Interspecific and Intergeneric Crosses for Clubroot Resistance in Brassica Crops
Abstract
1. Introduction
1.1. Background
1.2. Significance
1.3. Challenges in Clubroot Management
1.4. Genetic Resistance and Sustainable Solution
1.5. Role of Wide Hybridization
1.6. Objectives of the Review
2. Genetic Diversity in Brassica and Related Genera
3. Methods for the Interspecific and Intergeneric Hybridization for Clubroot Resistance
3.1. Embryo Rescue
3.2. Polyploid Breeding
3.3. Protoplast Fusion
3.4. Molecular Markers
4. Sources of Clubroot Resistance
4.1. Marker-Assisted Selection (MAS)
4.2. Cloned Clubroot Resistance (CR) Genes and Their Relevance for Resistance Breeding
4.3. Transfer of Clubroot Resistance Inside the Triangle of U
4.3.1. Brassica rapa
4.3.2. Brassica oleracea
4.3.3. Brassica nigra and Related Genera
4.3.4. Brassica juncea
4.3.5. Resynthesis of Brassica Species for Clubroot Resistance
4.4. Transfer of Clubroot Resistance Outside the Triangle of U
4.4.1. Raphanus sativus
4.4.2. Arabidopsis and Other Cruciferous Species
5. Perspectives and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zotero, A.; García, C.; Gossen, B.D.; Strelkov, S.E.; Todd, C.D.; Bonham-Smith, P.C.; Pérez-López, E. Clubroot disease in Latin America: Distribution and management strategies. Plant Pathol. 2019, 68, 827–833. [Google Scholar] [CrossRef]
- Salih, R.; Brochu, A.-S.; Labbé, C.; Strelkov, S.E.; Franke, C.; Bélanger, R.; Pérez-López, E. A hydroponic-based bioassay to facilitate Plasmodiophora brassicae phenotyping. Plant Dis. 2024, 108, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wu, C.; Zhang, F.; Yao, J.; Fan, L.; Liu, Z.; Yao, Y. Comprehensive review of Plasmodiophora brassicae: Pathogenesis, pathotype diversity, and integrated control methods. Front. Microbiol. 2025, 16, 1531393. [Google Scholar] [CrossRef] [PubMed]
- Diederichsen, E.; Frauen, M.; Linders, E.G.A.; Hatakeyama, K.; Hirai, M. Status and perspectives of clubroot resistance breeding in crucifer crops. J. Plant Growth Regul. 2009, 28, 265–281. [Google Scholar] [CrossRef]
- Donald, E.C.; Porter, I.J. Clubroot in Australia: The history and impact of Plasmodiophora brassicae in Brassica crops and research efforts directed towards its control. Can. J. Plant Pathol. 2014, 36, 66–84. [Google Scholar] [CrossRef]
- Chai, A.L.; Xie, X.W.; Shi, Y.X.; Li, B.J. Research status of clubroot (Plasmodiophora brassicae) on cruciferous crops in China. Can. J. Plant Pathol. 2014, 36, 142–153. [Google Scholar] [CrossRef]
- Bruce, T.J.A. GM as a route for delivery of sustainable crop protection. J. Exp. Bot. 2012, 63, 537–541. [Google Scholar] [CrossRef]
- Struck, C.; Rüsch, S.; Streklov, B. Control strategies of clubroot disease caused by Plasmodiophora brassicae. Microorganisms 2022, 10, 620. [Google Scholar] [CrossRef]
- Dixon, G.R. Clubroot (Plasmodiophora brassicae Woronin)—An agricultural and biological challenge worldwide. Can. J. Plant Pathol. 2014, 36, 5–18. [Google Scholar] [CrossRef]
- Hasan, J.; Megha, S.; Rahman, H. Clubroot in Brassica: Recent advances in genomics, breeding, and disease management. Genome 2021, 64, 735–760. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Hwang, S.F.; Strelkov, S.E.; Gossen, B.D.; Peng, G.; Howard, R.J.; Turnbull, G.D. Assessment of bait crops to reduce inoculum of clubroot (Plasmodiophora brassicae) of canola. Can. J. Plant Sci. 2011, 91, 545–551. [Google Scholar] [CrossRef]
- Ueno, H.; Matsumoto, E.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol. Biol. 2012, 80, 621–629. [Google Scholar] [CrossRef]
- Dakouri, A.; Lamara, M.; Karim, M.M.; Wang, J.; Chen, Q.; Gossen, B.D.; Strelkov, S.E.; Hwang, S.-F.; Peng, G.; Yu, F. Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Sci. Rep. 2021, 11, 85836. [Google Scholar] [CrossRef] [PubMed]
- Farid, M.; Yang, R.-C.; Kebede, B.; Rahman, H. Evaluation of Brassica oleracea accessions for resistance to Plasmodiophora brassicae and identification of genomic regions associated with resistance. Genome 2020, 63, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Hollman, K.B.; Hwang, S.F.; Manolii, V.P.; Strelkov, S.E. Pathotypes of Plasmodiophora brassicae collected from clubroot-resistant canola (Brassica napus L.) cultivars in Western Canada in 2017–2018. Can. J. Plant Pathol. 2021, 43, 622–630. [Google Scholar] [CrossRef]
- Holtz, M.D.; Hwang, S.-F.; Strelkov, S.E. Genotyping of Plasmodiophora brassicae reveals the presence of distinct populations. BMC Genom. 2018, 19, 254. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, Y.; Wu, Y.; Zhang, X.; Zhao, C.; Ren, L.; Huang, J.; Cheng, X.; Liu, S.; Liu, L. Pathotype characterization of Plasmodiophora brassicae by European Clubroot Differential and Williams sets in China. Plant Dis. 2024, 108, 847–851. [Google Scholar] [CrossRef]
- Askarian, H.; Hwang, S.-F.; Akhavan, A.; Manolii, V.P.; Strelkov, S.E.; Cao, T. Virulence spectrum of single-spore and field isolates of Plasmodiophora brassicae able to overcome resistance in canola (Brassica napus). Plant Dis. 2021, 105, 43–52. [Google Scholar] [CrossRef]
- Jones, D.R.; Ingram, D.S.; Dixon, G.R. Factors affecting tests for differential pathogenicity in populations of Plasmodiophora brassicae. Plant Pathol. 1982, 31, 229–238. [Google Scholar] [CrossRef]
- Pang, W.; Liang, Y.; Zhan, Z.; Li, X.; Piao, Z. Development of a Sinitic clubroot differential set for the pathotype classification of Plasmodiophora brassicae. Front. Plant Sci. 2020, 11, 568771. [Google Scholar] [CrossRef]
- Ayers, G.W. Races of Plasmodiophora brassicae. Can. J. Bot. 1957, 35, 923–932. [Google Scholar] [CrossRef]
- Javed, M.A.; Pérez-López, E.; Mukhopadhyay, S.; Normandeau, E.; Brochu, A.-S. Telomere-to-telomere genome assembly of the clubroot pathogen Plasmodiophora brassicae. Genome Biol. Evol. 2024, 16, evae122. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, X.; Wang, Z.; Wei, X.; Yuan, Y.; Yang, Y.; Wei, F.; Tian, B.; Zhao, Y.; Yang, S.; et al. Root RNA-seq analysis reveals a distinct transcriptome landscape between clubroot-susceptible and clubroot-resistant Chinese cabbage lines after Plasmodiophora brassicae infection. Plant Soil 2017, 421, 93–105. [Google Scholar] [CrossRef]
- Tso, H.H.; Strelkov, S.E.; Galindo-González, L. Current and future pathotyping platforms for Plasmodiophora brassicae in Canada. Plants 2021, 10, 1446. [Google Scholar] [CrossRef]
- Hejna, O.; Havlickova, L.; He, Z.; Bancroft, I.; Curn, V. Analysing the genetic architecture of clubroot resistance variation in Brassica napus by associative transcriptomics. Mol. Breed. 2019, 39, 1021–1034. [Google Scholar] [CrossRef]
- Hirani, A.H.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; McVetty, P.B.E.; Duncan, R.W.; Li, G. Combinations of independent dominant loci conferring clubroot resistance in four turnip accessions (Brassica rapa) from the European Clubroot Differential set. Front. Plant Sci. 2018, 9, 1628. [Google Scholar] [CrossRef]
- Kaneko, Y.; Bang, S.W. Interspecific and intergeneric hybridization and chromosomal engineering of Brassicaceae crops. Breed. Sci. 2014, 64, 14–22. [Google Scholar] [CrossRef]
- Mehraj, H.; Akter, A.; Miyaji, N.; Miyazaki, J.; Shea, D.J.; Fujimoto, R.; Doullah, M.A.-U. Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: The application of marker-assisted breeding for disease resistance. Plants 2020, 9, 726. [Google Scholar] [CrossRef]
- Piao, Z.; Ramchiary, N.; Lim, Y.P. Genetics of clubroot resistance in Brassica species. J. Plant Growth Regul. 2009, 28, 252–264. [Google Scholar] [CrossRef]
- Pilet-Nayel, M.-L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.-C.; Fournet, S.; Durel, C.-E.; Delourme, R. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef]
- Reglinski, T.; Havis, N.; Rees, H.J.; de Jong, H. The practical role of induced resistance for crop protection. Phytopathology 2023, 113, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Botero-Ramirez, A.; Kirk, B.; Strelkov, S.E. Optimizing clubroot management and the role of canola cultivar mixtures. Pathogens 2024, 13, 640. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.; Lahlali, R.; Hwang, S.-F.; Pageau, D.; Hynes, R.K.; McDonald, M.R.; Gossen, B.D.; Strelkov, S.E. Crop rotation, cultivar resistance, and fungicides/biofungicides for managing clubroot (Plasmodiophora brassicae) on canola. Can. J. Plant Pathol. 2014, 36, 99–112. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, H.; Song, J.; Yang, W.; Jia, H.; Agerbirk, N.; Chen, Y.; Li, C.; Piao, Y.; Li, S.; et al. Identification of clubroot-resistant germplasm in a radish (Raphanus sativus L.) core collection. Agronomy 2024, 14, 157. [Google Scholar] [CrossRef]
- Neik, T.X.; Barbetti, M.J.; Batley, J. Current status and challenges in identifying disease resistance genes in Brassica napus. Front. Plant Sci. 2017, 8, 1788. [Google Scholar] [CrossRef]
- Ahuja, I.; Rohloff, J.; Bones, A.M. Defence mechanisms of Brassicaceae: Implications for plant–insect interactions and potential for integrated pest management—A review. Agron. Sustain. Dev. 2010, 30, 311–348. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Arseniuk, E.; Boonekamp, P.; Czembor, J.; Decroocq, V.; Enjalbert, J.; Finckh, M.R.; Korbin, M.; Koppel, M.; Kudsk, P.; et al. Advocating a need for suitable breeding approaches to boost integrated pest management: A European perspective. Pest Manag. Sci. 2018, 74, 1219–1227. [Google Scholar] [CrossRef]
- Rato, C.; Carvalho, M.F.; Azevedo, C.; Oblessuc, P.R. Genome editing for resistance against plant pests and pathogens. Transgenic Res. 2021, 30, 427–459. [Google Scholar] [CrossRef]
- Fredua-Agyeman, R.; Rahman, H. Mapping of the clubroot disease resistance in spring Brassica napus canola introgressed from European winter canola cv. ‘Mendel’. Euphytica 2016, 211, 201–213. [Google Scholar] [CrossRef]
- Hirai, M.; Harada, T.; Kubo, N.; Tsukada, M.; Suwabe, K.; Matsumoto, S. A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor. Appl. Genet. 2004, 108, 639–643. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, Y.; Yu, F. A CRISPR/Cas9-based vector system enables fast breeding of selection marker-free canola with Rcr1-rendered clubroot resistance. J. Exp. Bot. 2024, 75, 1347–1363. [Google Scholar] [CrossRef] [PubMed]
- Kopec, P.M.; Mikolajczyk, K.; Jajor, E.; Perek, A.; Nowakowska, J.; Obermeier, C.; Chawla, H.S.; Korbas, M.; Bartkowiak-Broda, I.; Karlowski, W.M. Local duplication of TIR-NBS-LRR gene marks clubroot resistance in Brassica napus cv. Tosca. Front. Plant Sci. 2021, 12, 639631. [Google Scholar] [CrossRef] [PubMed]
- Kuginuki, Y.; Ajisaka, H.; Yui, M.; Yoshikawa, H.; Hida, K.-I.; Hirai, M. RAPD markers linked to a clubroot-resistance locus in Brassica rapa L. Euphytica 1997, 98, 149–154. [Google Scholar] [CrossRef]
- Nguyen, M.L.; Monakhos, G.F.; Komakhin, R.A.; Monakhos, S.G. The new clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.). Russ. J. Genet. 2018, 54, 296–304. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Z.; Zhang, C.; Pang, W.; Choi, S.R.; Lim, Y.P.; Piao, Z. Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa. Mol. Breed. 2014, 34, 1173–1183. [Google Scholar] [CrossRef]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Quezada-Martinez, D.; Addo Nyarko, C.P.; Schiessl, S.V.; Mason, A.S. Using wild relatives and related species to build climate resilience in Brassica crops. Theor. Appl. Genet. 2021, 134, 1711–1728. [Google Scholar] [CrossRef]
- Zou, J.; Gao, S.; Zhang, B.; Ge, W.; Zhang, J.; Ji, R. Chinese cabbage BrCAP has potential resistance against Plasmodiophora brassicae. Horticulturae 2023, 9, 517. [Google Scholar] [CrossRef]
- Hu, D.; Jing, J.; Snowdon, R.J.; Mason, A.S.; Shen, J.; Meng, J.; Zou, J. Exploring the gene pool of Brassica napus by genomics-based approaches. Plant Biotechnol. J. 2021, 19, 1693–1712. [Google Scholar] [CrossRef]
- Snowdon, R.J. Cytogenetics and genome analysis in Brassica crops. Chromosome Res. 2007, 15, 85–95. [Google Scholar] [CrossRef]
- Tonguç, M.; Griffiths, P.D. Development of Black Rot Resistant Interspecific Hybrids between Brassica oleracea L. Cultivars and Brassica Accession A 19182, Using Embryo Rescue. Euphytica 2004, 136, 313–318. [Google Scholar] [CrossRef]
- Momotaz, A.; Kato, M.; Kakihara, F. Production of Intergeneric Hybrids between Brassica and Sinapis Species by Means of Embryo Rescue Techniques. Euphytica 1998, 103, 123–130. [Google Scholar] [CrossRef]
- Chen, Z.Z.; Snyder, S.; Loh, W.H.; Fan, Z.G. Efficient Production of Doubled Haploid Plants through Chromosome Doubling of Isolated Microspores in Brassica napus. Plant Breed. 1994, 113, 217–221. [Google Scholar] [CrossRef]
- Leflon, M.; Coriton, O.; Jenczewski, E.; Huteau, V.; Eber, F.; Chèvre, A.M.; Letanneur, J.C.; Chelysheva, L.; Barker, G.; Ryder, C.D. Pairing and recombination at meiosis of Brassica rapa (AA) × Brassica napus (AACC) hybrids. Theor. Appl. Genet. 2006, 113, 1467–1480. [Google Scholar] [CrossRef]
- Zou, J.; Yang, T.; Xia, W.; Li, R.; Qian, W.; Pires, J.C.; Mason, A.S.; Park, B.S.; Fu, D.; Lim, Y.P.; et al. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J. 2011, 68, 212–224. [Google Scholar] [CrossRef]
- Zhan, Z.; Nwafor, C.C.; Hou, Z.; Gong, J.; Zhu, B.; Jiang, Y.; Zhou, Y.; Wu, J.; Piao, Z.; Tong, Y.; et al. Cytological and Morphological Analysis of Hybrids between Brassicoraphanus, and Brassica napus for Introgression of Clubroot Resistant Trait into Brassica napus L. PLoS ONE 2017, 12, e0177470. [Google Scholar] [CrossRef]
- Rogo, U.; Fambrini, M.; Pugliesi, C. Embryo Rescue in Plant Breeding. Plants 2023, 12, 3106. [Google Scholar] [CrossRef]
- Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Golicz, A.A.; Tang, H.; Wang, X.; Chiquet, J.; Belcram, H.; Tong, H.; et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014, 345, 950–953. [Google Scholar] [CrossRef]
- Katche, E. Interspecific Hybridization for Brassica Crop Improvement. Crop Breed. Genet. Genom. 2019, 1, e190007. [Google Scholar] [CrossRef]
- Cheng, F.; Wu, J.; Wang, X. Genome Triplication Drove the Diversification of Brassica Plants. Hortic. Res. 2014, 1, 14024. [Google Scholar] [CrossRef]
- Nikolov, L.A. Brassicaceae Flowers: Diversity amid Uniformity. J. Exp. Bot. 2019, 70, 2623–2635. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zhang, W.; Zhang, Y.; Chang, S.; Chen, L.; Chen, Y.; Shi, Y.; Shen, J.; Meng, J.; Zou, J. Reconstituting the Genome of a Young Allopolyploid Crop, Brassica napus, with Its Related Species. Plant Biotechnol. J. 2019, 17, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Nelson, M.N.; Chèvre, A.-M.; Jenczewski, E.; Li, Z.; Mason, A.S.; Meng, J.; Plummer, J.A.; Pradhan, A.; Siddique, K.H.M.; et al. Trigenomic Bridges for Brassica Improvement. Crit. Rev. Plant Sci. 2011, 30, 524–547. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, M.; Chang, S.; Wu, C.; Liu, P.; Meng, J.; Zou, J. Introgressing Subgenome Components from Brassica rapa and B. carinata to B. juncea for Broadening Its Genetic Base and Exploring Intersubgenomic Heterosis. Front. Plant Sci. 2016, 7, 1677. [Google Scholar] [CrossRef]
- Zou, J.; Hu, D.; Mason, A.S.; Shen, X.; Wang, X.; Wang, N.; Grandke, F.; Wang, M.; Chang, S.; Snowdon, R.J.; et al. Genetic Changes in a Novel Breeding Population of Brassica napus Synthesized from Hundreds of Crosses between B. rapa and B. carinata. Plant Biotechnol. J. 2018, 16, 507–519. [Google Scholar] [CrossRef]
- Kamiński, P.; Marasek-Ciołakowska, A.; Podwyszyńska, M.; Nowakowska, M.; Nowak, K.; Szczechura, W.; Kowalska, U. Development and Characteristics of Intergeneric Brassica rapa L. subsp. pekinensis × Sinapis alba Hybrids as a New Germplasm for the Breeding. Sci. Hortic. 2025, 344, 114102. [Google Scholar] [CrossRef]
- Pelletier, G.; Primard, C.; Vedel, F. Intergeneric Cytoplasm Hybridization in Cruciferae by Protoplast Fusion. In Protoplasts 1983; Potrykus, I., Harms, C.T., Hinnen, A., Hütter, R., King, P.J., Shillito, R.D., Eds.; Birkhäuser: Basel, Switzerland, 1983; pp. 286–287. ISBN 978-3-0348-6557-9. [Google Scholar]
- Crisp, P.; Crute, I.R.; Sutherland, R.A.; Angell, S.M.; Bloor, K.; Burgess, H.; Gordon, P.L. The Exploitation of Genetic Resources of Brassica oleracea in Breeding for Resistance to Clubroot (Plasmodiophora brassicae). Euphytica 1989, 42, 215–226. [Google Scholar] [CrossRef]
- Matsumoto, E.; Ueno, H.; Aruga, D.; Sakamoto, K.; Hayashida, N. Accumulation of Three Clubroot Resistance Genes through Marker-Assisted Selection in Chinese Cabbage (Brassica rapa ssp. pekinensis). J. Jpn. Soc. Hortic. Sci. 2012, 81, 184–190. [Google Scholar] [CrossRef]
- Cardoza, V.; Stewart, C.N. Brassica Biotechnology: Progress in Cellular and Molecular Biology. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 542–551. [Google Scholar] [CrossRef]
- Sharma, D.R.; Kaur, R.; Kumar, K. Embryo Rescue in Plants—A Review. Euphytica 1996, 89, 325–337. [Google Scholar] [CrossRef]
- Snowdon, R.J.; Friedt, W. Molecular Markers in Brassica Oilseed Breeding: Current Status and Future Possibilities. Plant Breed. 2004, 123, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, A.; Liang, F.; Yao, X.; Wang, Y.; Liu, X.; Zhang, Y.; Dalelhan, J.; Zhang, B.; Qin, M.; et al. Screening of Clubroot-Resistant Varieties and Transfer of Clubroot Resistance Genes to Brassica napus Using Distant Hybridization. Breed. Sci. 2018, 68, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.S.; Chiang, B.Y.; Grant, W.F. Transfer of Resistance to Race 2 of Plasmodiophora brassicae from Brassica napus to Cabbage (B. oleracea Var. Capitata). I. Interspecific Hybridization between B. napus and B. oleracea Var. Capitata. Euphytica 1977, 26, 319–336. [Google Scholar] [CrossRef]
- Matsumoto, E.; Yasui, C.; Ohi, M.; Tsukada, M. Linkage Analysis of RFLP Markers for Clubroot Resistance and Pigmentation in Chinese Cabbage (Brassica rapa Ssp. pekinensis). Euphytica 1998, 104, 79–86. [Google Scholar] [CrossRef]
- Rahman, H.; Shakir, A.; Jakir Hasan, M. Breeding for Clubroot Resistant Spring Canola (Brassica napus L.) for the Canadian Prairies: Can the European Winter Canola Cv. Mendel Be Used as a Source of Resistance? Can. J. Plant Sci. 2011, 91, 447–458. [Google Scholar] [CrossRef]
- Fredua-Agyeman, R.; Hwang, S.-F.; Strelkov, S.E.; Zhou, Q.; Feindel, D. Potential Loss of Clubroot Resistance Genes from Donor Parent Brassica rapa subsp. Rapifera (ECD 04) during Doubled Haploid Production. Plant Pathol. 2018, 67, 892–901. [Google Scholar] [CrossRef]
- Diederichsen, E.; Sacristan, M.D. Disease Response of Resynthesized Brassica napus L. Lines Carrying Different Combinations of Resistance to Plasmodiophora brassicae Wor. Plant Breed. 1996, 115, 5–10. [Google Scholar] [CrossRef]
- Karim, M.; Yu, F. Resynthesizing Brassica napus with race specific resistance genes and race non-specific QTLs to multiple races of Plasmodiophora brassicae. Sci. Rep. 2024, 14, 14627. [Google Scholar] [CrossRef]
- Ren, J.P.; Dickson, M.H.; Earle, E.D. Improved Resistance to Bacterial Soft Rot by Protoplast Fusion between Brassica rapa and B. oleracea. Theor. Appl. Genet. 2000, 100, 810–819. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, Y.; Wang, J.; Chen, Q.; Karim, M.M.; Gossen, B.D.; Peng, G. Identification of Two Major QTLs in Brassica napus Lines with Introgressed Clubroot Resistance From Turnip Cultivar ECD01. Front. Plant Sci. 2022, 12, 785989. [Google Scholar] [CrossRef]
- Sacristán, M.D.; Gerdemann-Knörck, M.; Schieder, O. Incorporation of Hygromycin Resistance in Brassica Nigra and Its Transfer to B. napus through Asymmetric Protoplast Fusion. Theor. Appl. Genet. 1989, 78, 194–200. [Google Scholar] [CrossRef]
- Hagimori, M.; Nagaoka, M.; Kato, N.; Yoshikawa, H. Production and Characterization of Somatic Hybrids between the Japanese Radish and Cauliflower. Theor. Appl. Genet. 1992, 84, 819–824. [Google Scholar] [CrossRef]
- Kameya, T.; Kanzaki, H.; Toki, S.; Abe, T. Transfer of Radish (Raphanus sativus L.) Chloroplasts into Cabbage (Brassica oleracea L.) by Protoplast Fusion. Jpn. J. Genet. 1989, 64, 27–34. [Google Scholar] [CrossRef]
- Diederichsen, E.; Wagenblatt, B.; Schallehn, V.; Deppe, U.; Sacristan, M.D. Transfer of Clubroot Resistance from Resynthesised Brassica napus into Oilseed Rape—Identification of Race- Specific Interactions with Plasmodiophora brassicae. In Proceedings of the Acta Hortic; International Society for Horticultural Science: Leuven, Belgium, 1996; Volume 407, pp. 423–429. [Google Scholar]
- Francia, E.; Tacconi, G.; Crosatti, C.; Barabaschi, D.; Bulgarelli, D.; Dall’Aglio, E.; Valè, G. Marker Assisted Selection in Crop Plants. Plant Cell Tissue Organ Cult. 2005, 82, 317–342. [Google Scholar] [CrossRef]
- Jonas, E.; Koning, D.-J.D. Genomic Selection Needs to Be Carefully Assessed to Meet Specific Requirements in Livestock Breeding Programs. Front. Genet. 2015, 6, 49. [Google Scholar] [CrossRef]
- Neyhart, J.L.; Lorenz, A.J.; Smith, K.P. Multi-Trait Improvement by Predicting Genetic Correlations in Breeding Crosses. G3 2019, 9, 3153–3165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, Y.; Qian, H.; Zhang, Z.; Zhang, L. Evaluation of Germplasm and Development of Markers for Resistance to Plasmodiophora brassicae in Radish (Raphanus sativus L.). Agronomy 2022, 12, 554. [Google Scholar] [CrossRef]
- Figdore, S.S.; Ferreira, M.E.; Slocum, M.K.; Williams, P.H. Association of RFLP Markers with Trait Loci Affecting Clubroot Resistance and Morphological Characters in Brassica oleracea L. Euphytica 1993, 69, 33–44. [Google Scholar] [CrossRef]
- Nagaoka, T.; Doullah, M.A.U.; Matsumoto, S.; Kawasaki, S.; Ishikawa, T.; Hori, H.; Okazaki, K. Identification of QTLs That Control Clubroot Resistance in Brassica oleracea and Comparative Analysis of Clubroot Resistance Genes between B. rapa and B. oleracea. Theor. Appl. Genet. 2010, 120, 1335–1346. [Google Scholar] [CrossRef]
- Pang, W.; Fu, P.; Li, X.; Zhan, Z.; Yu, S.; Piao, Z. Identification and Mapping of the Clubroot Resistance Gene CRd in Chinese Cabbage (Brassica rapa ssp. pekinensis). Front. Plant Sci. 2018, 9, 653. [Google Scholar] [CrossRef]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Fine Mapping of the Clubroot Resistance Gene CRb and Development of a Useful Selectable Marker in Brassica rapa. Breed. Sci. 2013, 63, 116–124. [Google Scholar] [CrossRef]
- Werner, S.; Diederichsen, E.; Frauen, M.; Schondelmaier, J.; Jung, C. Genetic Mapping of Clubroot Resistance Genes in Oilseed Rape. Theor. Appl. Genet. 2008, 116, 363–372. [Google Scholar] [CrossRef]
- Shah, N.; Sun, J.; Yu, S.; Yang, Z.; Wang, Z.; Huang, F.; Dun, B.; Gong, J.; Liu, Y.; Li, Y.; et al. Genetic Variation Analysis of Field Isolates of Clubroot and Their Responses to Brassica napus Lines Containing Resistant Genes CRb and PbBa8.1 and Their Combination. Mol. Breed. 2019, 39, 153. [Google Scholar] [CrossRef]
- Xu, M.L.; Korban, S.S. Saturation Mapping of the Apple Scab Resistance Gene Vf Using AFLP Markers. Theor. Appl. Genet. 2000, 101, 844–851. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, J.; Manolii, V.P.; Strelkov, S.E.; Hwang, S.-F. Characterization of a Gene Identified in Pathotype 5 of the Clubroot Pathogen Plasmodiophora brassicae. Phytopathology 2015, 105, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.; Deng, X.; Cui, L.; Yu, X.; Yuan, W.; Dai, Z.; Yao, M.; Pang, W.; Ma, Y.; Yu, X.; et al. Construction of a High-Density Genetic Linkage Map and Identification of QTLs Associated with Clubroot Resistance in Radish (Raphanus sativus L.). Mol. Breed. 2019, 39, 1020–1025. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Niwa, T.; Kato, T.; Ohara, T.; Kakizaki, T.; Matsumoto, S. Tandem Repeated Organization of NB-LRR Genes in the Clubroot-Resistant CRb Locus in Brassica rapa L. Mol. Genet. Genom. 2017, 292, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Hatakeyama, K.; Fukino, N.; Matsumoto, S. Identification of a Clubroot Resistance Locus Conferring Resistance to Plasmodiophora brassicae Pathotype Group 3 in Chinese Cabbage (Brassica rapa L.). Breed. Sci. 2012, 62, 282–287. [Google Scholar] [CrossRef]
- Hatakeyama, K.; Suwabe, K.; Tomita, R.N.; Kato, T.; Nunome, T.; Fukuoka, H.; Matsumoto, S. Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease in Brassica rapa L. PLoS ONE 2013, 8, e54745. [Google Scholar] [CrossRef]
- Chu, M.; Falk, K.C.; Peng, G.; Zhang, X.; Song, T.; Chang, A.; Lahlali, R.; Gossen, B.D.; Yu, F.; Liu, X.; et al. Fine Mapping of Rcr1 and Analyses of Its Effect on Transcriptome Patterns during Infection by Plasmodiophora brassicae. BMC Genom. 2014, 15, 1166. [Google Scholar] [CrossRef]
- Song, T.; Peng, G.; Yu, F.; Chu, M.; Lahlali, R. Shotgun Label-Free Proteomic Analysis of Clubroot Resistance Conferred by Rcr1 in Brassica rapa. Front. Plant Sci. 2016, 7, 1013. [Google Scholar] [CrossRef] [PubMed]
- Ce, F.; Mei, J.; He, H.; Zhao, Y.; Hu, W.; Yu, F.; Li, Q.; Ren, X.; Si, J.; Song, H.; et al. Identification of Candidate Genes for Clubroot Resistance in Brassica oleracea Using QTL-Seq. Front. Plant Sci. 2021, 12, 703520. [Google Scholar] [CrossRef]
- Chen, J.; Jing, J.; Zhan, Z.; Zhang, T.; Zhang, C.; Piao, Z. Identification of Novel QTLs for Isolate-Specific Partial Resistance to Plasmodiophora brassicae in Brassica rapa. PLoS ONE 2013, 8, e85307. [Google Scholar] [CrossRef] [PubMed]
- Fredua-Agyeman, R.; Jiang, J.; Hwang, S.-F.; Strelkov, S.E. QTL Mapping and Inheritance of Clubroot Resistance Genes Derived From Brassica rapa subsp. Rapifera (ECD 02) Reveals Resistance Loci and Distorted Segregation Ratios in Two F2 Populations of Different Crosses. Front. Plant Sci. 2020, 11, 899. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.M.; Dakouri, A.; Zhang, Y.; Chen, Q.; Peng, G.; Strelkov, S.E.; Gossen, B.D.; Yu, F. Two Clubroot-Resistance Genes, Rcr3 and Rcr9wa, Mapped in Brassica rapa Using Bulk Segregant RNA Sequencing. Int. J. Mol. Sci. 2020, 21, 5033. [Google Scholar] [CrossRef]
- Lee, J.; Izzah, N.K.; Choi, B.-S.; Joh, H.J.; Lee, S.-C.; Perumal, S.; Seo, J.; Ahn, K.; Jo, E.J.; Choi, G.J.; et al. Genotyping-by-Sequencing Map Permits Identification of Clubroot Resistance QTLs and Revision of the Reference Genome Assembly in Cabbage (Brassica oleracea L.). DNA Res. 2015, 23, dsv034. [Google Scholar] [CrossRef]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Matsumoto, S.; Hirai, M. Identification of Two Loci for Resistance to Clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor. Appl. Genet. 2003, 107, 997–1002. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Zhou, J.; Strelkov, S.E.; Fredua-Agyeman, R.; Zhang, S.; Li, F.; Li, G.; Wu, J.; Sun, R.; et al. Identification of Clubroot (Plasmodiophora brassicae) Resistance Loci in Chinese Cabbage (Brassica rapa ssp. pekinensis) with Recessive Character. Genes 2024, 15, 274. [Google Scholar] [CrossRef]
- Hirani, A.H.; Gao, F.; Liu, J.; Fu, G.; Wu, C.; Yuan, Y.; Li, W.; Hou, J.; Duncan, R.; Li, G. Transferring Clubroot Resistance from Chinese Cabbage (Brassica rapa) to Canola (B. napus). Can. J. Plant Pathol. 2016, 38, 82–90. [Google Scholar] [CrossRef]
- Cheng, F.; Wu, J.; Cai, C.; Fu, L.; Liang, J.; Borm, T.; Zhuang, M.; Zhang, Y.; Zhang, F.; Bonnema, G.; et al. Genome Resequencing and Comparative Variome Analysis in a Brassica rapa and Brassica oleracea Collection. Sci. Data 2016, 3, 160119. [Google Scholar] [CrossRef]
- Rahman, H.; Peng, G.; Yu, F.; Falk, K.C.; Kulkarni, M.; Selvaraj, G. Special Issue: Genetics and Breeding for Clubroot Resistance in Canadian Spring Canola (Brassica napus L.). Can. J. Plant Pathol. 2014, 36, 122–134. [Google Scholar] [CrossRef]
- Chiang, B.Y.; Chiang, M.S.; Grant, W.F.; Crete, R. Transfer of Resistance to Race 2 of Plasmodiophora brassicae from Brassica napus to Cabbage (B. oleracea spp. Capitata). IV. A Resistant 18-Chromosome B1 Plant and Its B2 Progenies. Euphytica 1980, 29, 47–55. [Google Scholar] [CrossRef]
- Karim, M.M.; Yu, F. Identification of QTLs for Resistance to 10 Pathotypes of Plasmodiophora brassicae in Brassica oleracea Cultivar ECD11 through Genotyping-by-Sequencing. Theor. Appl. Genet. 2023, 136, 249. [Google Scholar] [CrossRef]
- Lindhout, P. The Perspectives of Polygenic Resistance in Breeding for Durable Disease Resistance. Euphytica 2002, 124, 217–226. [Google Scholar] [CrossRef]
- Kamei, A.; Tsuro, M.; Kubo, N.; Hayashi, T.; Wang, N.; Fujimura, T.; Hirai, M. QTL Mapping of Clubroot Resistance in Radish (Raphanus sativus L.). Theor. Appl. Genet. 2010, 120, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Hirai, M. Genetic Analysis of Clubroot Resistance in Brassica Crops. Breed. Sci. 2006, 56, 223–229. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, L.; Li, Q.; Wei, D.; Ren, X.; Song, H.; Mei, J.; Si, J.; Qian, W. Identification of Quantitative Trait Loci for Clubroot Resistance in Brassica oleracea with the Use of Brassica SNP Microarray. Front. Plant Sci. 2018, 9, 822. [Google Scholar] [CrossRef]
- Chang, A.; Lamara, M.; Wei, Y.; Hu, H.; Parkin, I.A.P.; Gossen, B.D.; Peng, G.; Yu, F. Clubroot Resistance Gene Rcr6 in Brassica Nigra Resides in a Genomic Region Homologous to Chromosome A08 in B. rapa. BMC Plant Biol. 2019, 19, 224. [Google Scholar] [CrossRef]
- Peng, G.; Falk, K.C.; Gugel, R.K.; Franke, C.; Yu, F.; James, B.; Strelkov, S.E.; Hwang, S.-F.; McGregor, L. Sources of Resistance to Plasmodiophora brassicae (Clubroot) Pathotypes Virulent on Canola. Can. J. Plant Pathol. 2014, 36, 89–99. [Google Scholar] [CrossRef]
- Jakir Hasan, M.; Strelkov, S.E.; Howard, R.J.; Rahman, H. Screening of Brassica Germplasm for Resistance to Plasmodiophora brassicae Pathotypes Prevalent in Canada for Broadening Diversity in Clubroot Resistance. Can. J. Plant Sci. 2012, 92, 501–515. [Google Scholar] [CrossRef]
- Rusholme, R.L.; Higgins, E.E.; Walsh, J.A.; Lydiate, D.J. Genetic Control of Broad-Spectrum Resistance to Turnip Mosaic Virus in Brassica rapa (Chinese Cabbage). J. Gen. Virol. 2007, 88, 3177–3186. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Brown, A.P.; Davis, J.B.; Erickson, D. Intergeneric Hybridization between Sinapis alba and Brassica napus. Euphytica 1997, 93, 163–168. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Thamilarasan, S.K.; Pandian, S.; Oh, Y.-J.; Ryu, T.-H.; Lee, G.-S.; Shin, E.-K. Interspecific Hybridization of Transgenic Brassica napus and Brassica rapa—An Overview. Genes 2022, 13, 1442. [Google Scholar] [CrossRef] [PubMed]
- Declercq, B.; Van Buyten, E.; Claeys, S.; Cap, N.; De Nies, J.; Pollet, S.; Höfte, M. Molecular Characterization of Phytophthora Porri and Closely Related Species and Their Pathogenicity on Leek (Allium porrum). Eur. J. Plant Pathol. 2010, 127, 341–350. [Google Scholar] [CrossRef]
- Peterka, H.; Budahn, H.; Schrader, O.; Ahne, R.; Schütze, W. Transfer of Resistance against the Beet Cyst Nematode from Radish (Raphanus sativus) to Rape (Brassica napus) by Monosomic Chromosome Addition. Theor. Appl. Genet. 2004, 109, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jo, E.J.; Choi, Y.H.; Jang, K.S.; Choi, G.J. Pathotype classification of Plasmodiophora brassicae isolates using clubroot-resistant cultivars of Chinese cabbage. Plant Pathol. J. 2016, 32, 423–430. [Google Scholar] [CrossRef]
- Laila, R.; Nou, I.-S.; Park, J.-I.; Vijayakumar, H.; Robin, A.H.K.; Shirasawa, K.; Isobe, S.; Natarajan, S.; Kim, H.-T. Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biol. 2019, 19, 93. [Google Scholar] [CrossRef]
- Alix, K.; Lariagon, C.; Delourme, R.; Manzanares-Dauleux, M.J. Exploiting Natural Genetic Diversity and Mutant Resources of Arabidopsis thaliana to Study the A. thaliana—Plasmodiophora brassicae Interaction. Plant Breed. 2007, 126, 218–221. [Google Scholar] [CrossRef]
- Ochoa, J.C.; Mukhopadhyay, S.; Bieluszewski, T.; Jędryczka, M.; Malinowski, R.; Truman, W. Natural Variation in Arabidopsis Responses to Plasmodiophora brassicae Reveals an Essential Role for Resistance to Plasmodiophora Brasssicae 1 (RPB1). Plant J. 2023, 116, 1421–1440. [Google Scholar] [CrossRef]
- Zhao, Y.; Bi, K.; Gao, Z.; Chen, T.; Liu, H.; Xie, J.; Cheng, J.; Fu, Y.; Jiang, D. Transcriptome Analysis of Arabidopsis thaliana in Response to Plasmodiophora brassicae during Early Infection. Front. Microbiol. 2017, 8, 673. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Yan, R.; Ren, L.; Liu, F.; Zeng, L.; Sun, S.; Yang, H.; Chen, K.; Xu, L.; et al. SnRK1.1-mediated Resistance of Arabidopsis thaliana to Clubroot Disease Is Inhibited by the Novel Plasmodiophora brassicae Effector PBZF1. Mol. Plant Pathol. 2021, 22, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Gravot, A.; Grillet, L.; Wagner, G.; Jubault, M.; Lariagon, C.; Baron, C.; Deleu, C.; Delourme, R.; Bouchereau, A.; Manzanares-Dauleux, M.J. Genetic and Physiological Analysis of the Relationship between Partial Resistance to Clubroot and Tolerance to Trehalose in Arabidopsis thaliana. New Phytol. 2011, 191, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zafar, N.; Ali, Q.; Manghwar, H.; Wang, G.; Yu, L.; Ding, X.; Ding, F.; Hong, N.; Wang, G.; et al. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Cells 2022, 11, 3928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, X.; Liu, X.; Zhang, S.; Li, F.; Li, G.; Sun, R.; Zhang, S. Identification and Fine-Mapping of Clubroot (Plasmodiophora brassicae) Resistant QTL in Brassica rapa. Horticulturae 2022, 8, 66. [Google Scholar] [CrossRef]
- Suwabe, K.; Tsukazaki, H.; Iketani, H.; Hatakeyama, K.; Kondo, M.; Fujimura, M.; Nunome, T.; Fukuoka, H.; Hirai, M.; Matsumoto, S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 2006, 173, 309–319. [Google Scholar] [CrossRef]
- Schaart, J.G.; Smulders, M.J.M.; Van de Wiel, C.C.M. Genome editing of polyploid crops: Prospects, achievements and bottlenecks. Transgenic Res. 2021, 30, 337–351. [Google Scholar] [CrossRef]
- Hussin, S.H.; Iqbal, M.A.; Liu, X.; Diaby, M.; Jatoi, G.H.; Li, C.; Imran, M.; Ahmed, R. An updated overview on insights into sugarcane genome editing via CRISPR/Cas9 for sustainable production. Sustainability 2022, 14, 12285. [Google Scholar] [CrossRef]
- Gao, W.; Long, L.; Tian, X.; Xu, F.; Liu, J.; Singh, P.K.; Botella, J.R.; Song, C. Genome editing in cotton with the CRISPR/Cas9 system. Front. Plant Sci. 2017, 8, 1364. [Google Scholar] [CrossRef]
- Ryder, P.; Spillane, C.; McHale, M.; Fort, A. Generation of stable nulliplex autopolyploid lines of Arabidopsis thaliana using CRISPR/Cas9 genome editing. Plant Cell Rep. 2017, 36, 1005–1008. [Google Scholar] [CrossRef]
- Laforest, L.C.; Nadakuduti, S.S. Advances in delivery mechanisms of CRISPR gene-editing reagents in plants. Front. Genome Ed. 2022, 4, 830178. [Google Scholar] [CrossRef]
- Ahmad, S.; Wei, X.; Sheng, Z.; Hu, P.; Tang, S. CRISPR/Cas9 for Development of Disease Resistance in Plants: Recent Progress, Limitations and Future Prospects. Brief. Funct. Genom. 2020, 19, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, İ.; Cevher-Keskin, B.; Bilir, Ö.; Hong, Y.; Tör, M. Recent Developments in CRISPR/Cas9 Genome-Editing Technology Related to Plant Disease Resistance and Abiotic Stress Tolerance. Biology 2023, 12, 1037. [Google Scholar] [CrossRef]
- Dong, G.; Fan, Z. CRISPR/Cas-Mediated Germplasm Improvement and New Strategies for Crop Protection. Crop Health 2024, 2, 2. [Google Scholar] [CrossRef]
- Chen, K.; Wang, Y.; Zhang, R.; Zhang, H.; Gao, C. CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture. Annu. Rev. Plant Biol. 2019, 70, 667–697. [Google Scholar] [CrossRef]
| Marker Type | Key Features | Use in Clubroot Resistance Research | Examples/Notes |
|---|---|---|---|
| SNP (Single-Nucleotide Po-lymorphism) | Highly abundant, high-resolution, genome-wide; suitable for GWAS and population studies | Precise mapping of CR loci; supports pyramiding; used in associative transcriptomics | Major CR loci mapped on A2 and A3 in B. napus [25] |
| RAPD (Random Amplified Polymorphic DNA) | Fast, low-cost, no prior sequence required; low reproducibility | Early identification of markers linked to CR; useful for diverse germplasm | RA12-75A, WE22B, WE49B linked to CR in B. rapa [44] |
| SCAR (Sequence-Characte-rized Amplified Region) | Derived from RAPD; more specific and reproducible | Marker-assisted selection of CR alleles | SCAR marker tau_cBrCR404 linked to CR in Chinese cabbage [45] |
| RFLP (Restriction Fragment Length Polymorphism) | Reliable but labor-intensive; requires high-quality DNA | Mapping CR genes (e.g., CRa); linkage map construction for interspecific crosses | Used in broccoli × cauliflower CR mapping [75,90] |
| SSR (Simple Sequence Repeat) | Co-dominant, reproducible, widely used in MAS | Accelerates selection of CR traits and reduces breeding time | CR QTL mapping in B. oleracea and B. rapa [91] mapping CRd in B. rapa [92] used in MAS for CR introgression into B. napus [73] used for high-density mapping of CRb [93] QTL analyses of CR in B. napus [94] SSRs/SCARs used for pyramiding CRa, CRk, CRc [69] analysis of P. brassicae isolate variation and resistance responses [95] |
| AFLP (Amplified Fragment Length Polymorphism) | Highly polymorphic, no prior sequence required; good genome coverage | Useful in detecting polymorphisms in wild relatives and supporting introgression of CR from related species | AFLP markers included in maps identifying CR QTL in B. oleracea (e.g., pb-Bo(Anju)1) [91]. Used in classical BSA workflows relevant to CR gene mapping [92]. Method validated for resistance-gene mapping in other crops [96]. |
| QTL-based markers | Identify genomic regions controlling quantitative resistance | Mapping major and minor CR loci for introgression | CRs on A08 (B. napus/B. rapa); qCRc7-2(3,4) on C07; Crr1-3; Cr4Ba1.1 on A01; Cr4Ba8.1 on A08; Pb-Bo1 [19,83,84] |
| Source/Species | Genome | Key CR Genes/Loci | Type of Resistance | Notes/Identified CR Sources |
|---|---|---|---|---|
| Brassica rapa | A | CRa, CRb, CRk, Crr1a/b, Crr2, Crr3, Crr4, Rcr1 (Rpb1), Rcr2, Rcr4, Rcr8, Rcr9, CRd | Mostly dominant, race-specific | Turnips (ECD set), wild accessions, major donor species |
| Brassica oleracea | C | Multiple QTLs: C2, C3, C5, C7, C9; qCRc7-2/3/4; Rcr_C03-1, Rcr_C08-1; BolC.Pb9.1 | Quantitative resistance | Kale, cabbage; wild relatives (e.g., B. macrocarpa) |
| Brassica nigra | B | Rcr6, Rcr1 | Pathotype-specific | Limited CR; donor for B genome introgression |
| Brassica juncea | AB | Introgressed loci from B. rapa | Depends on donor | Acquires CR via distant hybridization |
| Resynthesized Brassica spp. | A+C; A+B; B+C | QTLs in A and C genomes (various) | Broad, combined | Resynthesized B. napus with CR from B. rapa, B. oleracea |
| Raphanus sativus | R | Crs1; CRd-like loci on A03 & A08 (in Brassicoraphanus) | Strong, broad-spectrum | Valuable CR donors; resistant accessions and MAALs |
| Other crucifers | – | RPB1, other loci (Arabidopsis) | Broad-spectrum | Wild relatives; potential but underexplored sources |
| Recipient Species | Donor Species | Transferred CR Gene(s)/Locus | Method | Outcome/Notes |
|---|---|---|---|---|
| B. napus | B. rapa (Chinese cabbage) | CRd | Interspecific hybridization, MAS | Stable CR introgression; used in canola breeding |
| B. napus | B. rapa (“Qulihuang”) | CR gene linked to CRb/CRa region | MAS | Resistance transferred into ‘Topas’ |
| B. oleracea | B. rapa | Crr1, Crr2 | Distant hybridization, embryo rescue | Complementary resistance; stable lines obtained |
| B. oleracea | B. rapa | CRa, CRb, Pb8.1 | Wide crossing | Major CR donor for cabbage and broccoli |
| B. napus (resynth.) | B. rapa × B. oleracea | Multiple QTLs from A and C genomes | Resynthesis | Broader CR base, though diluted in B. napus background |
| B. napus | R. sativus | Crs1 (and additional radish QTLs) | Interspecific hybridization, MAALs, backcrossing | Broad-spectrum CR; chromosome recombination confirmed |
| B. napus | Brassicoraphanus (R–C allotetraploid) | CRd (A03) + A08 locus | Hybridization | Strong resistance; successful gene transfer potential |
| B. juncea | B. rapa | Dominant CR loci | Distant hybridization, embryo rescue | Enables CR in otherwise susceptible species |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamiński, P.; Konopacka, M. Interspecific and Intergeneric Crosses for Clubroot Resistance in Brassica Crops. Agronomy 2025, 15, 2827. https://doi.org/10.3390/agronomy15122827
Kamiński P, Konopacka M. Interspecific and Intergeneric Crosses for Clubroot Resistance in Brassica Crops. Agronomy. 2025; 15(12):2827. https://doi.org/10.3390/agronomy15122827
Chicago/Turabian StyleKamiński, Piotr, and Marta Konopacka. 2025. "Interspecific and Intergeneric Crosses for Clubroot Resistance in Brassica Crops" Agronomy 15, no. 12: 2827. https://doi.org/10.3390/agronomy15122827
APA StyleKamiński, P., & Konopacka, M. (2025). Interspecific and Intergeneric Crosses for Clubroot Resistance in Brassica Crops. Agronomy, 15(12), 2827. https://doi.org/10.3390/agronomy15122827

