Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field and Design
2.2. Plant Leaf and Root Processing
2.3. Sampling and Sample Processing
2.4. Soil Physicochemical and Heavy Metal Analysis
2.5. DNA Extraction, PCR, and Sequencing
2.6. Data Analysis
2.7. Statistical Analysis
3. Results
3.1. Maize Biomass and Leaf Trait
3.2. Soil Physicochemical Properties
3.3. Soil Heavy Metal and Root Bioaccumulation Coefficient
3.4. AMF Diversity and Community Composition
3.5. AMF Community Co-Occurrence Network
3.6. Linking Heavy Metals and Biomass
3.7. Factors Driving Maize Biomass
4. Discussion
4.1. Heavy Metal Dynamics in Soil and Maize Fine Roots
4.2. Maize Physiology and Growth Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sun, D.; Li, H.; Wang, E.; He, W.; Hao, W.; Yan, C.; Li, Y.; Mei, X.; Zhang, Y.; Sun, Z.; et al. An Overview of the Use of Plastic-Film Mulching in China to Increase Crop Yield and Water-Use Efficiency. Natl. Sci. Rev. 2020, 7, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wei, X.; Wang, C.; Zhao, R. Plastic Film Mulching Significantly Boosts Crop Production and Water Use Efficiency but Not Evapotranspiration in China. Agric. Water Manag. 2023, 275, 108023. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, H.; Zhang, K.; Li, Z.; Li, F.-M.; Zhang, F. Plastic Film Mulching Increases Crop Yields and Reduces Global Warming Potential under Future Climate Change. Agric. For. Meteorol. 2024, 349, 109963. [Google Scholar] [CrossRef]
- Aging Processes of Polyethylene Mulch Films and Preparation of Microplastics with Environmental Characteristics | Bulletin of Environmental Contamination and Toxicology. Available online: https://link.springer.com/article/10.1007/s00128-020-02975-x (accessed on 11 February 2025).
- Huang, Y.; Liu, Q.; Jia, W.; Yan, C.; Wang, J. Agricultural Plastic Mulching as a Source of Microplastics in the Terrestrial Environment. Environ. Pollut. 2020, 260, 114096. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Hu, H.; Li, G.; Xu, J.; Cheng, J.; Wang, J.; Zhang, R. Plastic Mulching, and Occurrence, Incorporation, Degradation, and Impacts of Polyethylene Microplastics in Agroecosystems. Ecotoxicol. Environ. Saf. 2023, 263, 115274. [Google Scholar] [CrossRef]
- Ju, T.; Yang, K.; Ji, D.; Chang, L.; Alquiza, M.d.J.P.; Li, Y. Microplastics Influence Nutrient Content and Quality of Salt-Affected Agricultural Soil under Plastic Mulch. Environ. Res. 2025, 264, 120376. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Huerta Lwanga, E.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of Plastic Mulch Film Residues on Wheat Rhizosphere and Soil Properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef]
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an Emerging Threat to Terrestrial Ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- Dong, D.; Guo, Z.; Wu, F.; Yang, X.; Li, J. Plastic Residues Alter Soil Microbial Community Compositions and Metabolite Profiles under Realistic Conditions. Sci. Total Environ. 2024, 906, 167352. [Google Scholar] [CrossRef]
- Sintim, H.Y.; Bary, A.I.; Hayes, D.G.; Wadsworth, L.C.; Anunciado, M.B.; English, M.E.; Bandopadhyay, S.; Schaeffer, S.M.; DeBruyn, J.M.; Miles, C.A.; et al. In Situ Degradation of Biodegradable Plastic Mulch Films in Compost and Agricultural Soils. Sci. Total Environ. 2020, 727, 138668. [Google Scholar] [CrossRef] [PubMed]
- Campanale, C.; Galafassi, S.; Di Pippo, F.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A Critical Review of Biodegradable Plastic Mulch Films in Agriculture: Definitions, Scientific Background and Potential Impacts. TrAC Trends Anal. Chem. 2024, 170, 117391. [Google Scholar] [CrossRef]
- Liao, J.; Chen, Q. Biodegradable Plastics in the Air and Soil Environment: Low Degradation Rate and High Microplastics Formation. J. Hazard. Mater. 2021, 418, 126329. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Q.; Wang, L.; Zhang, C.; Zhang, Y. Are Biodegradable Mulch Films a Sustainable Solution to Microplastic Mulch Film Pollution? A Biogeochemical Perspective. J. Hazard. Mater. 2023, 459, 132024. [Google Scholar] [CrossRef] [PubMed]
- Beltrán-Sanahuja, A.; Benito-Kaesbach, A.; Sánchez-García, N.; Sanz-Lázaro, C. Degradation of Conventional and Biobased Plastics in Soil under Contrasting Environmental Conditions. Sci. Total Environ. 2021, 787, 147678. [Google Scholar] [CrossRef]
- Song, D.; Jin, G.; Su, Z.; Ge, C.; Fan, H.; Yao, H. Influence of Biodegradable Microplastics on Soil Carbon Cycling: Insights from Soil Respiration, Enzyme Activity, Carbon Use Efficiency and Microbial Community. Environ. Res. 2025, 266, 120558. [Google Scholar] [CrossRef]
- He, S.; Wei, Y.; Li, Z.; Yang, C. Aging Microplastic Aggravates the Pollution of Heavy Metals in Rhizosphere Biofilms. Sci. Total Environ. 2023, 890, 164177. [Google Scholar] [CrossRef] [PubMed]
- Hüffer, T.; Hofmann, T. Sorption of Non-Polar Organic Compounds by Micro-Sized Plastic Particles in Aqueous Solution. Environ. Pollut. 2016, 214, 194–201. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, S.; Qiu, T.; Cui, Q.; Yang, Y.; Li, L.; Chen, J.; Huang, M.; Zhan, A.; Fang, L. Interaction of Microplastics with Heavy Metals in Soil: Mechanisms, Influencing Factors and Biological Effects. Sci. Total Environ. 2024, 918, 170281. [Google Scholar] [CrossRef]
- Li, M.; Wu, D.; Wu, D.; Guo, H.; Han, S. Influence of Polyethylene-Microplastic on Environmental Behaviors of Metals in Soil. Environ. Sci. Pollut. Res. Int. 2021, 28, 28329–28336. [Google Scholar] [CrossRef]
- Khalid, N.; Aqeel, M.; Noman, A.; Khan, S.M.; Akhter, N. Interactions and Effects of Microplastics with Heavy Metals in Aquatic and Terrestrial Environments. Environ. Pollut. 2021, 290, 118104. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, M.J.; Ansari, A.J.; Hai, F.I. Antibiotic Sorption onto Microplastics in Water: A Critical Review of the Factors, Mechanisms and Implications. Water Res. 2023, 233, 119790. [Google Scholar] [CrossRef]
- The Types of Microplastics, Heavy Metals, and Adsorption Environments Control the Microplastic Adsorption Capacity of Heavy Metals|Environmental Science and Pollution Research. Available online: https://link.springer.com/article/10.1007/s11356-023-28131-6 (accessed on 11 February 2025).
- Huang, C.; Ge, Y.; Yue, S.; Zhao, L.; Qiao, Y. Microplastics Aggravate the Joint Toxicity to Earthworm Eisenia Fetida with Cadmium by Altering Its Availability. Sci. Total Environ. 2021, 753, 142042. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, X.; Song, N. Polyethylene Microplastics Increase Cadmium Uptake in Lettuce (Lactuca sativa L.) by Altering the Soil Microenvironment. Sci. Total Environ. 2021, 784, 147133. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, W.; Li, W.; Xu, S.; Sun, Y.; Xu, G.; Wang, F. Effects of Microplastics on Cadmium Accumulation by Rice and Arbuscular Mycorrhizal Fungal Communities in Cadmium-Contaminated Soil. J. Hazard. Mater. 2023, 442, 130102. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Zhou, J.; Li, D.; Liu, Y.; Wang, Y.; Huang, W.; Ruan, Z.; Yao, J.; Qiu, R.; et al. Effects of Naturally Aged Microplastics on Arsenic and Cadmium Accumulation in Lettuce: Insights into Rhizosphere Microecology. J. Hazard. Mater. 2025, 486, 136988. [Google Scholar] [CrossRef]
- Grifoni, M.; Pellegrino, E.; Arrighetti, L.; Bronco, S.; Pezzarossa, B.; Ercoli, L. Interactive Impacts of Microplastics and Arsenic on Agricultural Soil and Plant Traits. Sci. Total Environ. 2024, 912, 169058. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qiu, Y.L. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Evolutionary History of Mycorrhizal Symbioses and Global Host Plant Diversity—Brundrett—2018—New Phytologist—Wiley Online Library. Available online: https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.14976 (accessed on 11 February 2025).
- Pearson, J.N.; Jakobsen, I. The Relative Contribution of Hyphae and Roots to Phosphorus Uptake by Arbuscular Mycorrhizal Plants, Measured by Dual Labelling with 32P and 33P. New Phytol. 1993, 124, 489–494. [Google Scholar] [CrossRef]
- Substantial Nitrogen Acquisition by Arbuscular Mycorrhizal Fungi from Organic Material Has Implications for N Cycling | PNAS. Available online: https://www.pnas.org/doi/10.1073/pnas.1005874107 (accessed on 11 February 2025).
- Wang, S.; Chen, A.; Xie, K.; Yang, X.; Luo, Z.; Chen, J.; Zeng, D.; Ren, Y.; Yang, C.; Wang, L.; et al. Functional Analysis of the OsNPF4.5 Nitrate Transporter Reveals a Conserved Mycorrhizal Pathway of Nitrogen Acquisition in Plants. Proc. Natl. Acad. Sci. USA 2020, 117, 16649–16659. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Wang, Q.; Cao, H.; Yang, G.; Deng, L.; Wang, Y.; Zhou, Y.; Anastopoulos, I.; et al. Arbuscular Mycorrhizal Fungi-Induced Mitigation of Heavy Metal Phytotoxicity in Metal Contaminated Soils: A Critical Review. J. Hazard. Mater. 2021, 402, 123919. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Li, Y.; Li, X.; Yan, J.; Wu, L.; Tang, Z.; He, Y.; Zhan, F. Mycorrhizal Extraradical Mycelium Can Reduce Cadmium Uptake by Maize and Cadmium Leaching from Contaminated Soil: Based on an in-Growth Core Experiment. Front. Microbiol. 2024, 15, 1507798. [Google Scholar] [CrossRef]
- Yang, F.; Han, J.; Lin, R.; Yin, Y.; Deng, X.; Li, Y.; Lin, J.; Wang, J. Regulation of the Rhizosphere Microenvironment by Arbuscular Mycorrhizal Fungi to Mitigate the Effects of Cadmium Contamination on Perennial Ryegrass (Lolium perenne L.). Microorganisms 2024, 12, 2335. [Google Scholar] [CrossRef]
- Li, H.H.; Chen, X.W.; Zhai, F.H.; Li, Y.T.; Zhao, H.M.; Mo, C.H.; Luo, Y.; Xing, B.; Li, H. Arbuscular Mycorrhizal Fungus Alleviates Charged Nanoplastic Stress in Host Plants via Enhanced Defense-Related Gene Expressions and Hyphal Capture. Environ. Sci. Technol. 2024, 58, 6258–6273. [Google Scholar] [CrossRef] [PubMed]
- Ahammed, G.J.; Shamsy, R.; Liu, A.; Chen, S. Arbuscular Mycorrhizal Fungi-Induced Tolerance to Chromium Stress in Plants. Environ. Pollut. 2023, 327, 121597. [Google Scholar] [CrossRef]
- Fang, X.; Lee, X.; Twagirayezu, G.; Cheng, H.; Lu, H.; Huang, S.; Deng, L.; Ji, B. A Critical Review of the Effectiveness of Biochar Coupled with Arbuscular Mycorrhizal Fungi in Soil Cadmium Immobilization. J. Fungi 2024, 10, 182. [Google Scholar] [CrossRef]
- Pan, J.; Cao, S.; Xu, G.; Rehman, M.; Li, X.; Luo, D.; Wang, C.; Fang, W.; Xiao, H.; Liao, C.; et al. Comprehensive Analysis Reveals the Underlying Mechanism of Arbuscular Mycorrhizal Fungi in Kenaf Cadmium Stress Alleviation. Chemosphere 2023, 314, 137566. [Google Scholar] [CrossRef] [PubMed]
- Leifheit, E.F.; Lehmann, A.; Rillig, M.C. Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi. Front. Plant Sci. 2021, 12, 626709. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Sec. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- FAO. Healthy Soils Are the Basis for Healthy Food Production; Food and Agriculture Organization of United Nations: Rome, Italy, 2015; Available online: http://www.fao.org/soils-2015/news/news-detail/en/c/277682/ (accessed on 11 February 2025).
- Li, J.; Zhou, L.; Chen, G.; Yao, M.; Liu, Z.; Li, X.; Yang, X.; Yang, Y.; Cai, D.; Tuerxun, Z.; et al. Arbuscular Mycorrhizal Fungi Enhance Drought Resistance and Alter Microbial Communities in Maize Rhizosphere Soil. Environ. Technol. Innov. 2025, 37, 103947. [Google Scholar] [CrossRef]
- Zhou, H.-Y.; Nian, F.-Z.; Chen, B.-D.; Zhu, Y.-G.; Yue, X.-R.; Zhang, N.-M.; Xia, Y.-S. Synergistic Reduction of Arsenic Uptake and Alleviation of Leaf Arsenic Toxicity in Maize (Zea mays L.) by Arbuscular Mycorrhizal Fungi (AMF) and Exogenous Iron through Antioxidant Activity. JoF 2023, 9, 677. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, P.; Liao, C.; Fei, J.; Zhang, Y.; Xiangmin, R.; Peng, J.; Luo, G. Understanding the Increased Maize Productivity of Intercropping Systems from Interactive Scenarios of Plant Roots and Arbuscular Mycorrhizal Fungi. Agric. Ecosyst. Environ. 2025, 381, 109450. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Q.; Wei, M.; Xie, M.; Shen, T.; Liu, D. Plastic Film Residue Reshaped Protist Communities and Induced Soil Nutrient Deficiency Under Field Conditions. Agronomy 2025, 15, 419. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Wang, P.-Y.; Wang, Y.-B.; Zhou, R.; Koskei, K.; Munyasya, A.N.; Liu, S.-T.; Wang, W.; Su, Y.-Z.; Xiong, Y.-C. Fate of Plastic Film Residues in Agro-Ecosystem and Its Effects on Aggregate-Associated Soil Carbon and Nitrogen Stocks. J. Hazard. Mater. 2021, 416, 125954. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ding, F.; Flury, M.; Wang, Z.; Xu, L.; Li, S.; Jones, D.L.; Wang, J. Macro- and Microplastic Accumulation in Soil after 32 Years of Plastic Film Mulching. Environ. Pollut. 2022, 300, 118945. [Google Scholar] [CrossRef]
- Bibi, S.; Khan, S.; Taimur, N.; Daud, M.K.; Azizullah, A. Responses of morphological, physiological, and biochemical characteristics of maize (Zea mays L.) seedlings to atrazine stress. Environ. Monit. Assess. 2019, 191, 717. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved Procedures for Clearing Roots and Staining Parasitic and Vesicular-Arbuscular Mycorrhizal Fungi for Rapid Assessment of Infection. Trans. Br. Mycol. Soc. 1970, 55, 15818. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Bougher, N.L.; Dell, B.; Grove, T.S.; Malajczuk, N. Working with Mycorrhizas in Forestry and Agriculture; Australian Centre for International Agricultural Research: Canberra, Australia, 1996. [Google Scholar]
- Ministry of Environmental Protection of People’s Republic of China. National Environmental Protection Standard HJ615-2011: Soil–Determination of Organic Carbon—Potassium Dichromate Oxidation Spectrophotometric Method; China Environmental Science Press: Beijing, China, 2011. [Google Scholar]
- Liu, W.J.; Zeng, F.X.; Jiang, H. Determination of Total Nitrogen in Solid Samples by Two-Step Digestion–Ultraviolet Spectrophotometry Method. Commun. Soil Sci. Plant Anal. 2013, 44, 1080–1091. [Google Scholar] [CrossRef]
- Liu, X.; Wu, D.; Abid, A.A.; Liu, Y.; Zhou, J.; Zhang, Q. Determination of Paddy Soil Ammonia Nitrogen Using Rapid Detection Kit Coupled with Microplate Reader. Toxics 2022, 10, 725. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of People’s Republic of China. National Environmental Protection Standard HJ 632-2011: Soil—Determination of Total Phosphorus—Alkali Fusion-Molybdenum Antimony Anti-Colorimetric Method; China Environmental Science Press: Beijing, China, 2011. [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. China National Ecological Environment Standard HJ1315-2023: Soil and Sediment—Determination of 19 Total Metal Elements—Inductively Coupled Plasma Mass Spectrometry; China Environmental Science Press: Beijing, China, 2023. [Google Scholar]
- Cruzado-Tafur, E.; Bierla, K.; Torró, L.; Szpunar, J. Accumulation of As, Ag, Cd, Cu, Pb, and Zn by Native Plants Growing in Soils Contaminated by Mining Environmental Liabilities in the Peruvian Andes. Plants 2021, 10, 241. [Google Scholar] [CrossRef]
- Liu, D.; Nishida, M.; Takahashi, T.; Asakawa, S. Transcription of mcrA Gene Decreases Upon Prolonged Non-Flooding Period in a Methanogenic Archaeal Community of a Paddy-Upland Rotational Field Soil. Microb. Ecol. 2018, 75, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Young, J.P. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Chen, B.; Li, H. Specificity and selectivity of arbuscular mycorrhizal fungal polymerase chain reaction primers in soil samples by clone library analyses. Acta Agric. Scand. Sect. B—Soil. Plant Sci. 2015, 66, 333–339. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y. Effect of Soil pH and Organic Matter Content on Heavy Metals Availability in Maize (Zea mays L.) Rhizospheric Soil of Non-Ferrous Metals Smelting Area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar] [CrossRef]
- Fei, J.; Zou, T.; Geng, M.; Luo, G.; Pang, C.; Huang, Y.; Yang, P.; Peng, J.; Jiang, Y. Residual Mulch-Film Characteristics Affect Heavy Metal Migration of Different Soil Layers in the Subtropical Croplands of China. Environ. Pollut. 2024, 360, 124702. [Google Scholar] [CrossRef]
- Colpaert, R.; de Vaufleury, A.; Rieffel, D.; Amiot, C.; Crini, N.; Gimbert, F. The Effects of Polystyrene Microparticles on the Environmental Availability and Bioavailability of As, Cd and Hg in Soil for the Land Snail Cantareus aspersus. Sci. Total Environ. 2024, 947, 174451. [Google Scholar] [CrossRef]
- Yu, H.; Hou, J.; Dang, Q.; Cui, D.; Xi, B.; Tan, W. Decrease in Bioavailability of Soil Heavy Metals Caused by the Presence of Microplastics Varies across Aggregate Levels. J. Hazard. Mater. 2020, 395, 122690. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Q.; Sun, Y.; Zhang, S.; Wang, F. Microplastics Change Soil Properties, Heavy Metal Availability and Bacterial Community in a Pb-Zn-Contaminated Soil. J. Hazard. Mater. 2022, 424, 127364. [Google Scholar] [CrossRef] [PubMed]
- Naz, M.; Afzal, M.R.; Qi, S.S.; Dai, Z.; Sun, Q.; Du, D. Microbial-Assistance and Chelation-Support Techniques Promoting Phytoremediation under Abiotic Stresses. Chemosphere 2024, 365, 143397. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wang, X.; Wang, L.; Meng, G.; Chen, Y. The Adsorption Behavior of Metals in Aqueous Solution by Microplastics Effected by UV Radiation. J. Environ. Sci. 2020, 87, 272–280. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Ji, C.; Deng, W.; Yang, G.; Hao, Z.; Chen, B. Physicochemical Properties of Environmental Media Can Affect the Adsorption of Arsenic (As) by Microplastics. Environ. Pollut. 2023, 338, 122592. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Zhang, Z.; Bao, Z.; Hao, L.; Diao, F.; Li, F.Y.; Guo, W. Claroideoglomus etunicatum Affects the Structural and Functional Genes of the Rhizosphere Microbial Community to Help Maize Resist Cd and La Stresses. Environ. Pollut. 2022, 307, 119559. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Guo, Q.; Wei, R.; Zhu, G.; Du, C.; Hu, H. Influence of Arbuscular Mycorrhizal Fungi on Bioaccumulation and Bioavailability of As and Cd: A Meta-Analysis. Environ. Pollut. 2023, 316, 120619. [Google Scholar] [CrossRef]
- Qin, L.; Wang, M.; Sun, X.; Yu, L.; Wang, J.; Han, Y.; Chen, S. Formation of Ferrihydrite Induced by Low pe+pH in Paddy Soil Reduces Cd Uptake by Rice: Evidence from Cd Isotope Fractionation. Environ. Pollut. 2023, 328, 121644. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.-Y.; Chen, L.; Yang, X.; Jeyakumar, P.; Wang, Z.; Sun, S.; Qiu, T.; Zeng, Y.; Chen, J.; Huang, M.; et al. Unveiling the Impacts of Microplastics on Cadmium Transfer in the Soil-Plant-Human System: A Review. J. Hazard. Mater. 2024, 477, 135221. [Google Scholar] [CrossRef]
- Zhang, J.; Diao, F.; Hao, B.; Xu, L.; Jia, B.; Hou, Y.; Ding, S.; Guo, W. Multiomics reveals Claroideoglomus etunicatum regulates plant hormone signal transduction, photosynthesis and La compartmentalization in maize to promote growth under La stress. Ecotoxicol. Environ. Saf. 2023, 262, 115128. [Google Scholar] [CrossRef]
Treatment | CK | TMF | BMF |
---|---|---|---|
pH | 6.31 ± 0.06 a | 6.14 ± 0.04 b | 5.79 ± 0.15 c |
SWC (%) | 21.22 ± 1.73 a | 19.12 ± 1.21 b | 19.80 ± 1.14 ab |
TC (g/kg) | 39.98 ± 0.72 c | 42.03 ± 0.76 b | 47.43 ± 1.11 a |
TN (g/kg) | 2.67 ± 0.46 a | 2.42 ± 0.19 a | 2.84 ± 0.07 a |
C/N | 14.86 ± 0.89 b | 17.35 ± 0.33 a | 17.05 ± 0.24 a |
TP (g/kg) | 0.60 ± 0.03 a | 0.63 ± 0.02 a | 0.63 ± 0.07 a |
AN (mg/kg) | 17.64 ± 2.90 b | 16.33 ± 2.43 b | 21.88 ± 1.44 a |
AP (mg/kg) | 7.74 ± 0.55 b | 7.27 ± 1.05 b | 9.00 ± 0.37 a |
Treatment | CK | TMF | BMF |
---|---|---|---|
Total nodes | 317 | 462 | 244 |
Total edges | 6215 | 12,825 | 4671 |
Average degree | 39.21 | 55.52 | 38.29 |
Network density | 0.12 | 0.12 | 0.16 |
Modularity | 0.55 | 0.71 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Shen, T.; Wei, M.; Xie, M.; Wang, G.; Liu, D. Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis. Agronomy 2025, 15, 780. https://doi.org/10.3390/agronomy15040780
Sun Q, Shen T, Wei M, Xie M, Wang G, Liu D. Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis. Agronomy. 2025; 15(4):780. https://doi.org/10.3390/agronomy15040780
Chicago/Turabian StyleSun, Qian, Ting Shen, Maolu Wei, Miaomiao Xie, Ge Wang, and Dongyan Liu. 2025. "Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis" Agronomy 15, no. 4: 780. https://doi.org/10.3390/agronomy15040780
APA StyleSun, Q., Shen, T., Wei, M., Xie, M., Wang, G., & Liu, D. (2025). Evaluating the Impact of Traditional and Biodegradable Mulch Film Residues on Heavy Metal Dynamics and Maize Productivity: Insights from Arbuscular Mycorrhizal Fungi Community Analysis. Agronomy, 15(4), 780. https://doi.org/10.3390/agronomy15040780