Effect of Irrigation Amount on Cotton Growth and Optimization of Irrigation Regime Using AquaCrop in Southern XinJiang
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Experimental Site
2.2. Experimental Design
2.3. Determination Items and Methods
2.3.1. Cotton Growth Index
2.3.2. Soil Moisture Content
2.3.3. Yield and Composition
2.3.4. Irrigation Water Productivity
2.4. AquaCrop Model Introduction (Ver7.1)
2.4.1. Model Theory
2.4.2. Meteorological Data
2.4.3. Crop Data
2.4.4. Soil Data
2.4.5. Field Data
2.4.6. Model Evaluation
2.4.7. Simulation Scenario Setting
2.5. Data Processing and Analysis
3. Results
3.1. Effects of Different Irrigation Rates on Cotton Growth
3.2. Effects of Different Irrigation Amounts on Soil Gravimetric Moisture Content
3.3. Effects of Different Irrigation Rates on Seed Cotton Yield, IWP, and WP
3.4. Model Simulation and Evaluation
3.4.1. Canopy Cover
3.4.2. Biomass, Yield, and WP
3.4.3. Heatmap Analysis
3.4.4. Multi-Scenario Simulation
4. Discussion
4.1. The Impact of Different Irrigation Amounts on Cotton Growth and Soil
4.2. Optimization of Irrigation Regimes Based on the AquaCrop Model
5. Conclusions
- (1)
- High-level irrigation is beneficial for promoting the growth and development of cotton in arid areas, accumulating dry matter, and thereby increasing yield. The IWP and WP treatments showed W1 > W2 > W3, while yield exhibited W3 > W2 > W1. With the goal of achieving high yield while ensuring water conservation, the W3 treatment was optimal, averaging 1.28 kg/m3, 1.27 kg/m3, and 6914.04 kg/ha over two years.
- (2)
- Under drip irrigation with film cover, high-level irrigation effectively preserves moisture in the 30–60 cm soil layer of cotton fields. Compared to W1 and W2 treatments, the W3 treatment increased SWC by 8.26% and 3.23%, which is conducive to root absorption and growth development of cotton.
- (3)
- The AquaCrop model can accurately simulate the canopy cover, biomass, WP, yield, and their variation processes of cotton in saline-alkali land in Tumshuk City, Southern Xinjiang. Based on 11 scenario simulations using the AquaCrop model, as irrigation levels or amounts increase, WP and IWP show an inverse relationship, while yield initially increases and then slowly declines. Combining field data and simulation results, with the goals of water conservation and yield increase, it is recommended that in Southern Xinjiang, for dry sowing with wet irrigation cotton under the planting pattern of one film, three tubes, and four rows, a 570 mm irrigation regime should be used.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ding, Y.; Ma, J.; Zhang, J.; Bai, Y.; Cui, B.; Hao, X.; Fu, G.; Zheng, M.; Ding, B. Response of photosynthesis, population physiological indexes, and yield of cotton in dry areas to the new technology of “dry sowing and wet emergence”. Front. Plant Sci. 2024, 15, 1487832. [Google Scholar] [CrossRef]
- Cui, Y.S.; Wang, F.; Sun, J.S.; Han, Q.S.; Wang, J.L.; Li, N. Effects of irrigation regimes on the variation of soil water and salt and yield of mechanically harvested cotton in Southern Xinjiang, China. Chin. J. Appl. Ecol. 2018, 29, 3634–3642. [Google Scholar] [CrossRef]
- Wu, F.; Tang, Q.; Zhang, L.; Cui, J.; Tian, L.; Guo, R.; Wang, L.; Chen, B.; Zhang, N.; Ali, S.; et al. Reducing Irrigation and Increasing Plant Density Enhance Both Light Interception and Light Use Efficiency in Cotton under Film Drip Irrigation. Agronomy 2023, 13, 2248. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, Z.; Yang, B. Quality analysis of different mechanical harvesting cotton planting patterns. J. Chin. Agric. Mech. 2016, 37, 235–240. [Google Scholar] [CrossRef]
- Hu, L.; Pan, X.; Wang, X.; Hu, Q.; Wang, X.; Zhang, H.; Xue, Q.; Song, M. Cotton photosynthetic productivity enhancement through uniform row-spacing with optimal plant density in Xinjiang, China. Crop Sci. 2021, 61, 2745–2758. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Ning, H.; Han, Q.; Xv, X.; Wang, X.; Li, X. Effects of Different Planting Patterns and Irrigation Quota on Cotton Growth and Yield. J. Irrig. Drain. 2023, 42, 16–23. [Google Scholar] [CrossRef]
- Li, J.; Wu, P.; Xiao, S.; Cui, J.; Zhang, J. Effects of cotton planting modes with machine picking on defoliation and fiber quality of different plant types. J. Irrig. Drain. 2019, 37, 82–88. [Google Scholar]
- Shukr, H.H.; Pembleton, K.G.; Zull, A.F.; Cockfield, G.J. Impacts of Effects of Deficit Irrigation Strategy on Water productivity and Yield in Cotton under Different Irrigation Systems. Agronomy 2021, 11, 231. [Google Scholar] [CrossRef]
- Maucieri, C.; Borin, M.; Morbidini, F.; Pogačar, T.; Flajšman, M.; Ghinassi, G.; Verdi, L.; Dalla Marta, A.; Ferrise, R. Projecting the impacts of climate change on soybean production and water requirements using AquaCrop model. Eur. J. Agron. 2025, 165, 127538. [Google Scholar] [CrossRef]
- Silvia, L.; Wilfredo, B.; Leonardo, V.; Carlo, N.; Anna, D.M.; Carmelo, M. Modelling the response of tomato on deficit irrigation under greenhouse conditions. Sci. Hortic. 2024, 326, 112770. [Google Scholar]
- Zeeshan, S.S.; Xurong, M.; Buchun, L.; Yuan, L. Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain. Agric. Water Manag. 2021, 257, 107120. [Google Scholar]
- Linker, R.; Ioslovich, I. Assimilation of canopy cover and biomass measurements in the crop model AquaCrop. Biosyst. Eng. 2017, 162, 57–66. [Google Scholar] [CrossRef]
- Jorge, A.-B.; Coulibaly, S.; Baki, G.; Luís, C.J.; Abdalla, D.; Baptiste, M.J.; Dalla, M.A. Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region. Agric. Water Manag. 2023, 287, 108430. [Google Scholar]
- Ahmadi, S.H.; Mosallaeepour, E.; Kamgar-Haghighi, A.A.; Sepaskhah, A.R. Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resour. Manag. 2015, 29, 2837–2853. [Google Scholar] [CrossRef]
- Zhang, J.; Li, K.; Gao, Y.; Feng, D.; Zheng, C.; Cao, C.; Sun, J.; Dang, H.; Hamani, A.K. Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model. Agric. Water Manag. 2022, 261, 107355. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Xu, X.; Huang, W.; Zhao, Z.; Gao, Y.; Wang, X. Assessing the Sustainability of Cotton Production under Climate Change Based on the AquaCrop Model. Chin. J. Agrometeorol. 2023, 44, 588–598. [Google Scholar]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Song, X.; Cao, H.; He, Z.; Ding, B.; Yao, N. Applicability of the Aquacrop model in optimization of irrigation and salt leaching schedule during the reproductive period of cotton in Northern Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2023, 39, 111–122. [Google Scholar]
- Liu, Y.; Gui, D.; Chen, X.; Liu, Q.; Zeng, F. Sap flow characteristics and water demand prediction of cash crop in hyper-arid areas. Agric. Water Manag. 2024, 295, 108767. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Yi, X.; Zuo, W.; Lei, Z.; Sui, L.; Zhang, W. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Res. 2017, 203, 192–200. [Google Scholar] [CrossRef]
- Wang, N.; Feng, K.; Nan, H.; Cong, A.; Zhang, T. Effects of Combined Application of Organic Manure and Chemical Fertilizer Ratio on Water and Nitrogen Use Efficiency of Cotton Under Water Deficit. Sci. Agric. Sin. 2023, 56, 1531–1546. [Google Scholar]
- Hui, Z.; Kai, Z.; Bing, C.; Chuan, Y.; Ping, L. Effects of different irrigation rates on cotton growth and yield formation in Xinjiang. Arid Zone Res. 2022, 39, 1976–1985. [Google Scholar] [CrossRef]
- Zheng, J.; Li, Z.; Zhang, Y.; Yang, Y.; Chen, G.; Luo, X. Effects of applying water and nitrogen on soil inorganic nitrogen distribution and yield in cotton at stage of flowering and bolling. J. Huazhong Agric. Univ. 2023, 42, 105–112. [Google Scholar] [CrossRef]
- Du, K.; Qiao, Y.; Zhang, Q.; Li, F.; Li, Q.; Liu, S.; Tian, C. Modeling Soil Water Content and Crop-Growth Metrics in a Wheat Field in the North China Plain Using RZWQM2. Agronomy 2021, 11, 1245. [Google Scholar] [CrossRef]
- Bi, W.; Lin, D.; Mao, X. Two-dimensional transport of soil water, heat and salt with mulched drip irrigation under brackish water in cotton fields and appropriate irrigation schedule in southern Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2024, 40, 155–168. [Google Scholar]
- Liu, X.; Liu, J.; Huang, C.; Liu, H.; Meng, Y.; Chen, H.; Ma, S.; Liu, Z. The impacts of irrigation methods and regimes on the water and nitrogen utilization efficiency in subsoiling wheat fields. Agric. Water Manag. 2024, 295, 108765. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Cui, X.; Li, A.; Zhao, L.; Hu, T. Effects of irrigation amount and nitrogen synergists on yield and utilization of water and fertilizer of summer maize. Agric. Res. Arid Areas 2024, 42, 123–132+168. [Google Scholar] [CrossRef]
- Li, N.; Shi, X.; Zhang, H.; Shi, F.; Zhang, H.; Liang, Q.; Hao, X.; Luo, H.; Wang, J. Optimizing irrigation strategies to improve the soil microenvironment and enhance cotton water productivity under deep drip irrigation. Agric. Water Manag. 2024, 305, 109095. [Google Scholar] [CrossRef]
- Amir, A.; Naghi, Z.A.; Mohammadreza, N.S.; Parviz, R.M.; Mahdi, G.S. Simulation of saffron growth using AquaCrop model with high-resolution measured data. Sci. Hortic. 2024, 324, 112569. [Google Scholar]
- Wang, X.; Jiang, F.; Wang, H.; Cao, H.; Yang, Y.; Gao, Y. Irrigation Scheduling Optimization of Drip-irrigated without Plastic Film Cotton in South Xinjiang Based on Aqua Crop Model. Trans. Chin. Soc. Agric. Mach. 2021, 52, 293–301+335. [Google Scholar]
- Chao, Z.; Jiying, K.; Min, T.; Wen, L.; Dianyuan, D.; Hao, F. Improving maize growth and development simulation by integrating temperature compensatory effect under plastic film mulching into the AquaCrop model. Crop J. 2023, 11, 1559–1568. [Google Scholar]
- Tang, P.; Li, N.; Li, M.; Zhang, F.; Fu, Q.; Xu, Y.; Liu, D. Rice irrigation water efficiency improvement: An AquaCrop-based optimization modeling approach. Eur. J. Agron. 2023, 148, 126867. [Google Scholar] [CrossRef]
- Yin, J.; Yang, Y.; Eeswaran, R.; Yang, Z.; Ma, Z.; Sun, F. Irrigation scheduling for potatoes (Solanum tuberosum L.) under drip irrigation in an arid region using AquaCrop model. Front. Plant Sci. 2023, 14, 1242074. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Sun, S.; Li, Z.; Li, Q.; Lu, Y.; Li, C.; Wang, Y.; Wu, P. Vulnerability of crop water footprint in rain-fed and irrigation agricultural production system under future climate scenarios. Agric. For. Meteorol. 2022, 326, 109164. [Google Scholar] [CrossRef]
Cotton Growth Period | Duration of the Growth Period/ Month. Day–Month. Day | Irrigation Date/ Month. Day | Treatment/mm | Fertilizer Yield/(kg/hm2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | W1 | W2 | W3 | N | P | K | |
Emergence stage | 03.24–04.20 | 03.27–04.24 | 03.24 | 03.27 | 11.5 | 11.5 | 11.5 | 0.0 | 0.0 | 0.0 |
03.30 | 04.02 | 15.0 | 15.0 | 15.0 | 0.0 | 0.0 | 0.0 | |||
04.17 | 04.20 | 30.0 | 30.0 | 30.0 | 0.0 | 0.0 | 0.0 | |||
Seedling stage | 04.23–05.24 | 04.25–05.26 | 05.10 | 05.15 | 30.4 | 39.4 | 48.4 | 37.0 | 5.0 | 10.0 |
06.02 | 06.04 | 30.4 | 39.4 | 48.4 | 40.0 | 5.0 | 23.0 | |||
Bud stage | 05.25–06.23 | 05.27–06.21 | 06.12 | 06.13 | 30.4 | 39.4 | 48.4 | 40.0 | 5.0 | 23.0 |
06.25 | 06.23 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 | |||
Florescence | 06.24–07.14 | 06.22–07.12 | 07.02 | 06.30 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 |
07.09 | 07.07 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 | |||
07.16 | 07.14 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 | |||
Boll season | 07.15–08.09 | 07.13–8.05 | 07.23 | 07.21 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 |
07.30 | 07.28 | 30.4 | 39.4 | 48.4 | 100.0 | 21.0 | 65.0 | |||
Batting | 08.10–10.07 | 08.06–09.26 | 08.13 | 08.11 | 30.4 | 39.4 | 48.4 | 33.0 | 20.0 | 55.0 |
Total | 198 d | 184 d | - | - | 360.0 | 450.0 | 540.0 | 750.0 | 161.0 | 501.0 |
Soil Depth (cm) | Soil Bulk Density (g/cm3) | Field Capacity (g/g) | Saturated Water Content (g/g) | Clay Particles (%) | Powder Granules (%) | Sand Grain (%) | Wilting Coefficient (g/g) |
---|---|---|---|---|---|---|---|
0–20 | 1.45 | 0.21 | 0.28 | 17.80 | 30.85 | 51.35 | 0.07 |
20–40 | 1.46 | 0.22 | 0.31 | 20.68 | 27.23 | 52.09 | 0.08 |
40–60 | 1.48 | 0.24 | 0.32 | 20.53 | 27.35 | 52.12 | 0.10 |
60–80 | 1.51 | 0.24 | 0.29 | 19.52 | 25.93 | 54.55 | 0.09 |
80–100 | 1.51 | 0.22 | 0.28 | 19.62 | 24.21 | 56.17 | 0.08 |
Argument | Item | Value | Unit |
---|---|---|---|
CC0 | lnitial canopy cover | 1 | % |
CCx | Maximum canopy cover | 90 | % |
KcTR | Maximum canopy cover | 1.1 | - |
Zx | Maximum root depth | 0.6 | m |
Rexshp | Maximum root depth | 0.5 | cm/d |
HI0 | Reference yield index | 38 | % |
Tbase | Base temperature | 15 | °C |
Tupper | Ceiling temperature | 35 | °C |
CGC | Canopy growth coefficient | 10 | %/d |
CDC | Canopy attenuation coefficient | 9 | %/d |
Kcbx | Crop coefficient when crop canopy is intact and not aged | 1.03 | - |
Pexpupper | Upper limit of influence of water stress on canopy growth | 0.3 | - |
Pexplower | Lower limit of influence of water stress on canopy growth | 0.6 | - |
Eceupper | Upper threshold of salt effect on crop growth | 4 | dS/m |
Ecelower | Lower threshold of salinity effect on crop growth | 15 | dS/m |
Year | Treatment | Number of Bolls per Plant/Piece | Single Boll Weight/g | Number of Harvested Plants × 104 Plant/ha | Seed Cotton Yield /(kg/ha) | WP (kg/m3) | IWP (kg/m3) |
---|---|---|---|---|---|---|---|
2023 | W1 | 9.11 ± 0.1 c | 5.62 ± 0.08 c | 10.13 ± 0.11 c | 5186.38 ± 102.98 c | 1.40 ± 0.03 c | 1.44 ± 0.04 c |
W2 | 9.35 ± 0.06 b | 5.87 ± 0.09 b | 10.38 ± 0.09 b | 5697.01 ± 129.77 b | 1.28 ± 0.01 b | 1.27 ± 0.02 b | |
W3 | 9.67 ± 0.12 a | 6.32 ± 0.16 a | 10.76 ± 0.09 a | 6575.91 ± 134.45 a | 1.23 ± 0.02 a | 1.22 ± 0.01 a | |
2024 | W1 | 9.82 ± 0.15 c | 6.15 ± 0.12 c | 9.04 ± 0.15 c | 5459.53 ± 78.95 c | 1.42 ± 0.03 c | 1.52 ± 0.01 c |
W2 | 10.24 ± 0.9 b | 6.38 ± 0.07 b | 9.45 ± 0.11 b | 6173.80 ± 156.11 b | 1.36 ± 0.01 b | 1.37 ± 0.01 b | |
W3 | 10.62 ± 0.11 a | 6.87 ± 0.14 a | 9.94 ± 0.16 a | 7252.16 ± 142.59 a | 1.32 ± 0.03 a | 1.34 ± 0.02 a |
Year | Index | Treatment | RMSE | NRMSE (%) | d | R2 | RE (%) |
---|---|---|---|---|---|---|---|
2023 | Canopy Cover (%) | W1 | 6.18 | 13.36 | 0.955 | 0.978 | −1.27 |
W2 | 4.14 | 15.60 | 0.967 | 0.982 | 4.33 | ||
W3 | 3.42 | 8.27 | 0.988 | 0.976 | 1.52 | ||
Biomass (t/hm2) | W1 | 0.39 | 12.24 | 0.915 | 0.934 | −2.06 | |
W2 | 1.26 | 23.58 | 0.954 | 0.895 | −3.65 | ||
W3 | 1.03 | 15.98 | 0.928 | 0.903 | −7.50 | ||
WP (kg/m3) | - | 0.23 | 5.85 | 0.924 | 0.915 | 0.37 | |
Yield (t/hm2) | - | 0.71 | 10.24 | 0.933 | 0.912 | 5.11 | |
2024 | Canopy Cover (%) | W1 | 7.42 | 15.08 | 0.961 | 0.981 | −1.35 |
W2 | 5.57 | 11.45 | 0.972 | 0.967 | 2.42 | ||
W3 | 4.11 | 9.22 | 0.984 | 0.984 | 1.22 | ||
Biomass (t/hm2) | W1 | 2.54 | 10.46 | 0.921 | 0.964 | −3.82 | |
W2 | 1.86 | 18.25 | 0.904 | 0.923 | −4.70 | ||
W3 | 1.14 | 13.41 | 0.942 | 0.931 | −6.42 | ||
WP (kg/m3) | - | 0.12 | 5.33 | 0.933 | 0.881 | 1.02 | |
Yield (t/hm2) | - | 0.79 | 8.35 | 0.941 | 0.923 | 4.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, M.; Lv, T.; Li, W.; Chen, C.; Zhang, X.; Wang, M. Effect of Irrigation Amount on Cotton Growth and Optimization of Irrigation Regime Using AquaCrop in Southern XinJiang. Agronomy 2025, 15, 1101. https://doi.org/10.3390/agronomy15051101
Bian M, Lv T, Li W, Chen C, Zhang X, Wang M. Effect of Irrigation Amount on Cotton Growth and Optimization of Irrigation Regime Using AquaCrop in Southern XinJiang. Agronomy. 2025; 15(5):1101. https://doi.org/10.3390/agronomy15051101
Chicago/Turabian StyleBian, Menghan, Tingbo Lv, Wenhao Li, Conghao Chen, Xiaoying Zhang, and Maoyuan Wang. 2025. "Effect of Irrigation Amount on Cotton Growth and Optimization of Irrigation Regime Using AquaCrop in Southern XinJiang" Agronomy 15, no. 5: 1101. https://doi.org/10.3390/agronomy15051101
APA StyleBian, M., Lv, T., Li, W., Chen, C., Zhang, X., & Wang, M. (2025). Effect of Irrigation Amount on Cotton Growth and Optimization of Irrigation Regime Using AquaCrop in Southern XinJiang. Agronomy, 15(5), 1101. https://doi.org/10.3390/agronomy15051101