Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genome-Wide Identification of GmWIP Genes
2.2. Gene Structure Validation and Visualization
2.3. Conserved Domain and Motif Identification
2.4. Phylogenetic Analysis, Physicochemical Properties, Structural Prediction, and Subcellular Localization
2.5. Chromosomal Distribution, Duplication, and Collinearity Analysis
2.6. Cis-Element Analysis of GmWIP Promoters
2.7. Soybean Cultivation and Nematode Inoculation
2.8. RNA Extraction, cDNA Synthesis, and qRT-PCR Analysis
2.9. Vector Construction, Transgenic Hairy Root Induction, and GUS Histochemical Staining
3. Results
3.1. Identification of Wound-Induced Polypeptide Genes in Soybean
3.2. Conserved Motifs, Classification, and Phylogenetic Analysis of GmWIPs
3.3. Duplication and Collinearity Analysis
3.4. Expression Patterns of GmWIP Genes Under SCN Infection
3.5. Cis-Acting Elements of GmWIP Promoters and GUS Activity Under SCN Infection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCN | soybean cyst nematode |
WIP | wound-induced polypeptide |
qRT-PCR | quantitative real-time PCR |
References
- Wang, W.; Liu, Z.; Liu, Y.; Su, Z.; Liu, Y. Plant polypeptides: A review on extraction, isolation, bioactivities and prospects. Int. J. Biol. Macromol. 2022, 207, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, J.C.; Brand, U.; Running, M.P.; Simon, R.; Meyerowitz, E.M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 1999, 283, 1911–1914. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Matsubayashi, Y.; Hanai, H.; Sakagami, Y. Phytosulfokine-α, a Peptide Growth Factor Found in Higher Plants: Its Structure, Functions, Precursor and Receptors. Plant Cell Physiol. 2000, 41, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Pearce, G.; Moura, D.S.; Stratmann, J.; Ryan, C.A., Jr. RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl. Acad. Sci. USA 2001, 98, 12843–12847. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Terras, F.; Cammue, B.; Osborn, R.W. Plant defensins: Novel antimicrobial peptides as components of the host defense system. Plant Physiol. 1995, 108, 1353. [Google Scholar] [CrossRef]
- Ryan, C.A.; Pearce, G. Systemin: A polypeptide signal for plant defensive genes. Annu. Rev. Cell Dev. Biol. 1998, 14, 1–17. [Google Scholar] [CrossRef]
- Ohyama, K.; Ogawa, M.; Matsubayashi, Y. Identification of a biologically active, small, secreted peptide in Arabidopsis by in silico gene screening, followed by LC-MS-based structure analysis. Plant J. 2008, 55, 152–160. [Google Scholar] [CrossRef]
- Stahl, Y.; Wink, R.H.; Ingram, G.C.; Simon, R. A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr. Biol. 2009, 19, 909–914. [Google Scholar] [CrossRef]
- Butenko, M.A.; Patterson, S.E.; Grini, P.E.; Stenvik, G.-E.; Amundsen, S.S.; Mandal, A.; Aalen, R.B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 2003, 15, 2296–2307. [Google Scholar] [CrossRef]
- Stenvik, G.-E.; Tandstad, N.M.; Guo, Y.; Shi, C.-L.; Kristiansen, W.; Holmgren, A.; Clark, S.E.; Aalen, R.B.; Butenko, M.A. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 2008, 20, 1805–1817. [Google Scholar] [CrossRef]
- Kumpf, R.P.; Shi, C.-L.; Larrieu, A.; Stø, I.M.; Butenko, M.A.; Péret, B.; Riiser, E.S.; Bennett, M.J.; Aalen, R.B. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence. Proc. Natl. Acad. Sci. USA 2013, 110, 5235–5240. [Google Scholar] [CrossRef] [PubMed]
- Sprunck, S.; Rademacher, S.; Vogler, F.; Gheyselinck, J.; Grossniklaus, U.; Dresselhaus, T. Egg cell–secreted EC1 triggers sperm cell activation during double fertilization. Science 2012, 338, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, F.; Suzuki, T.; Osakabe, Y.; Betsuyaku, S.; Kondo, Y.; Dohmae, N.; Fukuda, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling. Nature 2018, 556, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, X.; Zhang, Y.; Wang, J.; Yang, J.; Ishida, T.; Jiang, W.; Han, X.; Kang, J.; Wang, X. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. Plant Cell Environ. 2019, 42, 1033–1044. [Google Scholar] [CrossRef]
- Chien, P.-S.; Nam, H.G.; Chen, Y.-R. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 5301–5313. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Lin, J. Systemin-mediated long-distance systemic defense responses. New Phytol. 2020, 226, 1573–1582. [Google Scholar] [CrossRef]
- Pearce, G.; Strydom, D.; Johnson, S.; Ryan, C.A. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 1991, 253, 895–897. [Google Scholar] [CrossRef]
- Nakagami, S.; Notaguchi, M.; Kondo, T.; Okamoto, S.; Ida, T.; Sato, Y.; Higashiyama, T.; Tsai, A.Y.-L.; Ishida, T.; Sawa, S. Root-knot nematode modulates plant CLE3-CLV1 signaling as a long-distance signal for successful infection. Sci. Adv. 2023, 9, eadf4803. [Google Scholar] [CrossRef]
- Guo, X.; Chronis, D.; De La Torre, C.M.; Smeda, J.; Wang, X.; Mitchum, M.G. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol. J. 2015, 13, 801–810. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Lee, C.-Y.; Cheng, K.-T.; Chang, W.-H.; Huang, R.-N.; Nam, H.G.; Chen, Y.-R. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato. Plant Cell 2014, 26, 4135–4148. [Google Scholar] [CrossRef]
- Yang, W.; Zhai, H.; Wu, F.; Deng, L.; Chao, Y.; Meng, X.; Chen, Q.; Liu, C.; Bie, X.; Sun, C.; et al. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024, 187, 3024–3038.e14. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, J.; Yu, G.; Luo, L. A wound-induced small polypeptide gene family is upregulated in soybean nodules. Chin. Sci. Bull. 2013, 58, 1003–1009. [Google Scholar] [CrossRef]
- Yu, L.; Wang, Y.; Liu, Y.; Li, N.; Yan, J.; Luo, L. Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. Biochem. Biophys. Res. Commun. 2018, 504, 149–156. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, Y.; Li, X.; Zhao, L.; Chen, S. First report of the soybean cyst nematode, Heterodera glycines, on soybean in Zhejiang, eastern China. Plant Dis. 2009, 93, 319. [Google Scholar] [CrossRef]
- Glushkevich, A.; Spechenkova, N.; Fesenko, I.; Knyazev, A.; Samarskaya, V.; Kalinina, N.O.; Taliansky, M.; Love, A.J. Transcriptomic reprogramming, alternative splicing and RNA methylation in potato (Solanum tuberosum L.) plants in response to potato virus Y infection. Plants 2022, 11, 635. [Google Scholar] [CrossRef]
- Kang, W.; Duan, Y.; Lei, P. Transcriptomic changes in soybean underlying growth promotion and defense against cyst nematode after Bacillus simplex Sneb545 treatment. Gene 2024, 898, 148080. [Google Scholar] [CrossRef]
- Kang, W.; Zhu, X.; Wang, Y.; Chen, L.; Duan, Y. Transcriptomic and metabolomic analyses reveal that bacteria promote plant defense during infection of soybean cyst nematode in soybean. BMC Plant Biol. 2018, 18, 86. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Sun, A.; Wang, L.; Ren, C.; Liu, J.; Gao, X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front. Genet. 2022, 13, 1060529. [Google Scholar] [CrossRef]
- Huang, M.; Jiang, Y.; Qin, R.; Jiang, D.; Chang, D.; Tian, Z.; Li, C.; Wang, C. Full-length transcriptional analysis of the same soybean genotype with compatible and incompatible reactions to Heterodera glycines reveals nematode infection activating plant defense response. Front. Plant Sci. 2022, 13, 866322. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
- Qi, N.; Yan, J.; Lei, P.; Kang, W.; Liu, X.; Xuan, Y.; Fan, H.; Wang, Y.; Yang, N.; Chen, L.; et al. Transcriptome Analysis of GmPUB20A Overexpressing and RNA-Interferencing Transgenic Hairy Roots Reveals Underlying Negative Role in Soybean Resistance to Cyst Nematode. J. Agric. Food Chem. 2023, 71, 18059–18073. [Google Scholar] [CrossRef] [PubMed]
- Grienenberger, E.; Fletcher, J.C. Polypeptide signaling molecules in plant development. Curr. Opin. Plant Biol. 2015, 23, 8–14. [Google Scholar] [CrossRef]
- Ryan, C.A.; Pearce, G.; Scheer, J.; Moura, D.S. Polypeptide hormones. Plant Cell 2002, 14 (Suppl. S1), S251–S264. [Google Scholar] [CrossRef]
- Chen, Y.L.; Fan, K.T.; Hung, S.C.; Chen, Y.R. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytol. 2020, 225, 2267–2282. [Google Scholar] [CrossRef]
- Hander, T.; Fernández-Fernández, Á.D.; Kumpf, R.P.; Willems, P.; Schatowitz, H.; Rombaut, D.; Staes, A.; Nolf, J.; Pottie, R.; Yao, P.; et al. Damage on plants activates Ca2+-dependent metacaspases for release of immunomodulatory peptides. Science 2019, 363, eaar7486. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.W.; Lee, Y.W.; Hwang, C.H. Soybean nodule-enhanced CLE peptides in roots act as signals in GmNARK-mediated nodulation suppression. Plant Cell Physiol. 2011, 52, 1613–1627. [Google Scholar] [CrossRef]
- Vega-Muñoz, I.; Duran-Flores, D.; Fernández-Fernández, Á.D.; Heyman, J.; Ritter, A.; Stael, S. Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Front. Plant Sci. 2020, 11, 610445. [Google Scholar] [CrossRef]
- Seong, S.-Y.; Matzinger, P. Hydrophobicity: An ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 2004, 4, 469–478. [Google Scholar] [CrossRef]
- Gillet, F.-X.; Bournaud, C.; Antonino de Souza Júnior, J.D.; Grossi-de-Sa, M.F. Plant-parasitic nematodes: Towards understanding molecular players in stress responses. Ann. Bot. 2017, 119, 775–789. [Google Scholar] [CrossRef]
- Shah, S.J.; Anjam, M.S.; Mendy, B.; Anwer, M.A.; Habash, S.S.; Lozano-Torres, J.L.; Grundler, F.M.; Siddique, S. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. J. Exp. Bot. 2017, 68, 5949–5960. [Google Scholar] [CrossRef]
Sequence ID | Rename ID | Number of Amino Acid | Molecular Weight (Da) | Theoretical pI | Subcellular Localization |
---|---|---|---|---|---|
Glyma.06G297600.1 | GmWIP1 | 86 | 9437.69 | 9.51 | Chloroplast |
Glyma.06G297800.1 | GmWIP2 | 86 | 9471.75 | 9.7 | Chloroplast |
Glyma.06G297900.1 | GmWIP3 | 86 | 9401.7 | 9.92 | Chloroplast |
Glyma.06G298400.1 | GmWIP4 | 69 | 7778.84 | 7.96 | Mitochondrial |
Glyma.06G298600.1 | GmWIP5 | 86 | 9437.69 | 9.51 | Chloroplast |
Glyma.06G298700.1 | GmWIP6 | 86 | 9385.57 | 9.78 | Chloroplast |
Glyma.06G298800.1 | GmWIP7 | 86 | 9361.77 | 9.56 | Chloroplast |
Glyma.06G298900.1 | GmWIP8 | 86 | 9401.7 | 9.92 | Chloroplast |
Glyma.06G299000.1 | GmWIP9 | 106 | 11,629.23 | 9.45 | Chloroplast |
Glyma.12G200300.1 | GmWIP10 | 80 | 8668.66 | 7.78 | Nuclear |
Glyma.12G200400.1 | GmWIP11 | 96 | 10,425.88 | 9.34 | Chloroplast |
Glyma.12G200500.1 | GmWIP12 | 90 | 9991.46 | 9.95 | Chloroplast |
Glyma.12G200600.1 | GmWIP13 | 90 | 10,001.46 | 10.02 | Chloroplast |
Glyma.12G200700.1 | GmWIP14 | 87 | 9708.18 | 10.14 | Chloroplast |
Glyma.12G200800.1 | GmWIP15 | 89 | 9720.01 | 9.83 | Chloroplast |
Glyma.12G201000.1 | GmWIP16 | 93 | 9900.16 | 9.23 | Chloroplast |
Glyma.12G218300.1 | GmWIP17 | 89 | 9816.23 | 10.09 | Chloroplast |
Glyma.12G218400.1 | GmWIP18 | 89 | 9838.26 | 10.44 | Chloroplast |
Glyma.13G247000.1 | GmWIP19 | 84 | 9556.94 | 9.86 | Nuclear |
Glyma.13G282200.1 | GmWIP20 | 89 | 9797.21 | 10.44 | Chloroplast |
Glyma.13G282400.1 | GmWIP21 | 89 | 9797.21 | 10.44 | Chloroplast |
Glyma.13G301200.3 | GmWIP22 | 93 | 9831.05 | 9.51 | Chloroplast |
Glyma.13G301400.1 | GmWIP23 | 88 | 9576.74 | 9.69 | Chloroplast |
Glyma.13G301500.1 | GmWIP24 | 90 | 9903.3 | 10.03 | Chloroplast |
Glyma.13G301600.1 | GmWIP25 | 90 | 9845.35 | 9.67 | Chloroplast |
Glyma.13G301700.1 | GmWIP26 | 90 | 10,071.47 | 9.94 | Chloroplast |
Glyma.13G301800.1 | GmWIP27 | 90 | 10,053.51 | 9.86 | Chloroplast |
Glyma.13G301900.1 | GmWIP28 | 88 | 9489.85 | 9.94 | Chloroplast |
Glyma.13G302000.1 | GmWIP29 | 80 | 8670.67 | 8.85 | Nuclear |
Glyma.U031111.1 | GmWIP30 | 86 | 9453.72 | 9.7 | Chloroplast |
Glyma.U031211.1 | GmWIP31 | 86 | 9485.78 | 9.7 | Chloroplast |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, W.; Sun, Z.; Xu, J.; Qi, N.; Lei, P. Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection. Agronomy 2025, 15, 957. https://doi.org/10.3390/agronomy15040957
Kang W, Sun Z, Xu J, Qi N, Lei P. Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection. Agronomy. 2025; 15(4):957. https://doi.org/10.3390/agronomy15040957
Chicago/Turabian StyleKang, Wenshu, Zicheng Sun, Jiayao Xu, Nawei Qi, and Piao Lei. 2025. "Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection" Agronomy 15, no. 4: 957. https://doi.org/10.3390/agronomy15040957
APA StyleKang, W., Sun, Z., Xu, J., Qi, N., & Lei, P. (2025). Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection. Agronomy, 15(4), 957. https://doi.org/10.3390/agronomy15040957