Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = wound-induced polypeptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3644 KiB  
Article
Genome-Wide Analysis of Wound-Induced Polypeptide Genes in Glycine max and Their Expression Dynamics During Cyst Nematode Infection
by Wenshu Kang, Zicheng Sun, Jiayao Xu, Nawei Qi and Piao Lei
Agronomy 2025, 15(4), 957; https://doi.org/10.3390/agronomy15040957 - 14 Apr 2025
Viewed by 523
Abstract
Plant small peptides are critical regulators of various biological processes, including development and stress responses. Polypeptides within the DUF3774 family, known as wound-induced polypeptides (WIPs), have been identified as key players in pattern-triggered immunity (PTI) and defense mechanisms in Arabidopsis. In this [...] Read more.
Plant small peptides are critical regulators of various biological processes, including development and stress responses. Polypeptides within the DUF3774 family, known as wound-induced polypeptides (WIPs), have been identified as key players in pattern-triggered immunity (PTI) and defense mechanisms in Arabidopsis. In this study, the genome-wide identification of WIP genes in Glycine max was performed, followed by gene structure correction and validation using second-generation and full-length RNA sequencing data. A total of 31 GmWIP genes were identified and validated, mapped to chromosomes Gm06, Gm12, Gm13, and Gm06_scaffold_301. Phylogenetic analysis grouped these genes into five distinct clusters, with tandem duplication emerging as the primary mechanism for their expansion in the soybean genome. qRT-PCR analysis revealed dynamic and significant changes in GmWIP expression during soybean cyst nematode (SCN) infection in a susceptible soybean cultivar. Remarkably, 90% of the GmWIP genes were downregulated at the early stage of SCN infection (1 dpi), and further corroborated by the pGmWIPs::GUS reporter system. These findings suggest that GmWIP genes may act as regulators in the defense responses of susceptible soybean cultivars, providing a foundation for future functional studies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

48 pages, 9421 KiB  
Review
Diversity of Bioinspired Hydrogels: From Structure to Applications
by Alexandra Lupu, Luiza Madalina Gradinaru, Vasile Robert Gradinaru and Maria Bercea
Gels 2023, 9(5), 376; https://doi.org/10.3390/gels9050376 - 2 May 2023
Cited by 18 | Viewed by 4431
Abstract
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to [...] Read more.
Hydrogels are three-dimensional networks with a variety of structures and functions that have a remarkable ability to absorb huge amounts of water or biological fluids. They can incorporate active compounds and release them in a controlled manner. Hydrogels can also be designed to be sensitive to external stimuli: temperature, pH, ionic strength, electrical or magnetic stimuli, specific molecules, etc. Alternative methods for the development of various hydrogels have been outlined in the literature over time. Some hydrogels are toxic and therefore are avoided when obtaining biomaterials, pharmaceuticals, or therapeutic products. Nature is a permanent source of inspiration for new structures and new functionalities of more and more competitive materials. Natural compounds present a series of physico-chemical and biological characteristics suitable for biomaterials, such as biocompatibility, antimicrobial properties, biodegradability, and nontoxicity. Thus, they can generate microenvironments comparable to the intracellular or extracellular matrices in the human body. This paper discusses the main advantages of the presence of biomolecules (polysaccharides, proteins, and polypeptides) in hydrogels. Structural aspects induced by natural compounds and their specific properties are emphasized. The most suitable applications will be highlighted, including drug delivery, self-healing materials for regenerative medicine, cell culture, wound dressings, 3D bioprinting, foods, etc. Full article
(This article belongs to the Special Issue Structured Gels: Mechanics, Responsivity and Applications)
Show Figures

Figure 1

14 pages, 1684 KiB  
Review
The p53 Family Members p63 and p73 Roles in the Metastatic Dissemination: Interactions with microRNAs and TGFβ Pathway
by Lidia Rodriguez Calleja, Melanie Lavaud, Robel Tesfaye, Bénédicte Brounais-Le-Royer, Marc Baud’huin, Steven Georges, François Lamoureux, Franck Verrecchia and Benjamin Ory
Cancers 2022, 14(23), 5948; https://doi.org/10.3390/cancers14235948 - 1 Dec 2022
Cited by 6 | Viewed by 3332
Abstract
TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms [...] Read more.
TP53 (TP53), p73 (TP73), and p63 (TP63) are members of the p53 transcription factor family, which has many activities spanning from embryonic development through to tumor suppression. The utilization of two promoters and alternative mRNA splicing has been shown to yield numerous isoforms in p53, p63, and p73. TAp73 is thought to mediate apoptosis as a result of nuclear accumulation following chemotherapy-induced DNA damage, according to a number of studies. Overexpression of the nuclear ΔNp63 and ΔNp73 isoforms, on the other hand, suppresses TAp73’s pro-apoptotic activity in human malignancies, potentially leading to metastatic spread or inhibition. Another well-known pathway that has been associated to metastatic spread is the TGF pathway. TGFs are a family of structurally related polypeptide growth factors that regulate a variety of cellular functions including cell proliferation, lineage determination, differentiation, motility, adhesion, and cell death, making them significant players in development, homeostasis, and wound repair. Various studies have already identified several interactions between the p53 protein family and the TGFb pathway in the context of tumor growth and metastatic spread, beginning to shed light on this enigmatic intricacy. Full article
(This article belongs to the Special Issue The Role of p53 Family in Cancer)
Show Figures

Figure 1

11 pages, 1276 KiB  
Article
Anti-Inflammatory Activity of β-thymosin Peptide Derived from Pacific Oyster (Crassostrea gigas) on NO and PGE2 Production by Down-Regulating NF-κB in LPS-Induced RAW264.7 Macrophage Cells
by Dukhyun Hwang, Min-jae Kang, Mi Jeong Jo, Yong Bae Seo, Nam Gyu Park and Gun-Do Kim
Mar. Drugs 2019, 17(2), 129; https://doi.org/10.3390/md17020129 - 21 Feb 2019
Cited by 79 | Viewed by 6494
Abstract
β-thymosin is known for having 43 amino acids, being water-soluble, having a light molecular weight and ubiquitous polypeptide. The biological activities of β-thymosin are diverse and include the promotion of wound healing, reduction of inflammation, differentiation of T cells and inhibition of apoptosis. [...] Read more.
β-thymosin is known for having 43 amino acids, being water-soluble, having a light molecular weight and ubiquitous polypeptide. The biological activities of β-thymosin are diverse and include the promotion of wound healing, reduction of inflammation, differentiation of T cells and inhibition of apoptosis. Our previous studies showed that oyster β-thymosin originated from the mantle of the Pacific oyster, Crassostrea gigas and had antimicrobial activity. In this study, we investigated the anti-inflammatory effects of oyster β-thymosin in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells using human β-thymosin as a control. Oyster β-thymosin inhibited the nitric oxide (NO) production as much as human β-thymosin in LPS-induced RAW264.7 cells. It also showed that oyster β-thymosin suppressed the expression of prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, oyster β-thymosin reduced inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oyster β-thymosin also suppressed the nuclear translocation of phosphorylated nuclear factor-κB (NF-κB) and degradation of inhibitory κB (IκB) in LPS-induced RAW264.7 cells. These results suggest that oyster β-thymosin, which is derived from the mantle of the Pacific oyster, has as much anti-inflammatory effects as human β-thymosin. Additionally, oyster β-thymosin suppressed NO production, PGE2 production and inflammatory cytokines expression via NF-κB in LPS-induced RAW264.7 cells. Full article
(This article belongs to the Special Issue The Pharmacological Potential of Marine-Derived Peptides and Proteins)
Show Figures

Figure 1

Back to TopTop