In-Field Detection and Monitoring Technology in Precision Agriculture
1. Introduction
2. Overview of the Special Issue
2.1. Environmental and Physiological Monitoring
2.2. Inversion of Crop Vegetation Parameters
2.3. Pest, Disease, and Weed Detection
2.4. Seed Detection and Quality Assessment
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Guo, J.; Dong, X.; Qiu, B. Analysis of the Factors Affecting the Deposition Coverage of Air-Assisted Electrostatic Spray on Tomato Leaves. Agronomy 2024, 14, 1108.
- Pan, C.; Hu, J.; Cai, H.; Jiang, J.; Gu, K.; Zhu, C.; Mao, G. Development and Optimization of a Chamber System Applied to Maize Net Ecosystem Carbon Exchange Measurements. Agronomy 2023, 14, 68.
- Lai, S.; Ming, H.; Huang, Q.; Qin, Z.; Duan, L.; Cheng, F.; Han, G. Remote Sensing Extraction of Crown Planar Area and Plant Number of Papayas Using UAV Images with Very High Spatial Resolution. Agronomy 2024, 14, 636.
- Zhang, Q.; Chen, Q.; Xu, L.; Xu, X.; Liang, Z. Wheat Lodging Direction Detection for Combine Harvesters Based on Improved K-Means and Bag of Visual Words. Agronomy 2023, 13, 2227.
- Wang, Y.; Liu, S.; Ren, Z.; Ma, B.; Mu, J.; Sun, L.; Zhang, H.; Wang, J. Clustering and Segmentation of Adhesive Pests in Apple Orchards Based on GMM-DC. Agronomy 2023, 13, 2806.
- Liu, S.; Fu, S.; Hu, A.; Ma, P.; Hu, X.; Tian, X.; Zhang, H.; Liu, S. Research on Insect Pest Identification in Rice Canopy Based on GA-Mask R-CNN. Agronomy 2023, 13, 2155.
- Wang, S.; Chen, D.; Xiang, J.; Zhang, C. A Deep-Learning-Based Detection Method for Small Target Tomato Pests in Insect Traps. Agronomy 2024, 14, 2887.
- Yu, M.; Li, F.; Song, X.; Zhou, X.; Zhang, X.; Wang, Z.; Lei, J.; Huang, Q.; Zhu, G.; Huang, W.; Huang, H.; Chen, X.; Yang, Y.; Huang, D.; Li, Q.; Fang, H.; Yan, M. YOLOv5s-ECCW: A Lightweight Detection Model for Sugarcane Smut in Natural Environments. Agronomy 2024, 14, 2327.
- Chen, Y.; Qiao, X.; Qin, F.; Huang, H.; Liu, B.; Li, Z.; Liu, C.; Wang, Q.; Wan, F.; Qian, W.; Huang, Y. IPMCNet: A Lightweight Algorithm for Invasive Plant Multiclassification. Agronomy 2024, 14, 333.
- Zhang, Z.; Huang, Y.; Chen, Y.; Liu, Z.; Liu, B.; Liu, C.; Huang, C.; Qian, W.; Zhang, S.; Qiao, X. A Recognition Model Based on Multiscale Feature Fusion for Needle-Shaped Bidens L. Seeds. Agronomy 2024, 14, 2675.
- Gao, Q.; Li, H.; Meng, T.; Xu, X.; Sun, T.; Yin, L.; Chai, X. A Rapid Construction Method for High-Throughput Wheat Grain Instance Segmentation Dataset Using High-Resolution Images. Agronomy 2024, 14, 1032.
- Liang, J.; Chen, J.; Zhou, M.; Li, H.; Xu, Y.; Xu, F.; Yin, L.; Chai, X. An Intelligent Detection System for Wheat Appearance Quality. Agronomy 2024, 14, 1057.
References
- Lowenberg-DeBoer, J. Precision Farming and the New Information Technology: Implications for Farm Management, Policy, and Research: Discussion. Am. J. Agric. Econ. 1996, 78, 1281–1284. [Google Scholar] [CrossRef]
- Swart, R. Security Risks of Global Environmental Changes. Glob. Environ. Change 1996, 6, 187–192. [Google Scholar] [CrossRef]
- McLennon, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative Agriculture and Integrative Permaculture for Sustainable and Technology Driven Global Food Production and Security. Agron. J. 2021, 113, 4541–4559. [Google Scholar] [CrossRef]
- Lohan, S.K.; Prakash, C.; Lohan, N.; Kansal, S.; Karkee, M. State-of-the-Art in Real-Time Virtual Interfaces for Tractors and Farm Machines: A Systematic Review. Comput. Electron. Agric. 2025, 231, 109947. [Google Scholar]
- Zhang, N.; Wang, M.; Wang, N. Precision Agriculture—A Worldwide Overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Petrović, B.; Bumbálek, R.; Zoubek, T.; Kuneš, R.; Smutný, L.; Bartoš, P. Application of Precision Agriculture Technologies in Central Europe-Review. J. Agric. Food Res. 2024, 15, 101048. [Google Scholar] [CrossRef]
- Dusadeerungsikul, P.O.; Nof, S.Y. Precision Agriculture with AI-Based Responsive Monitoring Algorithm. Int. J. Prod. Econ. 2024, 271, 109204. [Google Scholar] [CrossRef]
- Darwin, B.; Dharmaraj, P.; Prince, S.; Popescu, D.E.; Hemanth, D.J. Recognition of Bloom/Yield in Crop Images Using Deep Learning Models for Smart Agriculture: A Review. Agronomy 2021, 11, 646. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Van Meirvenne, M.; Mouazen, A.M. Site-Specific Seeding Using Multi-Sensor and Data Fusion Techniques: A Review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 161, pp. 241–323. [Google Scholar]
- Tulu, B.B.; Teshome, F.; Ampatzidis, Y.; Hailegnaw, N.S.; Bayabil, H.K. AgriSenAI: Automating UAV Thermal and Multispectral Image Processing for Precision Agriculture. SoftwareX 2025, 30, 102083. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Y.; Sun, Y.; Wang, J.; Yao, Z.; Chen, C.; Zhong, X.; Liu, S.; Sun, C.; Li, T. High-Throughput Identification of Fusarium Head Blight Resistance in Wheat Varieties Using Field Robot-Assisted Imaging and Deep Learning Techniques. J. Clean. Prod. 2024, 480, 144024. [Google Scholar] [CrossRef]
- Figorilli, S.; Moscovini, L.; Vasta, S.; Tocci, F.; Violino, S.; Abraham, D.; Pascal, S.; Benjamin, K.; Sandoval, R.; Spencer, R.; et al. Smart IoT Device for in Field Black Sigatoka Disease Recognition and Mapping. Smart Agric. Technol. 2025, 10, 100762. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, C.; Qiao, X. In-Field Detection and Monitoring Technology in Precision Agriculture. Agronomy 2025, 15, 783. https://doi.org/10.3390/agronomy15040783
Zhang S, Wang C, Qiao X. In-Field Detection and Monitoring Technology in Precision Agriculture. Agronomy. 2025; 15(4):783. https://doi.org/10.3390/agronomy15040783
Chicago/Turabian StyleZhang, Shuo, Cong Wang, and Xi Qiao. 2025. "In-Field Detection and Monitoring Technology in Precision Agriculture" Agronomy 15, no. 4: 783. https://doi.org/10.3390/agronomy15040783
APA StyleZhang, S., Wang, C., & Qiao, X. (2025). In-Field Detection and Monitoring Technology in Precision Agriculture. Agronomy, 15(4), 783. https://doi.org/10.3390/agronomy15040783