Stale Seedbed and Intercropping for Agroecological Weed Management in Vetch (Vicia sativa L.) in the Context of the ONE GREEN Project
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Trial Setup and Design
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Weed Parameters
3.2. Vetch Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gianessi, L.P. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Korres, N.E. Agronomic weed control: A trustworthy approach for sustainable weed management. In Non-Chemical Weed Control; Jabar, K., Chauhan, B.S., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 97–114. [Google Scholar]
- Westwood, J.H.; Charudattan, R.; Duke, S.O.; Fennimore, S.A.; Marrone, P.; Slaughter, D.C.; Swanton, C.; Zollinger, R. Weed management in 2050: Perspectives on the future of weed science. Weed Sci. 2018, 66, 275–285. [Google Scholar] [CrossRef]
- Gonzalez-Andujar, J.L. Integrated Weed Management: A shift towards more sustainable and holistic practices. Agronomy 2023, 13, 2646. [Google Scholar] [CrossRef]
- Boutagayout, A.; Bouiamrine, E.H.; Synowiec, A.; El Oihabi, K.; Romero, P.; Rhioui, W.; Nassiri, L.; Belmaha, S. Agroecological practices for sustainable weed management in Mediterranean farming landscapes. Environ. Dev. Sustain. 2025, 27, 8209–8263. [Google Scholar] [CrossRef]
- Dayan, F.E. Current status and future prospects in herbicide discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Merfield, C.N. Integrated weed management in organic farming. In Organic Farming, 2nd ed.; Chandran, S., Unni, M.R., Sabu, T., Meena, D.K., Eds.; Woodhead Publishing: Cambridge, UK, 2023; pp. 31–109. [Google Scholar]
- Gazoulis, I.; Kanatas, P.; Antonopoulos, N.; Tataridas, A.; Travlos, I. False seedbed for agroecological weed management in forage cereal–legume intercrops and monocultures in Greece. Agronomy 2023, 13, 123. [Google Scholar] [CrossRef]
- Gazoulis, I.; Papazoglou, E.G.; Petraki, D.; Antonopoulos, N.; Danaskos, M.; Kokkini, M.; Kanatas, P.; Travlos, I. Stale Seedbed and narrow row spacing combinations to suppress weeds in kenaf (Hibiscus cannabinus L.). Weed Res. 2025, 65, e70033. [Google Scholar] [CrossRef]
- Merfield, C.N. False and Stale Seedbeds: The most effective non-chemical weed management tools for cropping and pasture establishment. FFC Bull. 2015, 2015, 25. [Google Scholar]
- Kanatas, P.; Travlos, I.; Papastylianou, P.; Gazoulis, I.; Kakabouki, I.; Tsekoura, A. Yield, quality and weed control in soybean crop as affected by several cultural and weed management practices. Not. Bot. Hort. Agrobot. 2020, 48, 329–341. [Google Scholar] [CrossRef]
- Coleman, R.; Penner, D. Organic acid enhancement of pelargonic acid. Weed Technol. 2008, 22, 38–41. [Google Scholar] [CrossRef]
- Frans, R.; McClelland, M.; Kennedy, S. Chemical and cultural methods for bermudagrass (Cynodon dactylon) control in cotton (Gossypium hirsutum). Weed Sci. 1982, 30, 481–484. [Google Scholar] [CrossRef]
- Kanatas, P.; Antonopoulos, N.; Gazoulis, I.; Travlos, I.S. Screening glyphosate-alternative weed control options in important perennial crops. Weed Sci. 2021, 69, 704–718. [Google Scholar] [CrossRef]
- Rowley, M.A.; Ransom, C.V.; Reeve, J.R.; Black, B.L. Mulch and organic herbicide combinations for in-row orchard weed suppression. Int. J. Fruit Sci. 2011, 11, 316–331. [Google Scholar] [CrossRef]
- Krauss, J.; Eigenmann, M.; Keller, M. Pelargonic acid for weed control in onions: Factors affecting selectivity. Jul. Kühn Arch. 2020, 464, 415–419. [Google Scholar]
- Kardasz, P.; Miziniak, W.; Bombrys, M.; Kowalczyk, A. Desiccant activity of nonanoic acid on potato foliage in Poland. J. Plant Prot. Res. 2019, 59, 12–18. [Google Scholar]
- Khanal, U.; Stott, K.J.; Armstrong, R.; Nuttall, J.G.; Henry, F.; Christy, B.P.; Mitchell, M.; Riffkin, P.A.; Wallace, A.J.; McCaskill, M.; et al. Intercropping—Evaluating the advantages to broadacre systems. Agriculture 2021, 11, 453. [Google Scholar] [CrossRef]
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.-M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Dowling, A.; Sadras, V.O.; Roberts, P.; Doolette, A.; Zhou, Y.; Denton, M.D. Legume-oilseed intercropping in mechanised broadacre agriculture—A review. Field Crops Res. 2021, 260, 107980. [Google Scholar] [CrossRef]
- Hufnagel, J.; Reckling, M.; Ewert, F. Diverse approaches to crop diversification in agricultural research. A review. Agron. Sustain. Dev. 2020, 40, 14. [Google Scholar] [CrossRef]
- Liebman, M.; Dyck, E. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 1993, 3, 92–122. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Ma, B.L.; Belec, C.; Vigneault, P. A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precis. Agric. 2009, 10, 145–161. [Google Scholar] [CrossRef]
- Kong, L.; Si, J.; Feng, B.; Li, S.; Wang, F.; Sayre, K. Differential responses of two types of winter wheat (Triticum aestivum L.) to autumn- and spring-applied mesosulfuron-methyl. Crop Prot. 2009, 28, 387–392. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Levene, H. Robust tests of equality of variances. In Contributions to Probability and Statistics, Essays in Honor of Harold Hoteling; Olkin, I., Ghurye, S.G., Hoeffding, W., Madow, W.G., Mann, H.B., Eds.; Stanford University Press: Stanford, CA, USA, 1960; pp. 278–292. [Google Scholar]
- Gu, C.; Bastiaans, L.; Anten, N.P.; Makowski, D.; van der Werf, W. Annual intercropping suppresses weeds: A meta-analysis. Agric. Ecosyst. Environ. 2021, 322, 107658. [Google Scholar] [CrossRef]
- Amossé, C.; Jeuffroyb, M.H.; Celettea, F.; Davida, C. Relay-intercropped forage legumes help to control weeds in organic grain production. Eur. J. Agron. 2013, 49, 158–167. [Google Scholar] [CrossRef]
- Leoni, F.; Lazzaro, M.; Ruggeri, M.; Carlesi, S.; Meriggi, P.; Moonen, A.C. Relay intercropping can efficiently support weed management in cereal-based cropping systems when appropriate legume species are chosen. Agron. Sustain. Dev. 2022, 42, 75. [Google Scholar] [CrossRef]
- Su, B.Y.; Liu, X.; Cui, L.; Xiang, B.; Yang, W.Y. Suppression of weeds and increases in food production in higher crop diversity planting arrangements: A case study of relay intercropping. Crop Sci. 2018, 58, 1729–1739. [Google Scholar] [CrossRef]
- Chauhan, B.S. Grand challenges in weed management. Front. Agron. 2020, 1, 3. [Google Scholar] [CrossRef]
- Benvenuti, S.; Selvi, M.; Mercati, S.; Cardinali, G.; Mercati, V.; Mazzoncini, M. Stale seedbed preparation for sustainable weed seed bank management in organic cropping systems. Sci. Hortic. 2021, 289, 110453. [Google Scholar] [CrossRef]
- Riemens, M.M.; Van Der Weide, R.; Bleeker, P.; Lotz, L. Effect of stale seedbed preparations and subsequent weed control in lettuce (cv. Iceboll) on weed densities. Weed Res. 2007, 47, 149–156. [Google Scholar] [CrossRef]
- Singh, M.; Bhullar, M.S.; Gill, G. Integrated weed management in dry-seeded rice using stale seedbeds and post sowing herbicides. Field Crop. Res. 2018, 224, 182–191. [Google Scholar] [CrossRef]
- Shem-Tov, S.; Fennimore, S.A.; Lanini, W.T. Weed management in lettuce (Lactuca sativa) with preplant irrigation. Weed Τechnol. 2006, 20, 1058–1065. [Google Scholar] [CrossRef]
- Celette, F.; Findeling, A.; Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. 2009, 30, 41–51. [Google Scholar] [CrossRef]
- Lv, Q.; Dai, J.; Ding, K.; He, N.; Li, Z.; Zhang, D.; Xu, S.; Li, C.; Zhang, Y.; Dong, H. Managing interspecific competition to enhance productivity through selection of soybean varieties and sowing dates in a cotton–soybean intercropping system. Field Crops Res. 2024, 316, 109513. [Google Scholar] [CrossRef]
- MacLaren, C.; Waswa, W.; Aliyu, K.T.; Claessens, L.; Mead, A.; Schöb, C.; Vanlauwe, B.; Storkey, J. Predicting intercrop competition, facilitation, and productivity from simple functional traits. Field Crops Res. 2023, 297, 108926. [Google Scholar] [CrossRef]
- Dogan, E. Effect of supplemental irrigation on vetch yield components. Agric. Water Manag. 2018, 213, 978–982. [Google Scholar] [CrossRef]
- Fırıncıoğlu, H.K.; Ünal, S.; Erbektaş, E.; Doğruyol, L. Relationships between seed yield and yield components in common vetch (Vicia sativa ssp. sativa) populations sown in spring and autumn in central Turkey. Field Crops Res. 2010, 116, 30–37. [Google Scholar] [CrossRef]
- Yau, S.K.; Ryan, J. Differential impacts of climate variability on yields of rainfed barley and legumes in semi-arid Mediterranean conditions. Arch. Agron. Soil Sci. 2013, 59, 1659–1674. [Google Scholar] [CrossRef]
- Mitich, L.W. Corn poppy (Papaver rhoeas L.). Weed Technol. 2000, 14, 826–829. [Google Scholar] [CrossRef]
- Pinke, G.; Kapcsándi, V.; Czúcz, B. Iconic Arable Weeds: The significance of corn poppy (Papaver rhoeas), cornflower (Centaurea cyanus), and field larkspur (Delphinium consolida) in Hungarian ethnobotanical and cultural heritage. Plants 2023, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Warwick, S.I.; Beckie, H.J.; Thomas, A.G.; McDonald, T. The biology of Canadian weeds. 8. Sinapis arvensis L. (updated). Can. J. Plant Sci. 2000, 80, 939–961. [Google Scholar] [CrossRef]
- Zargar, M.; Kavhiza, N.J.; Bayat, M.; Pakina, E. Wild mustard (Sinapis arvensis) competition and control in rain-fed spring wheat (Triticum aestivum L.). Agronomy 2021, 11, 2306. [Google Scholar] [CrossRef]



| Year | Month | Average Temperature (°C) | Maximum Temperature (°C) | Minimum Temperature (°C) | Total Precipitation (mm) |
|---|---|---|---|---|---|
| 2023 | November | 16.0 | 28.9 | 0.6 | 29.4 |
| 2023 | December | 11.2 | 21.4 | 2.3 | 76.4 |
| 2024 | January | 8.7 | 19.9 | −0.9 | 114.4 |
| 2024 | February | 11.2 | 20.9 | 0.5 | 47.0 |
| 2024 | March | 12.7 | 27.1 | 2.6 | 35.8 |
| 2024 | April | 17.4 | 31.1 | 8.1 | 8.2 |
| 2024 | May | 19.3 | 32.8 | 8.3 | 9.8 |
| 2024 | June | 28.1 | 41.9 | 16.5 | 0.2 |
| 2024 | November | 12.2 | 21.8 | 1.1 | 38.4 |
| 2024 | December | 10.0 | 18.8 | 2.6 | 137.4 |
| 2025 | January | 9.7 | 19.2 | 0.4 | 142.2 |
| 2025 | February | 7.1 | 17.2 | −1.3 | 50.8 |
| 2025 | March | 12.5 | 26.8 | 0.8 | 26.0 |
| 2025 | April | 13.7 | 27.3 | 2.7 | 48.6 |
| 2025 | May | 19.6 | 33.4 | 10.5 | 48.0 |
| 2025 | June | 25.9 | 39.2 | 13.2 | 1.6 |
| Factor | Level | Definition | Abbreviation |
|---|---|---|---|
| Main plots: Weed Management | 1 | Untreated Control | CON |
| 2 | Stale Seedbed | SSB | |
| Subplots: Intercropping Method | 1 | Vetch Monocropping | VMC |
| 2 | Vetch–Barley Mixed Intercropping | VBMXIC | |
| 3 | Vetch–Barley Row Intercropping | VBROWIC | |
| 4 | Vetch–Barley Relay Intercropping | VBRELIC |
| Field Activity | CON | SSB | ||||||
|---|---|---|---|---|---|---|---|---|
| VM | VBMXIC | VBROWIC | VBRELIC | VM | VBMXIC | VBROWIC | VBRELIC | |
| Seedbed Preparation | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 | 15 November 2023 and 10 November 2024 |
| Vetch Sowing | 16 November 2023 and 11 November 2024 | 16 November 2023 and 11 November 2024 | 16 November 2023 and 11 November 2024 | 16 November 2023 and 11 November 2024 | 30 December 2023 and 20 December 2024 | 30 December 2023 and 20 December 2024 | 30 December 2023 and 20 December 2024 | 30 December 2023 and 20 December 2024 |
| Barley Sowing | Not Performed | 16 November 2023 and 11 November 2024 | 16 November 2023 and 11 November 2024 | 28 December 2023 and 18 December 2024 | Not Performed | 30 December 2023 and 20 December 2024 | 30 December 2023 and 20 December 2024 | 9 February 2024 and 26 February 2025 |
| 1st Pelargonic Acid Treatment | Not Performed | Not Performed | Not Performed | Not Performed | 3 December 2023 and 26 November 2024 | 3 December 2023 and 26 November 2024 | 3 December 2023 and 26 November 2024 | 3 December 2023 and 26 November 2024 |
| 2nd Pelargonic Acid Treatment | Not Performed | Not Performed | Not Performed | Not Performed | 28 December 2023 and 18 December 2024 | 28 December 2023 and 18 December 2024 | 28 December 2023 and 18 December 2024 | 28 December 2023 and 18 December 2024 |
| Weed NDVI Measurement | 27 December 2023 and 19 December 2024 | 27 December 2023 and 19 December 2024 | 27 December 2023 and 19 December 2024 | 8 February 2024 and 24 January 2025 | 10 February 2024 and 2 February 2025 | 10 February 2024 and 2 February 2025 | 10 February 2024 and 2 February 2025 | 16 March 2024 and 3 April 2025 |
| Vetch NDVI and Weed Biomass Measurements | 19 January 2024 and 11 January 2025 | 19 January 2024 and 11 January 2025 | 19 January 2024 and 11 January 2025 | 8 March 2024 and 26 February 2025 | 8 March 2024 and 26 February 2025 | 8 March 2024 and 26 February 2025 | 8 March 2024 and 26 February 2025 | 10 April 2024 and 30 April 2025 |
| Vetch Harvest | 30 May 2024 and 24 May 2025 | 30 May 2024 and 24 May 2025 | 30 May 2024 and 24 May 2025 | 30 May 2024 and 24 May 2025 | 25 June 2024 and 20 June 2025 | 25 June 2024 and 20 June 2025 | 25 June 2024 and 20 June 2025 | 25 June 2024 and 20 June 2025 |
| Source of Variation | Degrees of Freedom | Weed NDVI | Weed Biomass | Vetch NDVI | Grain Yield | ||||
|---|---|---|---|---|---|---|---|---|---|
| F | p | F | p | F | p | F | p | ||
| Block | 3 | ||||||||
| GS | 1 | 1.43 | 0.3174 | 0.01 | 0.9713 | 1.77 | 0.2752 | 13.58 | 0.0346 |
| Error (a) | 3 | ||||||||
| WM | 1 | 639.52 | <0.001 | 425.29 | <0.001 | 145.71 | <0.001 | 380.60 | <0.001 |
| GS × WM | 1 | 0.34 | 0.5808 | 0.32 | 0.5929 | 0.05 | 0.8246 | 3.17 | 0.1254 |
| Error (b) | 6 | ||||||||
| IC | 3 | 41.30 | <0.001 | 15.54 | <0.001 | 11.87 | <0.001 | 46.48 | <0.001 |
| GS × IC | 3 | 0.54 | 0.6607 | 0.26 | 0.8525 | 0.17 | 0.9136 | 0.29 | 0.8342 |
| WM × IC | 3 | 29.99 | <0.001 | 5.78 | 0.0025 | 6.64 | 0.0011 | 1.90 | 0.1475 |
| GS × WM × IC | 3 | 0.58 | 0.6350 | 0.84 | 0.4802 | 0.76 | 0.5258 | 0.07 | 0.9735 |
| Error (c) | 36 | ||||||||
| Total | 63 | ||||||||
| Main Effect | Level | Mean | Standard Error | LSD |
|---|---|---|---|---|
| GS | 2023–2024 | 1576.8 b | 72.0 | 100.4 |
| 2024–2025 | 1693.0 a | 70.5 | ||
| WM | CON | 1205.1 b | 60.1 | 107.8 |
| SSB | 2064.7 a | 82.4 | ||
| IC | VM | 1480.1 c | 72.3 | 109.5 |
| VBMXIC | 1358.8 d | 70.9 | ||
| VBROWIC | 1778.8 b | 59.3 | ||
| VBRELIC | 1921.7 a | 82.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazoulis, I.; Petraki, D.; Antonopoulos, N.; Kalorizou, H.; Kanatas, P.; Travlos, I. Stale Seedbed and Intercropping for Agroecological Weed Management in Vetch (Vicia sativa L.) in the Context of the ONE GREEN Project. Agronomy 2025, 15, 2617. https://doi.org/10.3390/agronomy15112617
Gazoulis I, Petraki D, Antonopoulos N, Kalorizou H, Kanatas P, Travlos I. Stale Seedbed and Intercropping for Agroecological Weed Management in Vetch (Vicia sativa L.) in the Context of the ONE GREEN Project. Agronomy. 2025; 15(11):2617. https://doi.org/10.3390/agronomy15112617
Chicago/Turabian StyleGazoulis, Ioannis, Dimitra Petraki, Nikolaos Antonopoulos, Helen Kalorizou, Panagiotis Kanatas, and Ilias Travlos. 2025. "Stale Seedbed and Intercropping for Agroecological Weed Management in Vetch (Vicia sativa L.) in the Context of the ONE GREEN Project" Agronomy 15, no. 11: 2617. https://doi.org/10.3390/agronomy15112617
APA StyleGazoulis, I., Petraki, D., Antonopoulos, N., Kalorizou, H., Kanatas, P., & Travlos, I. (2025). Stale Seedbed and Intercropping for Agroecological Weed Management in Vetch (Vicia sativa L.) in the Context of the ONE GREEN Project. Agronomy, 15(11), 2617. https://doi.org/10.3390/agronomy15112617

