Yield, Stability, and Adaptability of Hybrid Japonica Rice Varieties in the East Coast of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Regional Trial Sites
2.2. Plant Materials
2.3. Experimental Design and Management
2.4. Description of the Influence of Climatic Conditions on the Growth of Rice
2.5. Data Analysis
2.5.1. Variance Analysis
2.5.2. AMMI Analysis
2.5.3. GGE Biplot Assessment
3. Results
3.1. Variance Analysis and AMMI Model Analysis for Grain Yield of Hybrid Japonica Rice Varieties
3.2. AMMI Biplot Analysis and Stability Parameter Estimation
3.3. GGE Biplot Analysis
3.3.1. Yield Potential and Stability Analysis
3.3.2. Analysis of Suitable Planting Site for the Tested Rice Varieties
3.3.3. Discrimination and Representativeness Analysis of District Trial Sites
3.3.4. Ideal Variety Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, X.; Wei, F.; Cheng, C.; Qian, Q. A historical review of hybrid rice breeding. J. Integr. Plant Biol. 2024, 66, 532–545. [Google Scholar] [PubMed]
- Li, J.; Luo, X.; Zhou, K. Research and development of hybrid rice in China. Plant Breed. 2024, 143, 96–104. [Google Scholar]
- Van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What should students in plant breeding know about the statistical aspects of genotype× environment interactions? Crop Sci. 2016, 56, 2119–2140. [Google Scholar] [CrossRef]
- Prus, M.; Piepho, H.-P. Optimizing the allocation of trials to sub-regions in multi-environment crop variety testing. J. Agric. Biol. Environ. Stat. 2021, 26, 267–288. [Google Scholar]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar]
- Zeng, D.L.; Tian, Z.X.; Rao, Y.C.; Dong, G.J.; Yang, Y.L.; Huang, L.C.; Leng, Y.J.; Xu, J.; Sun, C.; Zhang, G.H.; et al. Rational design of high-yield and superior-quality rice. Nat. Plants 2017, 3, 17031. [Google Scholar]
- Gauch, H., Jr. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Kılıç, H. Additive main effects and multiplicative interactions (AMMI) analysis of grain yield in barley genotypes across environments. J. Agric. Sci. 2014, 20, 337–344. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Malosetti, M.; Gauch, H.G., Jr.; van Eeuwijk, F.A. A weighted AMMI algorithm to study genotype-by-environment interaction and QTL-by-environment interaction. Crop Sci. 2014, 54, 1555–1570. [Google Scholar]
- Hongyu, K.; García-Peña, M.; de Araújo, L.B.; dos Santos Dias, C.T. Statistical analysis of yield trials by AMMI analysis of genotype× environment interaction. Biomed. Lett. 2014, 51, 89–102. [Google Scholar]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci. 2007, 47, 643–653. [Google Scholar]
- Esan, V.I.; Oke, G.O.; Ogunbode, T.O.; Obisesan, I.A. AMMI and GGE biplot analyses of Bambara groundnut [Vigna subterranea (L.) Verdc.] for agronomic performances under three environmental conditions. Front. Plant Sci. 2023, 13, 997429. [Google Scholar] [CrossRef] [PubMed]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.A.; Roustami, B.; Seyyedi, F.; Akbari, F. GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Not. Sci. Biol. 2013, 5, 256–262. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Hong, M.; Zhang, X.; Guo, R. Evaluation of yield, stability and adaptability of national winter rapeseed regional trials in the upper Yangtze River region in 2017–2018. Oil Crop Sci. 2020, 5, 121–128. [Google Scholar]
- Bilate Daemo, B.; Belew Yohannes, D.; Mulualem Beyene, T.; Gebreselassie Abtew, W. AMMI and GGE Biplot analyses for mega environment identification and selection of some high-yielding cassava genotypes for multiple environments. Int. J. Agron. 2023, 2023, 6759698. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Rafii, M.Y.; Ramlee, S.I.; Jusoh, M.; Al Mamun, M. AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Sci. Rep. 2021, 11, 22791. [Google Scholar] [CrossRef]
- Solangi, F.; Zhu, X.; Solangi, K.A.; Khaskhali, S.; Yan, H. Predicting cropland and fertilizer consumption models and their effect on crop production in interior Jiangsu Province: A distributed autoregressive lag method. Cogent Food Agric. 2024, 10, 2434947. [Google Scholar] [CrossRef]
- Wang, C.-L.; Zhang, Y.-D.; Zhen, Z.; Tao, C.; Zhao, Q.-Y.; Zhong, W.-G.; Jie, Y.; Shu, Y.; Zhou, L.-H.; Ling, Z. Research progress on the breeding of japonica super rice varieties in Jiangsu Province, China. J. Integr. Agric. 2017, 16, 992–999. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.; da Silva, J.A.; Marchioro, V.S.; de Souza, V.Q.; Jost, E. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. Agron. J. 2019, 111, 2949–2960. [Google Scholar] [CrossRef]
- Annicchiarico, P. Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years. Theor. Appl. Genet. 1997, 94, 1072–1077. [Google Scholar] [CrossRef]
- Gauch, H.G.; Zobel, R.W. Predictive and postdictive success of statistical analyses of yield trials. Theor. Appl. Genet. 1988, 76, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, C.; Xiang, Z. Analysis of variety stability based on AMMI model. Acta Agron. Sin. 1998, 24, 304–309. [Google Scholar]
- Frutos, E.; Galindo, M.P.; Leiva, V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch. Environ. Res. Risk Assess. 2014, 28, 1629–1641. [Google Scholar]
- Gowda, K.H.; Chauhan, V.B.; Nedunchezhiyan, M.; Pradeepika, C.; Senthilkumar, K.M.; Chandra, V.; Byju, G.; Sahoo, M.R.; Pati, K.; Arutselvan, R. Genotype × Environment Interaction Analysis and Simultaneous Selection Using AMMI, BLUP, GGE Biplot and MTSI Under Drought Condition in Sweet Potato. J. Soil. Sci. Plant Nutr. 2025. [Google Scholar] [CrossRef]
- Barati, A.; Pour-Aboughadareh, A.; Arazmjoo, E.; Tabatabaei, S.A.; Bocianowski, J.; Jamshidi, B. Identification of High Yielding and Stable Barley Genotypes for Drought Conditions in the Moderate Climate of Iran Using AMMI Model and GGE Biplot Analysis. J. Crop Health 2025, 77, 8. [Google Scholar]
- Kuru, B.; Abera, N.; Mulualem, T. Genotype X environment interaction and yield stability of finger millet (Eleusine coracana L.) genotypes based on AMMI, GGE and MTSI analysis in humid lowland areas of Ethiopia. Field Crop. Res. 2025, 322, 109707. [Google Scholar]
- Sanadya, S.K.; Sood, V.K.; Kumar, S.; Sharma, G.; Sood, R.; Katna, G.; Enyew, M.; Sahoo, S. Stability Indices, AMMI and GGE Biplots Analysis of Forage Oat Germplasm Under Variable Growing Regimes in the Northwestern Himalayas. Agric. Res. 2025. [Google Scholar] [CrossRef]
- Egea-Gilabert, C.; Pagnotta, M.A.; Tripodi, P. Genotype × environment interactions in crop breeding. Agronomy 2021, 11, 1644. [Google Scholar] [CrossRef]
- de Leon, N.; Jannink, J.L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a Special Issue on Genotype by Environment Interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar]
- Alizadeh, K.; Mohammadi, R.; Shariati, A.; Eskandari, M. Comparative analysis of statistical models for evaluating genotype× environment interaction in rainfed safflower. Agric. Res. 2017, 6, 455–465. [Google Scholar]
- Dang, X.; Hu, X.; Ma, Y.; Li, Y.; Kan, W.; Dong, X. AMMI and GGE biplot analysis for genotype× environment interactions affecting the yield and quality characteristics of sugar beet. PeerJ 2024, 12, e16882. [Google Scholar]
- Kindie, Y.; Tesso, B.; Amsalu, B. AMMI and GGE biplot analysis of genotype by environment interaction and yield stability in early maturing cowpea [Vigna unguiculata (L) Walp] landraces in Ethiopia. Plant-Environ. Interact. 2022, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Haider, Z.; Akhter, M.; Mahmood, A.; Khan, R.A.R. Comparison of GGE biplot and AMMI analysis of multi-environment trial (MET) data to assess adaptability and stability of rice genotypes. Afr. J. Agric. Res. 2017, 12, 3542–3548. [Google Scholar]
- Daemo, B.B.; Ashango, Z. Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro zone, Ethiopia. J. Agric. Food Res. 2024, 18, 101287. [Google Scholar] [CrossRef]
- Ma, C.; Liu, C.; Ye, Z. Influence of Genotype× Environment Interaction on Yield Stability of Maize Hybrids with AMMI Model and GGE Biplot. Agronomy 2024, 14, 1000. [Google Scholar] [CrossRef]
- Gebreselassie, H.; Tesfaye, B.; Gedebo, A.; Tolessa, K. Genotype by environment interaction and stability analysis using AMMI and GGE-biplot models for yield of Arabica coffee genotypes in south Ethiopia. J. Crop Sci. Biotechnol. 2024, 27, 65–77. [Google Scholar] [CrossRef]
- Durai, A.A.; Amaresh; Kumar, R.A.; Hemaprabha, G. Elucidating the GXE Interaction Using AMMI, AMMI Stability Parameters and GGE for Cane Yield and Quality in Sugarcane. Trop. Plant Biol. 2025, 18, 3. [Google Scholar] [CrossRef]
- Hasan, M.J.; Kulsum, M.U.; Sarker, U.; Matin, M.Q.I.; Shahin, N.H.; Kabir, M.S.; Ercisli, S.; Marc, R.A. Assessment of GGE, AMMI, Regression, and Its Deviation Model to Identify Stable Rice Hybrids in Bangladesh. Plants 2022, 11, 2336. [Google Scholar] [CrossRef]
- Utami, D.W.; Maruapey, A.; Maulana, H.; Sinaga, P.H.; Basith, S.; Karuniawan, A. The Sustainability Index and Other Stability Analyses for Evaluating Superior Fe-Tolerant Rice (Oryza sativa L.). Sustainability 2023, 15, 12233. [Google Scholar] [CrossRef]
- El-Aty, M.S.A.; Abo-Youssef, M.I.; Sorour, F.A.; Salem, M.; Gomma, M.A.; Ibrahim, O.M.; Yaghoubi Khanghahi, M.; Al-Qahtani, W.H.; Abdel-Maksoud, M.A.; El-Tahan, A.M. Performance and stability for grain yield and its components of some rice cultivars under various environments. Agronomy 2024, 14, 2137. [Google Scholar] [CrossRef]
- Sabaghnia, N.S.S.; Dehghani, H. The use of an AMMI model and its parameters to analyse yield stability in multi-environment trials. J. Agric. Sci. 2008, 146, 571–581. [Google Scholar] [CrossRef]
- Jędzura, S.; Bocianowski, J.; Matysik, P. The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Res. Commun. 2023, 51, 197–205. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L. Interpretation of genotype× environment interaction for winter wheat yield in Ontario. Crop Sci. 2001, 41, 19–25. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Oyatomi, O.; Babalola, O.O.; Abberton, M. GGE biplot analysis of genotype× environment interaction and yield stability in Bambara groundnut. Agronomy 2021, 11, 1839. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
Genotype ID | Average Yield of Each Trial Site (t/hm2) | Average Yield (t/hm2) | Standard Deviation | Coefficient of Variation (%) | |||||
---|---|---|---|---|---|---|---|---|---|
e1 | e2 | e3 | e4 | e5 | e6 | ||||
g1 | 11.51 | 11.98 | 9.84 | 11.89 | 10.45 | 10.61 | 11.05 | 0.8 | 7.21 |
g2 | 12.62 | 12.39 | 10.87 | 11.85 | 11.3 | 10.25 | 11.55 | 0.83 | 7.22 |
g3 | 12.82 | 12.56 | 10.84 | 11.82 | 10.55 | 11.21 | 11.63 | 0.85 | 7.27 |
g4 | 12.5 | 12.24 | 11.32 | 11.81 | 10.3 | 11.95 | 11.69 | 0.72 | 6.16 |
g5 | 12.24 | 11.86 | 10.28 | 12.2 | 11.5 | 10.89 | 11.49 | 0.71 | 6.17 |
g6 | 12.18 | 11.44 | 9.66 | 11.84 | 10.9 | 12.48 | 11.42 | 0.94 | 8.19 |
g7 | 11.87 | 11.26 | 10.23 | 11.01 | 9.25 | 10.24 | 10.64 | 0.85 | 7.95 |
g8 | 11.02 | 10.94 | 9.76 | 11.55 | 11 | 9.35 | 10.6 | 0.77 | 7.3 |
g9 | 12.05 | 10.62 | 11.26 | 11.86 | 10.8 | 10.51 | 11.18 | 0.59 | 5.32 |
g10 | 12.84 | 11.56 | 11.5 | 11.15 | 10.4 | 12.1 | 11.59 | 0.76 | 6.53 |
g11 | 12.71 | 10.35 | 11.76 | 11.96 | 11.05 | 10.86 | 11.45 | 0.78 | 6.85 |
g12 | 11.65 | 12.51 | 12.58 | 12.54 | 10.8 | 11.94 | 12 | 0.64 | 5.33 |
g13 | 12 | 11.51 | 10.64 | 11.45 | 11.01 | 11.53 | 11.36 | 0.43 | 3.8 |
Average yield (t/hm2) | 12.15 | 11.63 | 10.81 | 11.76 | 10.72 | 11.07 | |||
Standard deviation | 0.53 | 0.69 | 0.83 | 0.39 | 0.54 | 0.87 | |||
Coefficient of variation (%) | 4.36 | 5.9 | 7.69 | 3.3 | 5.05 | 7.82 |
Source of Variance | Degrees of Freedom | Sum of Square | Mean Square | F Value | Proportion in the Total (%) |
---|---|---|---|---|---|
Total variation | 233 | 358.32 | 1.53 | ||
Block | 12 | 10.84 | 0.9 | 2.65 ** | 3.03 |
Genotype (G) | 12 | 61.59 | 5.13 | 15.09 ** | 17.19 |
Environment (E) | 5 | 116.52 | 23.3 | 68.53 ** | 32.52 |
G × E | 60 | 120.88 | 2.01 | 5.91 ** | 33.74 |
Error | 144 | 48.49 | 0.34 | ||
IPCA1 | 16 | 42.65 | 2.67 | 7.92 ** | 35.28 |
IPCA2 | 14 | 35.7 | 2.55 | 7.57 ** | 29.53 |
IPCA3 | 12 | 23.65 | 1.97 | 5.85 ** | 19.57 |
IPCA4 | 10 | 15.44 | 1.54 | 4.59 ** | 12.77 |
Residues | 8 | 3.44 | 0.43 | 1.28 ** | 2.85 |
Cultivars | Average Yield (t/hm2) | Principal Component of Interaction | Stability Parameter | Di Rank | Yield Rank | |||
---|---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | IPCA4 | |||||
g1 | 11.047 | −0.785033 | −1.039089 | −0.45519 | −0.3397 | 1.421 | 6 | 11 |
g2 | 11.546 | −1.263435 | 0.0225601 | −0.69229 | 0.79773 | 1.647 | 8 | 5 |
g3 | 11.633 | 0.1503879 | −0.678539 | −0.70693 | 0.78683 | 1.266 | 3 | 3 |
g4 | 11.686 | 1.2146186 | −0.385194 | −0.48629 | 0.02986 | 1.364 | 4 | 2 |
g5 | 11.493 | −1.211541 | −0.493928 | 0.42051 | −0.0472 | 1.375 | 5 | 6 |
g6 | 11.418 | 0.6158609 | −1.706971 | 1.56489 | −0.457 | 2.439 | 13 | 8 |
g7 | 10.645 | 0.5456376 | −0.095126 | −0.7509 | 0.71319 | 1.174 | 2 | 12 |
g8 | 10.602 | −2.062103 | 0.2616127 | 0.07157 | −0.3951 | 2.117 | 10 | 13 |
g9 | 11.183 | −0.251569 | 1.4543168 | 0.46155 | −0.1064 | 1.55 | 7 | 10 |
g10 | 11.593 | 1.789857 | 0.1984348 | 0.29581 | 0.53913 | 1.903 | 9 | 4 |
g11 | 11.448 | 0.1366434 | 2.0474703 | 0.99968 | 0.31136 | 2.304 | 11 | 7 |
g12 | 12.004 | 0.8727596 | 0.7283082 | −1.2849 | −1.5571 | 2.317 | 12 | 1 |
g13 | 11.356 | 0.2479154 | −0.313855 | 0.56248 | −0.2756 | 0.743 | 1 | 9 |
Trial Sites | Average Yield (t/hm2) | Principal Component of Interaction | Stability Parameter | Di Rank | Yield Rank | |||
---|---|---|---|---|---|---|---|---|
IPCA1 | IPCA2 | IPCA3 | IPCA4 | |||||
e1 | 12.1543846 | 0.0816111 | 0.0417609 | 0.21931 | 0.86382 | 0.896 | 2 | 1 |
e2 | 11.6330769 | −0.127277 | −0.531431 | −0.69829 | 0.06408 | 0.889 | 4 | 3 |
e3 | 10.8104538 | 0.3106813 | 0.7517429 | −0.34961 | −0.1339 | 0.895 | 3 | 5 |
e4 | 11.7630692 | −0.337703 | 0.0466103 | 0.00266 | −0.3226 | 0.469 | 6 | 2 |
e5 | 10.7159538 | −0.58169 | 0.0702744 | 0.43503 | −0.1446 | 0.744 | 5 | 6 |
e6 | 11.0711423 | 0.654378 | −0.378957 | 0.3909 | −0.3268 | 0.912 | 1 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Wang, G.; Yu, J.; Lu, Y.; Tao, T.; Wang, Z.; Hua, Y.; Li, N.; Wang, H.; Gharib, A.; et al. Yield, Stability, and Adaptability of Hybrid Japonica Rice Varieties in the East Coast of China. Agronomy 2025, 15, 901. https://doi.org/10.3390/agronomy15040901
Chen R, Wang G, Yu J, Lu Y, Tao T, Wang Z, Hua Y, Li N, Wang H, Gharib A, et al. Yield, Stability, and Adaptability of Hybrid Japonica Rice Varieties in the East Coast of China. Agronomy. 2025; 15(4):901. https://doi.org/10.3390/agronomy15040901
Chicago/Turabian StyleChen, Rujia, Gaobo Wang, Junjie Yu, Yue Lu, Tianyun Tao, Zhichao Wang, Yu Hua, Nian Li, Hanyao Wang, Ahmed Gharib, and et al. 2025. "Yield, Stability, and Adaptability of Hybrid Japonica Rice Varieties in the East Coast of China" Agronomy 15, no. 4: 901. https://doi.org/10.3390/agronomy15040901
APA StyleChen, R., Wang, G., Yu, J., Lu, Y., Tao, T., Wang, Z., Hua, Y., Li, N., Wang, H., Gharib, A., Zhou, Y., Xu, Y., Li, P., Xu, C., & Yang, Z. (2025). Yield, Stability, and Adaptability of Hybrid Japonica Rice Varieties in the East Coast of China. Agronomy, 15(4), 901. https://doi.org/10.3390/agronomy15040901