Emergence of Soybean and Canola Plants as Affected by Soil Compaction from a Seeder Press Roller
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Test Equipment and Field
2.2. Experimental Design and Field Layout
2.3. Experimental Procedure
2.4. Measurements
2.4.1. Initial Soil Conditions
2.4.2. Soil Mechanical Properties
2.4.3. Plants Count
2.5. Statistical and Data Analysis
3. Results and Discussion
3.1. Initial Soil Properties
3.2. Soil Properties as Affected by the Compaction of the Press Roller
3.2.1. Soil Shear Strength
3.2.2. Soil Surface Resistance
3.3. Plants Population and Speed of Emergence
3.3.1. Speed of Emergence
3.3.2. Plant Population
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OECD/FAO. OECD-FAO Agricultural Outlook 2015; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Mcansh, J. Place of rapeseed in the edible oil market. J. Am. Oil Chem. Soc. 1973, 50, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Wanasundara, J.P.; McIntosh, T.C.; Perera, S.P.; Withana-Gamage, T.S.; Mitra, P. Canola/rapeseed protein-functionality and nutrition. OCL 2016, 23, D407. [Google Scholar] [CrossRef]
- Pandey, M.K.; Mallikarjuna, M.G.; Lohithaswa, H.C.; Aski, M.S.; Gupta, S. Introduction: Breeding Climate-Resilient and Future Ready Oilseed Crops. In Breeding Climate Resilient and Future Ready Oilseed Crops; Springer Nature Singapore: Singapore, 2025; pp. 1–6. [Google Scholar]
- Nelson, E.B. The seed microbiome: Origins, interactions, and impacts. Plant Soil 2018, 422, 7–34. [Google Scholar] [CrossRef]
- Soil Science Society of America. Glossary of Soil Science Terms 2008; Soil Science: Madison, WI, USA, 2008. [Google Scholar]
- DeJong-Hughes, J.; Moncrief, J.F.; Voorhees, W.B.; Swan, J.B. Soil Compaction: Causes, Effects and Control; University of Minnesota Extension Service: St. Paul, MN, USA, 2001. [Google Scholar]
- Hou, S.; Wei, Z.; Shi, N.; Ji, W.; Zou, Z. Design and parameter optimizing test of elastic spiral soil covering roller. J. Agric. Mech. Res. 2021, 43, 42–51. [Google Scholar]
- Steinbrecher, T.; Leubner-Metzger, G. The biomechanics of seed germination. J. Exp. Bot. 2017, 68, 765–783. [Google Scholar] [CrossRef]
- Botta, G.F.; Becerra, A.T.; Melcon, F.B. Seedbed compaction produced by traffic on four tillage regimes in the rolling Pampas of Argentina. Soil Tillage Res. 2009, 105, 128–134. [Google Scholar] [CrossRef]
- Botta, G.F.; Pozzolo, O.; Bomben, M.; Rosatto, H.; Rivero, D.; Ressia, M.; Tourn, M.; Soza, E.; Vazquez, J. Traffic alternatives for harvesting soybean (Glycine max L.): Effect on yields and soil under a direct sowing system. Soil Tillage Res. 2007, 96, 145–154. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Cruse, R.M.; Sui, Y.Y.; Jhao, Z. Soil compaction induced by small tractor traffic in Northeast China. Soil Sci. Soc. Am. J. 2006, 70, 613–619. [Google Scholar] [CrossRef]
- Elaoud, A.; Chehaibi, S. Soil compaction due to tractor traffic. J. Fail. Anal. Prev. 2011, 11, 539–545. [Google Scholar] [CrossRef]
- Moinfar, A.; Shahgholi, G.; Abbaspour-Gilandeh, Y.; Herrera-Miranda, I.; Hernández-Hernández, J.L.; Herrera-Miranda, M.A. Investigating the effect of the tractor drive system type on soil behavior under tractor tires. Agronomy 2021, 11, 696. [Google Scholar] [CrossRef]
- Bassett, I.E.; Simcock, R.C.; Mitchell, N.D. Consequences of soil compaction for seedling establishment: Implications for natural regeneration and restoration. Austral Ecol. 2005, 30, 827–833. [Google Scholar] [CrossRef]
- Sidhu, D.; Duiker, W. Soil compaction in conservation tillage: Crops impacts. Agron. J. 2006, 98, 1257–1264. [Google Scholar] [CrossRef]
- Kenjaev, Y.; Aripov, R. The agrophysical properties effects in syderation used short-row sowing on soil. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2024; Volume 497, p. 03002. [Google Scholar]
- Kucukerdem, H.K.; Altikat, S. Evaluating Effects of Post-Sowing Compaction and Sowing Speed on Soil Properties, Distribution of Seed Placement and Second Crop Maize Performance. Agric. Mech. ASIA Afr. Lat. Am. 2022, 53, 46. [Google Scholar]
- Botta, G.F.; Tolón-Becerra, A.; Lastra-Bravo, X.; Tourn, M.; Balbuena, R.; Rivero, D. Continuous application of direct sowing: Traffic effect on subsoil compaction and maize (Zea mays L.) yields in Argentinean Pampas. Soil Tillage Res. 2013, 134, 111–120. [Google Scholar] [CrossRef]
- Gong, H.; Chen, Y.; Zheng, W.; Zeng, Z.; Li, S.; Qi, L. Measurements and DEM modelling of soybean seed expansion. Comput. Electron. Agric. 2023, 208, 107786. [Google Scholar] [CrossRef]
- Soignier, T.S.; Plumblee, M.T.; Mueller, J.D.; Greene, J.K.; Kirk, K.R. The evaluation of planter downforce on emergence and grain yield in soybean. Crop. Forage Turfgrass Manag. 2022, 8, e20186. [Google Scholar] [CrossRef]
- Hakansson, I.; Reeder, R.C. Subsoil compaction by vehicles with high axle load—Extent, persistence and crop response. Soil Tillage Res. 1994, 29, 277–304. [Google Scholar] [CrossRef]
- Ferreira, C.J.B.; Tormena, C.A.; Severiano, E.D.C.; Zotarelli, L.; Betioli Júnior, E. Soil compaction influences soil physical quality and soybean yield under long-term no-tillage. Arch. Agron. Soil Sci. 2021, 67, 383–396. [Google Scholar] [CrossRef]
- Alvarez, S.; Ernst, O. Impact of cropping systems on soil quality. Eur. J. Agron. 2024, 158, 127197. [Google Scholar] [CrossRef]
- Alameda, D.; Villar, R. Moderate soil compaction: Implications on growth and architecture in seedlings of 17 woody plant species. Soil Tillage Res. 2009, 103, 325–331. [Google Scholar] [CrossRef]
- Acquah, K.; Chen, Y. Soil compaction from wheel traffic under three tillage systems. Agriculture 2022, 12, 219. [Google Scholar] [CrossRef]
- Owusu-Sekyere, E.; Chen, Y. The Effect of Varying Compaction Levels on Soil Dynamic Properties and the Growth of Canola (Brassica napus L.). Agriculture 2024, 14, 1976. [Google Scholar] [CrossRef]
- CCC. The Canola Council of Canada. Plant Establishment—Seed Depth. Available online: https://www.canolacouncil.org/canola-encyclopedia/plant-establishment/seed-depth/ (accessed on 8 September 2021).
- Tessier, S.; Saxton, K.E.; Papendick, R.I.; Hyde, G.M. Zero-tillage furrow opener effects on seed environment and wheat emergence. Soil Tillage Res. 1991, 21, 347–360. [Google Scholar] [CrossRef]
- Guerif, J. Effects of compaction on soil strength parameters. Dev. Agric. Eng. 1994, 11, 191–214. [Google Scholar]
- Usowicz, B.; Lipiec, J. Spatial distribution of soil penetration resistance as affected by soil compaction: The fractal approach. Ecol. Complex. 2009, 6, 263–271. [Google Scholar] [CrossRef]
- Long, Z.J.; Wang, Y.F.; Sun, B.R.; Tang, X.Y.; Jin, K.M. Impact of mechanical compaction on crop growth and sustainable agriculture. Front. Agric. Sci. Eng. 2024, 11, 243. [Google Scholar]
- Swanepoel, P.A.; Le Roux, P.J.G.; Agenbag, G.A.; Strauss, J.A.; MacLaren, C. Seed-drill opener type and crop residue load affect canola establishment, but only residue load affects yield. Agron. J. 2019, 111, 1658–1665. [Google Scholar] [CrossRef]
- Sivarajan, S.; Maharlooei, M.; Bajwa, S.G.; Nowatzki, J. Impact of soil compaction due to wheel traffic on corn and soybean growth, development and yield. Soil Tillage Res. 2018, 175, 234–243. [Google Scholar] [CrossRef]
- Botta, G.F.; Nardon, G.F.; Guirado Clavijo, R. Soil sustainability: Analysis of the soil compaction under heavy agricultural machinery traffic in extensive crops. Agronomy 2022, 12, 282. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, Y.; Qi, L. Simulation of cotyledon-soil dynamics using the discrete element method (DEM). Comput. Electron. Agric. 2020, 174, 105505. [Google Scholar] [CrossRef]
- Kering, M.K.; Zhang, B. Effect of priming and seed size on germination and emergence of six food-type soybean varieties. Int. J. Agron. 2015, 2015, 859212. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hayden, C.W. Influence of Seed Orientation on Bean Seedling Emergence 1. Agron. J. 1972, 64, 736–738. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, Q.; Guo, L.; Chang, Y.; Guo, Y.; Zhu, F.; Chen, D.; Liu, X. Compaction performance of biomimetic press roller to soil. J. Bionic Eng. 2015, 12, 152–159. [Google Scholar] [CrossRef]
- Doria, E.; Pagano, A.; Ferreri, C.; Larocca, A.V.; Macovei, A.; Araújo, S.D.S.; Balestrazzi, A. How does the seed pre-germinative metabolism fight against imbibition damage? Emerging roles of fatty acid cohort and antioxidant defence. Front. Plant Sci. 2019, 10, 1505. [Google Scholar] [CrossRef]
- Zuo, Q.; Kuai, J.; Zhao, L.; Hu, Z.; Wu, J.; Zhou, G. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field. Field Crops Res. 2017, 203, 47–54. [Google Scholar] [CrossRef]
- Zheng, H.X.; Huang, X.; Cai., L.P.; Hou., X.L.; Zhou., C.F.; Zeng., Y.S.; Wei., M.Y.; Qiu., Q.S. Effects of soil particle composition and adhesives on seed germination and seedling growth of Neyraudia reynaudiana. Acta Prataculturae Sin. 2020, 29, 92–102. [Google Scholar]
- Shah, A.N.; Tanveer, M.; Shahzad, B.; Yang, G.; Fahad, S.; Ali, S.; Bukhari, M.A.; Tung, S.A.; Hafeez, A.; Souliyanonh, B. Soil compaction effects on soil health and crop productivity: An overview. Environ. Sci. Pollut. Res. 2017, 24, 10056–10067. [Google Scholar] [CrossRef]
2022 | 2023 | ||
---|---|---|---|
Date | Crop | Date | Crop |
7 June | Canola | 29 May | Canola and soybean |
9 June | Canola | 31 May | Canola and soybean |
11 June | Canola and soybean | 2 June | Canola and soybean |
12 June | Soybean | 19 June | Canola and soybean |
14 June | Canola and soybean | ||
17 June | Soybean | ||
20 June | Soybean |
ANOVA | Shear Strength | Soil Resistance | Speed of Emergence | Plant Population |
---|---|---|---|---|
Crop types | ns | ns | ** | ** |
Compaction level | ** | ** | ** | ** |
Crop types * Compaction level | * | ns | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, H.; Tang, Z.; Cai, Y.; Zhang, Y.; Yang, S.; Chen, Y.; Qi, L. Emergence of Soybean and Canola Plants as Affected by Soil Compaction from a Seeder Press Roller. Agronomy 2025, 15, 1076. https://doi.org/10.3390/agronomy15051076
Gong H, Tang Z, Cai Y, Zhang Y, Yang S, Chen Y, Qi L. Emergence of Soybean and Canola Plants as Affected by Soil Compaction from a Seeder Press Roller. Agronomy. 2025; 15(5):1076. https://doi.org/10.3390/agronomy15051076
Chicago/Turabian StyleGong, Hao, Zhenyu Tang, Yinghu Cai, Yunhe Zhang, Shihao Yang, Ying Chen, and Long Qi. 2025. "Emergence of Soybean and Canola Plants as Affected by Soil Compaction from a Seeder Press Roller" Agronomy 15, no. 5: 1076. https://doi.org/10.3390/agronomy15051076
APA StyleGong, H., Tang, Z., Cai, Y., Zhang, Y., Yang, S., Chen, Y., & Qi, L. (2025). Emergence of Soybean and Canola Plants as Affected by Soil Compaction from a Seeder Press Roller. Agronomy, 15(5), 1076. https://doi.org/10.3390/agronomy15051076