
N1P1K1 | 72.3 ± 2.15 b | 37.6 ± 2.46 c | 72.3 ± 2.2 d | 19.5 ± 0.58 c | 115.6 ± 3.45 c | 7.7 ± 2.2 e | 8.5 ± 0.6 d | 9.4 ± 3.4 d |
N3P2K2 | 80.5 ± 2.18 ab | 47.9 ± 1.62 a | 96.6 ± 2.6 c | 26.6 ± 0.72 ab | 136.9 ± 3.70 b | 63.4 ± 2.6 d | 8.4 ± 0.7 d | 29.1 ± 3.7 c |
N4P2K2 | 81.6 ± 1.83 a | 46.5 ± 1.73 a | 98.0 ± 2.2 bc | 26.1 ± 0.58 ab | 155.1 ± 3.47 a | 102.0 ± 2.2 c | 8.9 ± 0.6 d | 10.9 ± 3.5 d |
PS + N0P0K0 | 80.6 ± 1.42 ab | 38.2 ± 1.80 bc | 88.7 ± 1.6 c | 25.8 ± 0.45 b | 137.1 ± 2.42 b | 0.3 ± 1.6 e | 13.2 ± 0.5 c | −49.1 ± 2.4 e |
PS + N1P1K1 | 81.7 ± 0.93 a | 45.4 ± 0.40 ab | 98.0 ± 1.1 bc | 28.6 ± 0.32 a | 138.9 ± 1.57 b | 71.0 ± 1.1 d | 38.4 ± 0.3 b | 74.1 ± 1.6 b |
PS + N3P2K2 | 83.6 ± 1.76 a | 49.8 ± 1.23 a | 108.6 ± 2.3 b | 27.6 ± 0.58 ab | 150.4 ± 3.12 ab | 140.4 ± 2.3 b | 46.4 ± 0.6 a | 103.6 ± 3.2 a |
PS + N4P2K2 | 86.1 ± 2.56 a | 50.8 ± 1.47 a | 129.1 ± 3.8 a | 28.4 ± 0.84 a | 154.9 ± 4.61 a | 159.9 ± 3.8 a | 45.6 ± 0.8 a | 99.1 ± 4.6 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barłóg, P.; Hlisnikovský, L.; Łukowiak, R.; Kunzová, E. Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers. Agronomy 2025, 15, 1183. https://doi.org/10.3390/agronomy15051183
Barłóg P, Hlisnikovský L, Łukowiak R, Kunzová E. Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers. Agronomy. 2025; 15(5):1183. https://doi.org/10.3390/agronomy15051183
Chicago/Turabian StyleBarłóg, Przemysław, Lukáš Hlisnikovský, Remigiusz Łukowiak, and Eva Kunzová. 2025. "Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers" Agronomy 15, no. 5: 1183. https://doi.org/10.3390/agronomy15051183
APA StyleBarłóg, P., Hlisnikovský, L., Łukowiak, R., & Kunzová, E. (2025). Soil Phosphorus and Potassium Fractions in Response to the Long-Term Application of Pig Slurry and NPK Mineral Fertilizers. Agronomy, 15(5), 1183. https://doi.org/10.3390/agronomy15051183