The Comprehensive Regulation of Light Intensity and Photoperiod on Growth and Yield of Virus-Free Potato Under the Same Daily Light Integral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Growth Traits and Energy Efficiency Determination
2.3. Photosynthetic Pigments Measurement
2.4. Measurement of Photosynthetic Traits
2.5. Measurement of Light Response Curves (PN-PPFD)
2.6. Measurement of Chlorophyll Fluorescence Parameters
2.7. Photosynthate Measurements
2.8. Statistical Analyses
3. Results
3.1. Growth Traits
3.2. Photosynthate in Plants and Tubers at the Tuber Growth Stage
3.3. Distribution of 13C in Plants at the Tuber Formation Stage
3.4. Photosynthetic Pigments at the Tuber Growth Stage
3.5. Gas Exchange Traits at Tuber Growth Stage
3.6. Light Response Curve (PN-PPFD)
3.7. Fluorescence Parameters and Light Energy Distribution at the Tuber Growth Stage
3.8. Tuber Formation Dynamics During the Tuber Formation Stage
3.9. Correlation Analysis
4. Discussion
4.1. Light Intensity Largely Dominates Leaf Expansion and Thickness Regardless of DLI Level
4.2. Reasons for the Inhibition of Photosynthetic Characteristics Vary According to a Long Photoperiod or High Light Intensity
4.3. Photosynthate Metabolism Regulates Tuber Formation and Growth
4.4. Energy Consumption and Potential Benefit Analysis Under Different Combinations of Light Intensity and Photoperiod
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
BTFS to HS | TFS to HS | |||
---|---|---|---|---|
Electricity Consumption°/Plant (CV%) | Electric Energy Mj/Plant (CV%) | Electricity Consumption°/Plant (CV%) | Electric Energy Mj/Plant (CV%) | |
T1 | 4.59 ± 0.05 c (1.09) | 16.46 ± 0.29 a (1.76) | 3.38 ± 0.11 a (3.25) | 12.29 ± 0.25 a (2.03) |
T2 | 4.17 ± 0.11 b (2.64) | 15.15 ± 0.17 b (1.12) | 3.04 ± 0.09 b (2.96) | 10.87 ± 0.54 b (4.97) |
T3 | 3.97 ± 0.10 b (2.52) | 14.49 ± 0.41 b (2.83) | 2.89 ± 0.05 b (1.73) | 10.47 ± 0.16 b (1.53) |
T4 | 3.76 ± 0.04 a (1.06) | 13.96 ± 0.27 c (1.93) | 2.72 ± 0.07 c (2.57) | 9.98 ± 0.17 c (1.70) |
References
- Li, R.; You, J.; Miao, C.; Kong, L.; Long, J.; Yan, Y.; Xu, Z.; Liu, X. Monochromatic lights regulate the formation, growth, and dormancy of in vitro-grown Solanum tuberosum L. microtubers. Sci. Hortic. 2020, 261, 108947. [Google Scholar] [CrossRef]
- Chen, L.; Xue, X.; Yang, Y.; Chen, F.; Zhao, J.; Wang, X.; Khan, A.T.; Hu, Y. Effects of red and blue LEDs on in vitro growth and microtuberization of potato single-node cuttings. Front. Agric. Sci. Eng. 2018, 5, 197–205. [Google Scholar] [CrossRef]
- Halterman, D.; Guenthner, J.; Collinge, S.; Butler, N.; Douches, D. Biotech Potatoes in the 21st Century: 20 Years Since the First Biotech Potato. Am. J. Potato Res. 2015, 93, 1–20. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G. Role of the plant factory with artificial lighting (PFAL) in Urban Areas. In Plant factory; Academic Press: Cambridge, Ma, USA, 2016; Chapter 2; pp. 7–34. [Google Scholar] [CrossRef]
- He, W.; Pu, M.; Li, J.; Xu, Z.G.; Gan, L. Potato Tuber Growth and Yield Under Red and Blue LEDs in Plant Factories. J. Plant Growth Regul. 2021, 41, 1–12. [Google Scholar]
- He, W.; Miao, C.; You, J.; Gan, L.; Xu, Z.-G. Effects of Red and Blue Light with Supplemental White Light on Growth, Carbohydrate Metabolism, and Yield of Virus-Free Potato in Plant Factories. Am. J. Potato Res. 2020, 97, 554–564. [Google Scholar] [CrossRef]
- He, W.; Li, J.; Pu, M.; Xu, Z.G.; Gan, L. Response of photosynthate distribution in potato plants to different LED spectra. Funct. Plant Biol. 2020, 47, 1128–1137. [Google Scholar] [CrossRef]
- Li, R.; Long, J.; Yan, Y.; Luo, J.; Xu, Z.; Liu, X. Addition of White Light to Monochromatic Red and Blue Lights Alters the Formation, Growth, and Dormancy of In Vitro-grown Solanum tuberosum L. Microtubers. HortScience 2020, 55, 71–77. [Google Scholar] [CrossRef]
- Fu, Y.; Li, H.; Yu, J.; Liu, H.; Cao, Z.; Manukovsky, N.; Liu, H. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hortic. 2017, 214, 51–57. [Google Scholar] [CrossRef]
- Lefsrud, M.G.; Kopsell, D.A.; Augé, R.M.; Both, A.J. Biomass production and pigment accumulation in kale grown under increasing photoperiods. HortScience 2006, 41, 603–606. [Google Scholar] [CrossRef]
- Chikov, V.I.; Mikhailov, A.L.; Timofeeva, O.A.; Khamidullina, L.A. Photosynthetic carbon metabolism in potato leaves under changes in light intensity. Russ. J. Plant Physiol. 2016, 63, 70–76. [Google Scholar] [CrossRef]
- Berkovich, Y.A.; Konovalova, I.O.; Smolyanina, S.O.; Erokhin, A.N.; Avercheva, O.V.; Bassarskaya, E.M.; Kochetova, G.V.; Zhigalova, T.V.; Yakovleva, O.S.; Tarakanov, I.G. LED crop illumination inside space greenhouses. REACH–Rev. Hum. Space Explor. 2017, 6, 11–24. [Google Scholar]
- Zhang, S.; Ma, K.; Chen, L. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ. Exp. Bot. 2003, 49, 121–133. [Google Scholar] [CrossRef]
- Matos, F.S.; Wolfgramm, R.; Gonçalves, F.V.; Cavatte, P.C.; Ventrella, M.C.; DaMatta, F.M. Phenotypic plasticity in response to light in the coffee tree. Environ. Exp. Bot. 2009, 67, 421–427. [Google Scholar] [CrossRef]
- Kromdijk, J.; Głowacka, K.; Leonelli, L.; Gabilly, S.T.; Iwai, M.; Niyogi, K.K.; Long, S.P. Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science 2016, 354, 857–861. [Google Scholar] [CrossRef]
- Zavala, J.; Ravetta, D. Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. Field Crops. Res. 2001, 69, 143–149. [Google Scholar] [CrossRef]
- Steinger, T.; Roy, B.A.; Stanton, M.L. Evolution in stressful environments II: Adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J. Evol. Biol. 2003, 16, 313–323. [Google Scholar] [CrossRef]
- Dobránszki, J. Effects of light on in vitro tuberization of the potato cultivar desiree and its relatives. Acta Biol. Hung. 2001, 52, 137–147. [Google Scholar] [CrossRef]
- Plantenga, F.D.; Bergonzi, S.; Bachem, C.W.; Visser, R.G.; Heuvelink, E.; Marcelis, L.F. High light accelerates potato flowering independently of the FT-like flowering signal StSP3D. Environ. Exp. Bot. 2019, 160, 35–44. [Google Scholar] [CrossRef]
- Plantenga, F.D.M.; Bergonzi, S.; Abelenda, J.A.; Bachem, C.W.B.; Visser, R.G.F.; Heuvelink, E.; Marcelis, L.F.M. The tuberization signal StSP6A represses flower bud development in potato. J. Exp. Bot. 2018, 70, 937–948. [Google Scholar] [CrossRef]
- Navarro, C.; Abelenda, J.A.; Cruz-Oró, E.; Cuéllar, C.A.; Tamaki, S.; Silva, J.; Shimamoto, K.; Prat, S. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 2011, 478, 119–122. [Google Scholar] [CrossRef]
- Firman, D.M.; O’Brien, P.J.; Allen, E.J. Leaf and flower initiation in potato (Solanum tuberosum) sprouts and stems in relation to number of nodes and tuber initiation. J. Agric. Sci. 1991, 117, 61–74. [Google Scholar] [CrossRef]
- Stutte, G.W.; Yorio, N.C.; Wheeler, R.M. Interacting effects of photoperiod and photosynthetic photon flux on net carbon assimilation and starch accumulation in potato leaves. J. Am. Soc. Hortic. Sci. 1996, 121, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Faust, J.E.; Logan, J. Daily Light Integral: A Research Review and High-resolution Maps of the United States. HortScience 2018, 53, 1250–1257. [Google Scholar] [CrossRef]
- Gerovac, J.R.; Craver, J.K.; Boldt, J.K.; Lopez, R.G. Light Intensity and Quality from Sole-source Light-emitting Diodes Impact Growth, Morphology, and Nutrient Content of Brassica Microgreens. HortScience 2016, 51, 497–503. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Oh, W.; Cheon, I.H.; Kim, K.S.; Runkle, E.S. Photosynthetic Daily Light Integral Influences Flowering Time and Crop Characteristics of Cyclamen persicum. HortScience 2009, 44, 341–344. [Google Scholar] [CrossRef]
- Garland, K.F.; Burnett, S.E.; Day, M.E.; van Iersel, M.W. Influence of Substrate Water Content and Daily Light Integral on Photosynthesis, Water Use Efficiency, and Morphology of Heuchera americana. J. Am. Soc. Hortic. Sci. 2012, 137, 57–67. [Google Scholar] [CrossRef]
- Jao, R.C.; Fang, W. Growth of Potato Plantlets In Vitro Is Different When Provided Concurrent Versus Alternating Blue and Red Light Photo-periods. Hortence 2004, 39, 380–382. [Google Scholar]
- Mao, H.; Hang, T.; Zhang, X.; Lu, N. Both Multi-Segment Light Intensity and Extended Photoperiod Lighting Strategies, with the Same Daily Light Integral, Promoted Lactuca sativa L. Growth and Photosynthesis. Agronomy 2019, 9, 857. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, S.; Ai, W.; Tang, Y. Effects of the Red and Blue LED Light Intensity on Lettuce Growthand Photosynthetic Ratein a Closed System. Manned Spacefl. 2014, 3, 273–278, (In Chniese, with English abstract). [Google Scholar]
- Rahman, M.; Vasiliev, M.; Alameh, K. LED Illumination Spectrum Manipulation for Increasing the Yield of Sweet Basil (Ocimum basilicum L.). Plants 2021, 10, 344. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Zang, J.; Xu, Z.; Guo, S.; Jiao, X.; Liu, X.; Gao, Y. Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol. Plant. 2013, 35, 2721–2726. [Google Scholar] [CrossRef]
- Ye, Z.; Suggett, D.J.; Robakowski, P.; Kang, H. A mechanistic model for the photosynthesis–light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. New Phytol. 2013, 199, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.P. Photosynthesis Model Simulation Software. Available online: http://photosynthetic.sinaapp.com/ (accessed on 4 July 2024).
- Braun, G.; Malkin, S. Regulation of the imbalance in light excitation between Photosystem II and Photosystem I by cations and by the energized state of the thylakoid membrane. Biochim. Biophys. Acta (BBA) Bioenerg. 1990, 1017, 79–90. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal energy dissipation of excess excitation. Physiol. Plant. 1996, 98, 254–264. [Google Scholar] [CrossRef]
- Sun, D.Z.; Han, X.R.; Peng, J.; Fan, F. The effect of exogenous salicylic acid on PS II photochemical efficiency and distribution and utilization of luminous energy in tomato seedlings. Acta. Hortic. Sinica 2016, 43, 1482–1492. [Google Scholar] [CrossRef]
- Schreiber, U.; Bilger, W.; Neubauer, C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In Ecophysiology of Photosynthesis; Springer: Berlin/Heidelberg, Germany, 1995; pp. 49–70. [Google Scholar] [CrossRef]
- Epron, D.; Godard, D.; Cornic, G.; Genty, B. Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ. 1995, 18, 43–51. [Google Scholar] [CrossRef]
- Fairbairn, N. A modified anthrone reagent. Chem Ind 1953, 4, 86. [Google Scholar]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Naramoto, M.; Katahata, S.-I.; Mukai, Y.; Kakubari, Y. Photosynthetic acclimation and photoinhibition on exposure to high light in shade-developed leaves of Fagus crenata seedlings. Flora 2005, 201, 120–126. [Google Scholar] [CrossRef]
- Cavagnaro, J.; Trione, S. Physiological, morphological and biochemical responses to shade of Trichloris crinita, a forage grass from the arid zone of Argentina. J. Arid Environ. 2006, 68, 337–347. [Google Scholar] [CrossRef]
- Ye, Z.; Kang, H. Study on the Biological Significance of Coefficients in the Modified Plant Photoresponse Model. J. Yangzhou Univ. (Agric. Life Sci. Ed.) 2012, 33, 51–57, (In Chinese, with English abstract). [Google Scholar] [CrossRef]
- Murage, E.N.; Watashiro, N.; Masuda, M. Influence of light quality, PPFD and temperature on leaf chlorosis of eggplants grown under continuous illuminetion. Sci. Hortic. 1997, 68, 73–82. [Google Scholar] [CrossRef]
- Lincoin, T.; Eduardo, Z. Plant Physiology; Science Press: Beijing, China, 2015; 163p. [Google Scholar]
- Velez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W. Antioxidants in Photosynthesis and Human Nutrition. Science 2002, 298, 2149–2153. [Google Scholar] [CrossRef]
- Busch, F.A.; Sage, R.F.; Farquhar, G.D. Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat. Plants 2017, 4, 46–54. [Google Scholar] [CrossRef]
- Guilherme, E.; Carvalho, F.; Daloso, D.; Silveira, J. Increase in assimilatory nitrate reduction and photorespiration enhances CO2 assimilation under high light-induced photoinhibition in cotton. Environ. Exp. Bot. 2019, 159, 66–74. [Google Scholar] [CrossRef]
- Yokono, M.; Murakami, A.; Akimoto, S. Excitation energy transfer between photosystem II and photosystem I in red algae: Larger amounts of phycobilisome enhance spillover. Biochim. Biophys. Acta (BBA) Bioenerg. 2011, 1807, 847–853. [Google Scholar] [CrossRef]
- Rochaix, J.-D. Regulation and Dynamics of the Light-Harvesting System. Annu. Rev. Plant Biol. 2014, 65, 287–309. [Google Scholar] [CrossRef]
- Haldrup, A.; Jensen, P.E.; Lunde, C.; Scheller, H.V. Balance of power: A view of the mechanism of photosynthetic state transitions. Trends Plant Sci. 2001, 6, 301–305. [Google Scholar] [CrossRef]
- Izumi, M. Roles of the Clock in Controlling Starch Metabolism. Plant Physiol. 2019, 179, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- Chincinska, I.A.; Liesche, J.; Krügel, U.; Michalska, J.; Geigenberger, P.; Grimm, B.; Kühn, C. Sucrose transporter StSUT4 from potato affects flowering, tuberization, and shade avoidance response. Plant Physiol. 2008, 146, 515–528. [Google Scholar] [PubMed]
- Dobránzki, J.; Tábóri, K.M.; Ferenczy, A. Light and genotype effects on in vitro tuberization of potato plantlets. Potato Res. 1999, 42, 483–488. [Google Scholar] [CrossRef]
- Ballaré, C.L.; Scopel, A.L.; Sánchez, R.A. On the opportunity cost of the photosynthate invested in stem elongation reactions mediated by phytochrome. Oecologia 1991, 86, 561–567. [Google Scholar] [CrossRef]
- Sweetlove, L.J.; Hill, S.A. Source metabolism dominates the control of source to sink carbon flux in tuberizing potato plants throughout the diurnal cycle and under a range of environmental conditions. Plant Cell Environ. 2000, 23, 523–529. [Google Scholar] [CrossRef]
- Nishizawa, T.; Shishido, Y.; Murakami, H. Effect of temporary changes in light intensity on carbon transport, partitioning and respiratory loss in young tomato seedlings raised under different light intensities. Physiol. Plant. 2009, 136, 351–357. [Google Scholar] [CrossRef]
- Tollenaar, M.; Daynard, T.B. Effect of source-sink ratio on dry matter accumulation and leaf senesence of maize. Can. J. Plant Sci. 1982, 62, 855–860. [Google Scholar] [CrossRef]
- Noodén, L.D.; Guiamét, J.J.; John, I. Senescence mechanisms. Physiol. Plant. 1997, 101, 746–753. [Google Scholar] [CrossRef]
- Taki, M.; Rohani, A.; Rahmati-Joneidabad, M. Solar thermal simulation and applications in greenhouse. Inf. Process. Agric. 2018, 5, 83–113. [Google Scholar] [CrossRef]
- Vadiee, A.; Yaghoubi, M.; Sardella, M.; Farjam, P. Energy analysis of fuel cell system for commercial greenhouse application–A feasibility study. Energy Convers. Manag. 2015, 89, 925–932. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy efficient operation and modeling for greenhouses: A literature review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
Treatment | Light Intensity (μmol m−2 s−1) | Photoperiod (h/d) | DLI (mol m−2 d−1) |
---|---|---|---|
T1 | 200 | 16.5 | 11.88 |
T2 | 300 | 11.0 | 11.88 |
T3 | 400 | 8.25 | 11.88 |
T4 | 500 | 6.6 | 11.88 |
Treatment | Plant Height (cm) (CV%) | Stem Diameter (cm) (CV%) | Leaf Area (cm2) (CV%) | SLA (cm2 g−1) (CV%) | Leaf Number (CV%) | Root Dry Weight (g) (CV%) | Root Length (cm) (CV%) |
---|---|---|---|---|---|---|---|
T1 | 23.5 ± 3.55 a (15.11) | 0.72 ± 0.11 a (15.28) | 1056.58 ± 126.58 a (11.98) | 492.89 ± 59.05 a (11.98) | 11.00 ± 0.87 a (7.91) | 0.62 ± 0.05 a (8.06) | 22.33 ± 1.15 a (5.15) |
T2 | 17.61 ± 1.09 b (6.19) | 0.66 ± 0.05 a (7.58) | 880.48 ± 121 b (13.74) | 433.63 ± 59.59 b (13.74) | 10.33 ± 0.58 a (5.61) | 0.41 ± 0.14 b (34.15) | 20.33 ± 2.08 b (10.23) |
T3 | 17.77 ± 0.64 b (3.60) | 0.69 ± 0.05 a (7.25) | 709.08 ± 47.45 c (6.69) | 332.02 ± 22.22 c (6.69) | 10.67 ± 1.15 a (10.78) | 0.41 ± 0.12 b (29.27) | 17.33 ± 2.08 c (12.00) |
T4 | 16.27 ± 1.34 b (8.24) | 0.64 ± 0.06 a (9.38) | 501.99 ± 58.5 d (11.65) | 268.25 ± 31.26 d (11.65) | 8.33 ± 0.58 b (6.96) | 0.44 ± 0.09 b (20.45) | 16 ± 2.00 c (12.50) |
Parameter | Treatment | |||
---|---|---|---|---|
T1 | T2 | T3 | T4 | |
βp × 10−5 (m2 s−1) | 26.20 a | 2.60 c | 17.00 b | 2.77 c |
γp × 10−4 (m2 s−1) | 16.70 c | 42.00 a | 29.10 b | 26.00 b |
βp/γp | 0.157 a | 0.006 d | 0.058 b | 0.011 c |
Rd (μmol m−2 s−1) | 0.79 c | 1.57 b | 1.81 a | 1.76 a |
PNmax (μmol m−2 s−1) | 15.22 b | 17.51 ab | 15.98 b | 19.34 a |
AQY | 0.04 a | 0.05 a | 0.05 a | 0.04 a |
Parameter | TN | NTDW | PDW | PH | LA | LN | SLA | PN |
---|---|---|---|---|---|---|---|---|
TDW | 0.833 ** | −0.834 ** | 0.970 ** | −0.841 ** | −0.700 * | −0.478 | −0.670 * | 0.818 ** |
TN | 1.000 ** | −0.592 * | 0.853 ** | −0.877 ** | −0.676 * | −0.599 * | −0.644 * | 0.699 * |
Parameter | Ci | GS | Tr | CE | LS | Rd | Chl (a+b) | Chl a/b |
TDW | 0.972 ** | 0.879 ** | 0.882 ** | −0.915 ** | −0.972 ** | 0.918 ** | −0.557 | 0.604 * |
TN | 0.899 ** | 0.826 ** | 0.863 ** | −0.823 ** | −0.899 ** | 0.827 ** | −0.641 * | 0.515 |
Parameter | qN | ETR | JC | JO | RPP | RTP | 40d TN | L-δ13C |
TDW | 0.675 * | 0.778 ** | 0.842 ** | 0.660 * | 0.836 ** | 0.836 ** | 0.971 * | 0.974 * |
TN | 0.510 | 0.785 ** | 0.806 ** | 0.713 ** | 0.831 ** | 0.786 ** | 0.994 ** | 0.999 ** |
Parameter | Treatment | |||
---|---|---|---|---|
T1 (CV%) | T2 (CV%) | T3 (CV%) | T4 (CV%) | |
Fv/Fm | 0.81 ± 0.01 a (1.23) | 0.81 ± 0.01 a (1.23) | 0.80 ± 0.02 a (2.50) | 0.81 ± 0.03 a (3.70) |
qN | 0.52 ± 0.06 d (11.54) | 0.79 ± 0.09 b (11.39) | 0.61 ± 0.05 c (8.20) | 0.89 ± 0.04 a (4.49) |
qP | 0.87 ± 0.01 a b (1.15) | 0.86 ± 0.04 b (4.65) | 0.92 ± 0.03 a (3.26) | 0.76 ± 0.09 c (11.84) |
PhiPSII | 0.67 ± 0.03 a (4.48) | 0.63 ± 0.01 a (1.59) | 0.68 ± 0.04 a (5.88) | 0.59 ± 0.04 b (6.78) |
ETR (μmol m−2 s−1) | 57.67 ± 1.88 c (3.26) | 81.46 ± 1.1 b (1.35) | 116.03 ± 6.46 a b (5.57) | 123.69 ± 7.66 a (6.19) |
Jc (μmol m−2 s−1) | 30.47 ± 0.75 d (2.46) | 44.81 ± 0.36 c (0.80) | 62.15 ± 1.37 a (2.20) | 58.33 ± 2.67 b (4.58) |
Jo (μmol m−2 s−1) | 25.15 ± 1.40 c (5.57) | 32.57 ± 0.93 c (2.86) | 48.82 ± 4.73 b (9.69) | 60.76 ± 4.94 a (8.13) |
Jo/ETR (%) | 0.44 ± 0.01 b (2.27) | 0.40 ± 0.01 c (2.50) | 0.42 ± 0.02 b c (4.76) | 0.49 ± 0.01 a (2.04) |
α | 0.46 ± 0.01 a b (2.17) | 0.46 ± 0.01 a b (2.17) | 0.48 ± 0.01 a (2.08) | 0.43 ± 0.03 b (6.98) |
β | 0.54 ± 0.01 b (1.85) | 0.54 ± 0.01 b (1.85) | 0.52 ± 0.01 b (1.92) | 0.57 ± 0.03 a (5.26) |
β/α-1 | 0.15 ± 0.01 b (6.67) | 0.16 ± 0.05 b (31.25) | 0.09 ± 0.03 b (33.33) | 0.33 ± 0.16 a (48.48) |
EP | 0.13 ± 0.01 a b (7.69) | 0.14 ± 0.04 a b (28.57) | 0.08 ± 0.03 b (37.50) | 0.24 ± 0.09 a (37.50) |
LPFD | 0.30 ± 0.03 b (10.00) | 0.35 ± 0.03 b (8.57) | 0.25 ± 0.04 b (16.00) | 0.46 ± 0.09 a (19.57) |
P | 0.63 ± 0.04 a (6.35) | 0.62 ± 0.04 a (6.45) | 0.67 ± 0.03 a (4.48) | 0.59 ± 0.09 a (15.25) |
EX | 0.10 ± 0.01 b (10.00) | 0.10 ± 0.03 b (30.00) | 0.06 ± 0.02 b (33.33) | 0.18 ± 0.06 a (33.33) |
D | 0.27 ± 0.04 a (14.81) | 0.28 ± 0.03 a (10.71) | 0.27 ± 0.04 a (14.81) | 0.23 ± 0.04 a (17.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Wang, D.; Lin, J.; Xu, Z. The Comprehensive Regulation of Light Intensity and Photoperiod on Growth and Yield of Virus-Free Potato Under the Same Daily Light Integral. Agronomy 2025, 15, 898. https://doi.org/10.3390/agronomy15040898
Chen S, Wang D, Lin J, Xu Z. The Comprehensive Regulation of Light Intensity and Photoperiod on Growth and Yield of Virus-Free Potato Under the Same Daily Light Integral. Agronomy. 2025; 15(4):898. https://doi.org/10.3390/agronomy15040898
Chicago/Turabian StyleChen, Song, Dingcheng Wang, Jiating Lin, and Zhigang Xu. 2025. "The Comprehensive Regulation of Light Intensity and Photoperiod on Growth and Yield of Virus-Free Potato Under the Same Daily Light Integral" Agronomy 15, no. 4: 898. https://doi.org/10.3390/agronomy15040898
APA StyleChen, S., Wang, D., Lin, J., & Xu, Z. (2025). The Comprehensive Regulation of Light Intensity and Photoperiod on Growth and Yield of Virus-Free Potato Under the Same Daily Light Integral. Agronomy, 15(4), 898. https://doi.org/10.3390/agronomy15040898