Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition
2.2.1. UAV Image Data Acquisition
2.2.2. LAI Acquisition
2.3. Data Processing
2.3.1. UAV Image Processing
2.3.2. Extraction of VIs
2.3.3. LAI Data Preprocessing
2.4. Data Augmentation
2.5. LAI Prediction Model Construction
2.5.1. Lightweight CNN Prediction Model Based on Single-Modal RGB Imagery
- Feature Extraction Module
- II.
- Regression Prediction Module
2.5.2. Construction of the MSF-FusionNet Model Based on RGB and VI Images
- Input Data and Preprocessing
- II.
- Multimodal Feature Extraction Network
- III.
- Feature Fusion and LAI Prediction
2.5.3. Experimental Environment and Parameter Settings
2.6. Model Evaluation
2.6.1. Spatial Autocorrelation Measure
2.6.2. Baseline Models
2.6.3. Evaluation Indicators
3. Results
3.1. Variability and Spatial Autocorrelation Analysis of LAI Data
3.2. Correlation Analysis Between VI and LAI Data
3.3. LAI Estimation Based on RGB and Multispectral Data
3.4. LAI Estimation Using Multi-Source Image Fusion
3.5. Performance Evaluation of LAI Models
3.6. LAI Mapping with the Optimal Estimation Model
4. Discussion
4.1. Evaluation of RGB and Multispectral VI Data in Estimating LAI
4.2. Benefits and Limitations of Multi-Source Fusion in Dense Canopy LAI Estimation
4.3. Strengths and Limitations of Deep Learning in Crop LAI Estimation
4.4. Model Interpretability and Phenological Independence
4.5. Generalizability and Scalability of the Multi-Source Fusion Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LAI | Leaf area index |
UAV | Unmanned aerial vehicle |
VIs | Vegetation indices |
CNN | Convolutional neural network |
ELM | Extreme learning machine |
SVM | Support vector machine |
RNNs | Recurrent neural networks |
DSM | Digital surface model |
P4M | DJI Phantom 4 multispectral drone |
NIR | Near-infrared band |
GCPs | Ground control points |
ROIs | Regions of interest |
NDVI | Normalized difference vegetation index |
NDRE | Normalized difference red-edge vegetation index |
OSAVI | Optimized soil-adjusted vegetation index |
MCARI | Modified chlorophyll absorption in reflectance index |
TCARI | Transformed chlorophyll absorption in reflectance index |
GNDVI | Green normalized difference vegetation index |
RGBVI | Red–green–blue vegetation index |
GLI | Green leaf index |
IQR | Interquartile range method |
ResBlocks | Residual blocks |
Conv2D | 2D convolutional layer |
BN | Batch normalization |
RF | Random forest regression |
XGBoost | eXtreme gradient boosting regression |
R2 | Coefficient of determination |
RMSE | Root mean square error |
CV | Coefficient of variation |
MLP | Multi-layer perceptron |
References
- Zheng, Z.; Hoogenboom, G.; Cai, H.J.; Wang, Z.K. Winter Wheat Production on the Guanzhong Plain of Northwest China Under Projected Future Climate with SimCLIM. Agric. Water Manag. 2020, 239, 106233. [Google Scholar] [CrossRef]
- Long, S.; Zhou, S.; He, H.; Zhang, L. Optimizing Food Crop Layout Considering Precipitation Uncertainty: Balancing Regional Water, Carbon, and Economic Pressures with Food Security. J. Clean. Prod. 2024, 467, 142881. [Google Scholar] [CrossRef]
- Zhang, L.; Song, X.; Niu, Y.; Zhang, H.; Wang, A.; Zhu, Y.; Zhu, X.; Chen, L.; Zhu, Q. Estimating Winter Wheat Plant Nitrogen Content by Combining Spectral and Texture Features Based on a Low-Cost UAV RGB System Throughout the Growing Season. Agriculture 2024, 14, 456. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef] [PubMed]
- An, M.; Xing, W.; Han, Y.; Bai, Q.; Peng, Z.; Zhang, B.; Wei, Z.; Wu, W. The Optimal Soil Water Content Models Based on Crop-LAI and Hyperspectral Data of Winter Wheat. Irrig. Sci. 2021, 39, 687–701. [Google Scholar] [CrossRef]
- Xu, S.; Xu, X.; Zhu, Q.; Meng, Y.; Yang, G.; Feng, H.; Yang, M.; Zhu, Q.; Xue, H.; Wang, B. Monitoring Leaf Nitrogen Content in Rice Based on Information Fusion of Multi-Sensor Imagery from UAV. Precis. Agric. 2023, 24, 2327–2349. [Google Scholar] [CrossRef]
- Li, L.; Xie, S.; Ning, J.; Chen, Q.; Zhang, Z. Evaluating Green Tea Quality Based on Multisensor Data Fusion Combining Hyperspectral Imaging and Olfactory Visualization Systems. J. Sci. Food Agric. 2019, 99, 1787–1794. [Google Scholar] [CrossRef]
- Lan, Y.; Huang, Z.; Deng, X.; Zhu, Z.; Huang, H.; Zheng, Z.; Lian, B.; Zeng, G.; Tong, Z. Comparison of Machine Learning Methods for Citrus Greening Detection on UAV Multispectral Images. Comput. Electron. Agric. 2020, 171, 105234. [Google Scholar] [CrossRef]
- Zhang, D.; Han, X.; Lin, F.; Du, S.; Zhang, G.; Hong, Q. Estimation of Winter Wheat Leaf Area Index Using Multi-Source UAV Image Feature Fusion. Trans. Chin. Soc. Agric. Eng. 2022, 38, 171–179. [Google Scholar]
- Chatterjee, S.; Baath, G.S.; Sapkota, B.R.; Flynn, K.C.; Smith, D.R. Enhancing LAI Estimation Using Multispectral Imagery and Machine Learning: A Comparison Between Reflectance-Based and Vegetation Indices-Based Approaches. Comput. Electron. Agric. 2025, 230, 109790. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Gu, L.M.; Dai, M.L.; Bao, X.Y.; Sun, Q.; Zhang, M.Z.; Qu, X.Z.; Li, Z.H.; Zhen, W.C.; Gu, X.H. Estimation of Grain Filling Rate of Winter Wheat Using Leaf Chlorophyll and LAI Extracted from UAV Images. Field Crop Res. 2024, 306, 109198. [Google Scholar] [CrossRef]
- Liu, Q.; Qu, Z.; Bai, Y.; Yang, W.; Fang, H.; Bai, Q.; Yang, Y.; Zhang, R. Using Multispectral Spectrometry and Machine Learning to Estimate Leaf Area Index of Spring Wheat. J. Irrig. Drain. 2024, 43, 63–73. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Yi, X.; Ma, L.; Zhang, L.; Huang, C.; Zhang, Z.; Lv, X. Estimation of Cotton Leaf Area Index (LAI) Based on Spectral Transformation and Vegetation Index. Remote Sens. 2022, 14, 136. [Google Scholar] [CrossRef]
- Cheng, Q.; Ding, F.; Xu, H.; Guo, S.; Li, Z.; Chen, Z. Quantifying Corn LAI Using Machine Learning and UAV Multispectral Imaging. Precis. Agric. 2024, 25, 1777–1799. [Google Scholar] [CrossRef]
- Li, S.; Yuan, F.; Ata-UI-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef]
- Yu, X.; Fan, K.; Huo, X.; Yin, Q.; Qian, L.; Liu, Z.; Zhang, C.; Li, L.; Wang, W.; Hu, X. Dynamic Estimation of Summer Maize LAI Based on Multi-Feature Fusion of UAV Imagery. Trans. Chin. Soc. Agric. Eng. 2025, 41, 124–134. [Google Scholar] [CrossRef]
- Du, X.; Zheng, L.; Zhu, J.; He, Y. Enhanced Leaf Area Index Estimation in Rice by Integrating UAV-Based Multi-Source Data. Remote Sens. 2024, 16, 1138. [Google Scholar] [CrossRef]
- Qiu, D.; Guo, T.; Yu, S.; Liu, W.; Li, L.; Sun, Z.; Peng, H.; Hu, D. Classification of Apple Color and Deformity Using Machine Vision Combined with CNN. Agriculture 2024, 14, 978. [Google Scholar] [CrossRef]
- Memon, M.S.; Chen, S.; Shen, B.; Liang, R.; Tang, Z.; Wang, S.; Zhou, W.; Memon, N. Automatic Visual Recognition, Detection and Classification of Weeds in Cotton Fields Based on Machine Vision. Crop Prot. 2025, 187, 106966. [Google Scholar] [CrossRef]
- Liu, J.; Abbas, I.; Noor, R.S. Development of Deep Learning-Based Variable Rate Agrochemical Spraying System for Targeted Weeds Control in Strawberry Crop. Agronomy 2021, 11, 1480. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Ma, J.; Zhang, L. Estimation of Leaf Area Index for Winter Wheat at Early Stages Based on Convolutional Neural Networks. Comput. Electron. Agric. 2021, 190, 106480. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Dang, L.M.; Sadeghi-Niaraki, A.; Moon, H. Crop Pest Recognition in Natural Scenes Using Convolutional Neural Networks. Comput. Electron. Agric. 2020, 169, 105174. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, B.-Y.; Kim, M.-J.; Sang, W.; Seo, M.C.; Baek, J.-K.; Yang, J.E.; Mo, C. Development of a Soil Moisture Prediction Model Based on Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) in Soybean Cultivation. Sensors 2023, 23, 1976. [Google Scholar] [CrossRef]
- Zhao, N.; Zhou, L.; Huang, T.; Taha, M.F.; He, Y.; Qiu, Z. Development of an Automatic Pest Monitoring System Using a Deep Learning Model of DPeNet. Measurement 2022, 203, 111970. [Google Scholar] [CrossRef]
- Wittstruck, L.; Jarmer, T.; Trautz, D.; Waske, B. Estimating LAI from Winter Wheat Using UAV Data and CNNs. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Wei, L.; Yang, H.; Niu, Y.; Zhang, Y.; Xu, L.; Chai, X. Wheat Biomass, Yield, and Straw-Grain Ratio Estimation from Multi-Temporal UAV-Based RGB and Multispectral Images. Biosyst. Eng. 2023, 234, 187–205. [Google Scholar] [CrossRef]
- Feng, W.; Wu, Y.; He, L.; Ren, X.; Wang, Y.; Hou, G.; Wang, Y.; Liu, W.; Guo, T. An Optimized Non-Linear Vegetation Index for Estimating Leaf Area Index in Winter Wheat. Precis. Agric. 2019, 20, 1157–1176. [Google Scholar] [CrossRef]
- Raj, R.; Walker, J.P.; Pingale, R.; Nandan, R.; Naik, B.; Jagarlapudi, A. Leaf Area Index Estimation Using Top-of-Canopy Airborne RGB Images. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102282. [Google Scholar] [CrossRef]
- Zhao, B.; Ding, Y.; Cai, X.; Xie, J.; Liao, Q.; Zhang, J. Seedlings Number Identification of Rape Planterz Based on Low Altitude Unmanned Aerial Vehicles Remote Sensing Technology. Trans. Chin. Soc. Agric. Eng. 2017, 33, 115–123. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Zhang, H.; Zhang, B.; Zhang, J.; Hu, X.; Du, X.; Cai, J.; Jia, W.; Wu, C. UAV-Based Multispectral Winter Wheat Growth Monitoring with Adaptive Weight Allocation. Agriculture 2024, 14, 1900. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships Between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Vinutha, H.; Poornima, B.; Sagar, B. Detection of Outliers Using Interquartile Range Technique from Intrusion Dataset. In Information and Decision Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 511–518. [Google Scholar] [CrossRef]
- Hao, X.; Liu, L.; Yang, R.; Yin, L.; Zhang, L.; Li, X. A Review of Data Augmentation Methods of Remote Sensing Image Target Recognition. Remote Sens. 2023, 15, 827. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. In Proceedings of the 7th International Conference on Learning Representations (ICLR 2019), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Support Vector Regression. In Efficient Learning Machines; Springer: Berlin/Heidelberg, Germany, 2015; pp. 67–80. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme Learning Machine: Theory and Applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2. 2015, pp. 1–4. Available online: https://cran.ms.unimelb.edu.au/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 15 July 2020).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, AL, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, Z.; Ba, Y.; Dong, N.; Zuo, X.; Yang, N.; Chen, J.; Cheng, Z.; Zhang, B.; Yang, X. Diagnosis of Summer Maize Water Stress Based on UAV Image Texture and Phenotypic Parameters. Trans. Chin. Soc. Agric. Eng. 2024, 40, 136–146. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Tao, X.; Chen, X.; Li, X. Rapid Prediction of Winter Wheat Yield and Nitrogen Use Efficiency Using Consumer-Grade Unmanned Aerial Vehicles Multispectral Imagery. Front. Plant Sci. 2022, 13, 1032170. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, A.; Lan, D.; Zhang, X.; Yin, J.; Goh, H.H. ConvNeXt-Based Anchor-Free Object Detection Model for Infrared Image of Power Equipment. Energy Rep. 2023, 9, 1121–1132. [Google Scholar] [CrossRef]
- Li, Z.; Gu, T.; Li, B.; Xu, W.; He, X.; Hui, X. ConvNeXt-Based Fine-Grained Image Classification and Bilinear Attention Mechanism Model. Appl. Sci. 2022, 12, 9016. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Davidson, C.; Jaganathan, V.; Sivakumar, A.N.; Czarnecki, J.M.P.; Chowdhary, G. NDVI/NDRE Prediction from Standard RGB Aerial Imagery Using Deep Learning. Comput. Electron. Agric. 2022, 203, 107396. [Google Scholar] [CrossRef]
Vegetation Index | Formulation | Reference |
---|---|---|
Normalized difference vegetation index (NDVI) | NDVI = (NIR R)/(NIR R) | [30] |
Normalized difference red-edge vegetation index (NDRE) | NDRE = (NIR RE)/(NIR RE) | [31] |
Optimized soil-adjusted vegetation index (OSAVI) | OSAVI = (NIR R)/(NIR R L) (L = 0.16) | [32] |
Modified chlorophyll absorption in reflectance index (MCARI) | MCARI = [(RE R) 0.2 (RE G)] (RE/R)] | [33] |
Transformed chlorophyll absorption in reflectance index (TCARI) | TCARI = 3 [(RE R) 0.2 (RE G) (RE/R)] | [30] |
Green normalized difference vegetation index (GNDVI) | GNDVI = (NIR G)/(NIR G) | [34] |
Red–green–blue vegetation index (RGBVI) | RGBVI = (G2 B R)/(G2 B R) | [35] |
Green leaf index (GLI) | GLI = (2G R B)/(2G R B) | [36] |
Date | Growth Stage | Number | Max | Min | Mean | Std | Var | CV |
---|---|---|---|---|---|---|---|---|
12 March 2024 | Regreening | 91 | 2.067 | 0.500 | 1.215 | 0.386 | 0.149 | 0.318 |
21 March 2024 | Jointing | 91 | 3.750 | 0.286 | 1.681 | 0.665 | 0.442 | 0.396 |
30 March 2024 | Booting | 91 | 5.700 | 0.643 | 2.854 | 1.023 | 1.046 | 0.358 |
10 April 2024 | Heading | 91 | 6.800 | 1.300 | 4.044 | 0.988 | 0.975 | 0.244 |
18 April 2024 | Pre-Anthesis | 91 | 5.983 | 2.017 | 4.200 | 0.857 | 0.734 | 0.204 |
24 April 2024 | Post-Anthesis | 91 | 6.743 | 1.729 | 4.442 | 0.955 | 0.912 | 0.215 |
8 May 2024 | Grain Filling | 91 | 6.733 | 2.050 | 4.572 | 0.913 | 0.834 | 0.200 |
Growth Stage | Moran’s I | p-Value | z-Score |
---|---|---|---|
Regreening | 0.0045 | 0.2 | 0.7419 |
Jointing | 0.0177 | 0.106 | 1.2663 |
Booting | 0.0036 | 0.207 | 0.7025 |
Heading | 0.0181 | 0.105 | 1.2363 |
Pre-Anthesis | 0.0051 | 0.213 | 0.6799 |
Post-Anthesis | 0.0097 | 0.159 | 0.9486 |
Grain Filling | 0.0074 | 0.172 | 0.9046 |
Growth Stage | NDVI | NDRE | OSAVI | MCARI | TCARI | GNDVI | RGBVI | GLI |
---|---|---|---|---|---|---|---|---|
Regreening | 0.831 | 0.881 | 0.768 | 0.867 | 0.867 | 0.849 | 0.790 | 0.805 |
Jointing | 0.782 | 0.861 | 0.743 | 0.872 | 0.872 | 0.814 | 0.708 | 0.723 |
Booting | 0.708 | 0.805 | 0.850 | 0.878 | 0.878 | 0.734 | 0.706 | 0.707 |
Heading | 0.612 | 0.624 | 0.658 | 0.671 | 0.671 | 0.580 | 0.564 | 0.559 |
Pre-Anthesis | 0.579 | 0.645 | 0.752 | 0.710 | 0.710 | 0.592 | 0.410 | 0.424 |
Post-Anthesis | 0.626 | 0.638 | 0.750 | 0.724 | 0.724 | 0.615 | 0.420 | 0.450 |
Grain Filling | 0.615 | 0.644 | 0.773 | 0.674 | 0.674 | 0.625 | 0.182 | 0.257 |
Growth Stage | Training Set | Validation Set | ||||
---|---|---|---|---|---|---|
Test Loss | R2 | RMSE | Test Loss | R2 | RMSE | |
Regreening | 0.0204 | 0.7494 | 0.2051 | 0.0103 | 0.7679 | 0.1438 |
Jointing | 0.0581 | 0.7632 | 0.3162 | 0.0333 | 0.8611 | 0.2581 |
Booting | 0.0886 | 0.8329 | 0.4206 | 0.0664 | 0.8592 | 0.3644 |
Heading | 0.2079 | 0.5063 | 0.7010 | 0.1288 | 0.6898 | 0.5203 |
Pre-Anthesis | 0.3391 | 0.3101 | 0.6933 | 0.1481 | 0.6181 | 0.5479 |
Post-Anthesis | 0.4430 | 0.2978 | 0.8115 | 0.1515 | 0.5875 | 0.5703 |
Grain Filling | 0.3221 | 0.3328 | 0.7445 | 0.1819 | 0.5418 | 0.6072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, B.; Zhang, H.; Yang, W.; Hu, X.; Cai, J.; Wu, C.; Wang, X. Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery. Agronomy 2025, 15, 988. https://doi.org/10.3390/agronomy15040988
Zhang L, Zhang B, Zhang H, Yang W, Hu X, Cai J, Wu C, Wang X. Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery. Agronomy. 2025; 15(4):988. https://doi.org/10.3390/agronomy15040988
Chicago/Turabian StyleZhang, Lulu, Bo Zhang, Huanhuan Zhang, Wanting Yang, Xinkang Hu, Jianrong Cai, Chundu Wu, and Xiaowen Wang. 2025. "Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery" Agronomy 15, no. 4: 988. https://doi.org/10.3390/agronomy15040988
APA StyleZhang, L., Zhang, B., Zhang, H., Yang, W., Hu, X., Cai, J., Wu, C., & Wang, X. (2025). Multi-Source Feature Fusion Network for LAI Estimation from UAV Multispectral Imagery. Agronomy, 15(4), 988. https://doi.org/10.3390/agronomy15040988