Using Freshwater Cladophora glomerata to Develop Sustainable Farming
Abstract
1. Introduction
2. Methods
Cladophora glomerata
3. Content and Composition of Raw Material
4. Different Forms of Organic Fertilizers from C. glomerata
5. Responses of Crops to Fertilizers of C. glomerata Origin
6. C. glomerata: Bioindicator of Heavy Metal Pollution and Water Purification
7. The Use of Biochar from C. glomerata
8. C. glomerata for Feed Supplements
9. C. glomerata Against Pathogenic Organisms
10. Disadvantages and Limitations of C. glomerata Use in Sustainable Farms
11. Future Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| DW | Dry weight | 
| SCD | Standard compound diet | 
References
- Sharma, P.; Sharma, N. Industrial and biotechnological applications of algae: A review. J. Adv. Plant Biol. 2017, 1, 1–25. [Google Scholar] [CrossRef]
 - Pereira, L.; Cotas, J. Historical use of seaweed as an agricultural fertilizer in the European Atlantic area. In Seaweeds as Plant Fertilizer, Agricultural Biostimulants and Animal Fodder; Pereira, L., Bahcevandziev, K., Joshi, N.H., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–20. [Google Scholar]
 - Górka, B.; Korzeniowska, K.; Lipok, J.; Wieczorek, P.P. The biomass of algae and algal extracts in agricultural production. In Algae Biomass: Characteristics and Application; Chojnacka, K., Wieczorek, P., Schroeder, G., Michalak, I., Eds.; Springer: Cham, Switzerland, 2018; pp. 103–114. [Google Scholar] [CrossRef]
 - Briceño-Domínguez, D.D.; Hernández-Carmona, G.; Moyo, M.; Stirk, W.; van Staden, J. Plant growth promoting activity of seaweed liquid extracts produced from Macrocystis pyrifera under different pH and temperature conditions. J. Appl. Phycol. 2014, 26, 2203–2210. [Google Scholar] [CrossRef]
 - Sabh, A.Z.; Shallan, A.M. Effect of organic fertilization on bean (Vicia faba L.) using different marine macroalgae. Aust. J. Basic Appl. Sci. 2008, 4, 1076–1091. [Google Scholar]
 - Rathore, S.S.; Chaudhary, D.R.; Boricha, G.N.; Ghosh, A.; Bhatt, B.P.; Zodape, S.T.; Patolia, J.S. Effect of seaweed extract on growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S. Afr. J. Bot. 2009, 75, 351–355. [Google Scholar] [CrossRef]
 - Crouch, I.J.; Beckett, R.P.; Van Staden, J. Effect of seaweed concentrates on the growth and mineral nutrition of nutrient stress lettuce. J. Appl. Phycol. 1990, 2, 269–272. [Google Scholar] [CrossRef]
 - Asimakis, E.; Shehata, A.A.; Eisenreich, W.; Acheuk, F.; Lasram, S.; Basiouni, S.; Emekci, M.; Ntougias, S.; Taner, G.; May-Simera, H.; et al. Algae and their metabolites as potential bio-pesticides. Microorganisms 2022, 10, 307. [Google Scholar] [CrossRef] [PubMed]
 - Ansar, B.S.K.; Kavusi, E.; Dehghanian, Z.; Pandey, J.; Lajayer, B.A.; Price, G.W.; Astatkie, T. Removal of organic and inorganic contaminants from air, soil, and water by algae. Environ. Sci. Pollut. Res. 2023, 30, 116538–116566. [Google Scholar] [CrossRef] [PubMed]
 - Munir, M.; Qureshi, R.; Bibi, M.; Khan, A.M. Pharmaceutical aptitude of Cladophora: A comprehensive review. Algal Res. 2019, 39, 101476. [Google Scholar] [CrossRef]
 - Guiry, M.D.; Guiry, G.M. AlgaeBase. World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2018; Available online: http://www.algaebase.org (accessed on 30 September 2025).
 - Prazukin, A.V.; Anufriieva, V.; Shadrin, N.V. Cladophora mats in a Crimean hypersaline lake: Structure. J. Oceanol. Limnol. 2018, 36, 1930–1940. [Google Scholar] [CrossRef]
 - Zulkifly, S.B.; Graham, J.M.; Young, E.B.; Mayer, R.J.; Piotrowski, M.J.; Smith, I.; Graham, L.E. The genus Cladophora Kützing (Ulvophyceae) as a globally distributed ecological engineer. J. Phycol. 2013, 49, 1–17. [Google Scholar] [CrossRef] [PubMed]
 - Wehr, J.; Sheath, R.G. Freshwater Algae of North America: Ecology and Classification; Academic Press: Amsterdam, The Netherlands, 2003; p. 918. [Google Scholar]
 - Michalak, I.; Messyasz, B. Concise review of Cladophora spp.: Macroalgae of commercial interest. J. Appl. Phycol. 2021, 33, 133–166. [Google Scholar] [CrossRef]
 - Peerapornpisal, Y.; Amornledpison, D.; Rujjanawate, C.; Ruangrita, K.; Kanjanapothi, D. Two endemic species of macroalgae in Nan River, Northern Thailand, as therapeutic agents. Sci. Asia 2006, 32, 71–76. [Google Scholar] [CrossRef]
 - Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; Łęska, B. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycol. Res. 2017, 66, 52–57. [Google Scholar] [CrossRef]
 - Messyasz, B.; Łęska, B.; Fabrowska, J.; Pikosz, M.; Roj, E.; Cieślak, A.; Schroeder, G. Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem. 2015, 13, 1108–1118. [Google Scholar] [CrossRef]
 - Nutautaitė, M.; Racevičiūtė-Stupelienė, A.; Bliznikas, S.; Jonuškienė, I.; Karosienė, J.; Koreivienė, J.; Vilienė, V. Evaluation of phenolic compounds and pigments in freshwater Cladophora glomerata biomass from Lithuanian rivers as potential raw material for biotechnology. Water 2022, 14, 1138. [Google Scholar] [CrossRef]
 - Algae Products market Overview 2028. Available online: https://www.marketsandmarkets.com/Market-Reports/algae-product-market-250538721.html (accessed on 2 October 2025).
 - Glossary: Farm Typology. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Farm_typology (accessed on 22 October 2025).
 - Pikosz, M.; Messyasz, B. Characteristics of Cladophora and coexisting filamentous algae in relation to environmental factors in freshwater ecosystems in Poland. Oceanol. Hydrobiol. Stud. 2016, 45, 202–215. [Google Scholar] [CrossRef]
 - Messyasz, B.; Pikosz, M.; Treska, E. Biology of Freshwater Macroalgae and Their Distribution. In Algae Biomass: Characteristics and Applications. Towards Algae-Based Products; Chojnacka, K., Wieczorek, P.P., Schroeder, G., Michalak, I., Eds.; Springer Nature: Cham, Switzerland, 2018; Volume 3, pp. 17–33. [Google Scholar] [CrossRef]
 - Škaloud, P.; Rindi, F.; Boedeker, C.; Leliaert, F. Chlorophyta: Ulvophyceae. In Süßwasserflora von Mitteleuropa; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer Spectrum: Berlin, Germany, 2018; Volume 13, pp. 1–288. [Google Scholar]
 - Higgins, S.N.; Malkin, S.Y.; Todd Howell, E.; Guildford, S.J. Hecky RE An ecological review of Cladophora glomerata (Chlorophyta) in the Laurentian Great, Lakes. J. Phycol. 2008, 44, 839–854. [Google Scholar] [CrossRef] [PubMed]
 - McCusker, M.; Dove, A.; Depew, D.; Howell, E.T. Factors affecting Cladophora growth in the eastern basin of Lake Erie: Analysis of a monitoring dataset (2012–2019). J. Great Lakes Res. 2023, 49, 790–808. [Google Scholar] [CrossRef]
 - Khanum, A. An ecological study of freshwater algal mats. Bot. Bull. Acad. Sin. 1982, 23, 89–104. [Google Scholar]
 - Leliaert, F.; Boedeker, C.; Peña, V.; Bunker, F.; Verbruggen, H.; De Clerck, O. Cladophora rhodolithicola sp. nov. (Cladophorales, Chlorophyta): A diminutive species from European maerl beds. Eur. J. Phycol. 2009, 44, 155–169. [Google Scholar] [CrossRef]
 - Thiamdao, S.; Boo, G.H.; Boo, S.M.; Peerapornpisal, Y. Diversity of edible Cladophora (Cladophorales, Chlorophyta) in Northern and Northeastern Thailand based on morphology and nrDNA sequences. Chiang Mai J. Sci. 2012, 39, 300–310. [Google Scholar]
 - Higgins, S.N.; Malkin, S.Y.; Howell, E.T.; Guildford, S.J.; Hecky, R.E. The wall of green: The status of Cladophora glomerata on the northern shores of Lake Erie’s eastern basin 1995–2002. J. Great Lakes Res. 2005, 31, 547–563. [Google Scholar] [CrossRef]
 - Nutautaitė, M.; Vilienė, V.; Racevičiūtė–Stupelienė, A.; Bliznikas, S.; Karosienė, J.; Koreivienė, J. Freshwater Cladophora glomerata biomass as a promising protein and nutrient source for sustainable feed production. Agriculture 2021, 11, 582. [Google Scholar] [CrossRef]
 - Korzeniowska, K.; Łęska, B.; Wieczorek, P.P. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020, 48, 101912. [Google Scholar] [CrossRef]
 - Khuantrairong, T.; Traichaiyaporn, S. The nutritional value of edible freshwater alga Cladophora sp. (Chlorophyta) grown under different phosphorus concentrations. Int. J. Agric. Biol. 2011, 13, 297–300. [Google Scholar]
 - Sáez-González, L.; Carreño-Díaz, M.; Blázquez-Abellán, G.; Santander-Ortega, M.J.; Martínez-García, R.M.; Martínez, L.A.; Carbajal, J.A.; Castro-Vázquez, L. Antioxidant valorization of PLE extracts from Cladophora glomerata: Nanoemulsions against oxidative stress. Antioxidants 2024, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
 - Aitken, J.B.; Senn, T.L. Seaweed products as a fertilizer and soil conditioner for horticultural crops. Bot. Mar. 1965, 8, 144–147. [Google Scholar] [CrossRef]
 - Lewandowska, S.; Marczewski, K.; Kozak, M.; Ohkama-Ohtsu, N.; Łabowska, M.; Detyna, J.; Michalak, I. Impact of freshwater macroalga (Cladophora glomerata) extract on yield and morphological responses of Glycine max (L.) Merr. Agriculture 2022, 12, 685. [Google Scholar] [CrossRef]
 - Dziergowska, K.; Lewandowska, S.; Rafał, M.; Pol, M.; Detyna, J.; Michalak, I. Soybean germination response to algae extracts and a static magnetic field treatment. Appl. Sci. 2021, 11, 8597. [Google Scholar] [CrossRef]
 - Michalak, I.; Bartniczak, A.; Baśladyńska, S.; Lewandowska, S.; Detyna, J.; Łoziński, M.; Niemczyk, K.; Bujak, H. Cladophora glomerata extract and static magnetic field influences the germination of seeds and multielemental composition of carrot. Ecol. Chem. Eng. S 2020, 27, 629–641. [Google Scholar] [CrossRef]
 - Lewandowska, S.; Dziergowska, K.; Gałek, R. Cladophora glomerata extracts produced by Ultrasound-Assisted Extraction support early growth and development of lupin (Lupinus angustifolius L.). Sci. Rep. 2023, 13, 17867. [Google Scholar] [CrossRef] [PubMed]
 - Dziergowska, K.; Wełna, M.; Szymczycha-Madeja, A.; Chęcmanowski, J.; Michalak, I. Valorization of Cladophora glomerata biomass and obtained bioproducts into biostimulants of plant growth and as sorbents (biosorbents) of metal ions. Molecules 2021, 26, 6917. [Google Scholar] [CrossRef] [PubMed]
 - Alkhafaji, B.Y.; Malih, H.R.; Elkheralla, R.J. Effect of fertilization by Cladophora algae on morphological characteristics of Vigna radiata & Sesamum indicum plants. J. Phys. Conf. Ser. 2019, 1294, 072024. [Google Scholar] [CrossRef]
 - Ben Hammouda, I.; Pokajewicz, K.; Pankiewicz, R.; Milczarek, R.; Malinowski, R.; Ginalska, G.; Łukaszewicz, M.; Piekarska-Stachowiak, A. Biostimulant effect of Cladophora glomerata extract on garden cress plant growth. Sci. Rep. 2024, 14, 26614. [Google Scholar] [CrossRef]
 - Munir, J.; Aguswanto, A.; Ediwirman, E.; Sunadi, S.; Novia, P. The application of organic liquid fertilizer Cladophora glomerata and NPK Phonska to enhance agronomic efficiency in maize cultivation on alluvial soil. Sains Tanah-J. Soil Sci. Agroclimatol. 2024, 21, 74–82. [Google Scholar] [CrossRef]
 - Ghareeb, R.Y.; Alfy, H.; Fahmy, A.A.; Ibrahim, D.S.S.; Said, A.H.; El-Baz, F.K. Utilization of Cladophora glomerata extract nanoparticles as eco-nematicide and enhancing the defense responses of tomato plants infected by Meloidogyne javanica. Sci. Rep. 2020, 10, 19968. [Google Scholar] [CrossRef]
 - Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
 - Whitton, B.A. Biology of Cladophora in freshwaters. Water Res. 1970, 4, 87–114. [Google Scholar] [CrossRef]
 - Keeney, W.L.; Breck, W.G.; Van Loon, G.W.; Page, J.A. The determination of trace metals in Cladophora glomerata: C. glomerata as a potential biological monitor. Water Res. 1976, 10, 981–984. [Google Scholar] [CrossRef]
 - Trollope, D.R.; Evans, B. Concentrations of copper, iron, lead, nickel, and zinc in freshwater algal blooms. Environ. Pollut. 1976, 11, 109–116. [Google Scholar] [CrossRef]
 - Whitton, B.A.; Burrows, I.G.; Kelly, M. Use of Cladophora glomerata to monitor heavy metals in rivers. Sci. Total Environ. 1989, 1, 293–299. [Google Scholar] [CrossRef]
 - Shelton, A.D.; Miller, M.C. Herbicide bioconcentration in Cladophora glomerata: Atrazine removal in a eutrophic agricultural river. Hydrobiologia 2002, 469, 157–164. [Google Scholar] [CrossRef]
 - Khan, S.; Ullah, A.; Ayaz, T.; Aziz, A.; Aman, K.; Habib, M.; Yilmaz, S.; Farid, A.; Yasmin, H.; Ali, Q. Phycoremediation of industrial wastewater using Vaucheria debaryana and Cladophora glomerata. Environ. Monit. Assess. 2023, 195, 825. [Google Scholar] [CrossRef]
 - Flores-Morales, G.; Díaz, M.; Arancibia-Avila, P.; Muñoz-Carrasco, M.; Jara-Zapata, P.; Toledo-Montiel, F.; Vega-Román, E. Removal of nutrients from organic liquid agricultural waste using filamentous algae. Braz. J. Biol. 2021, 81, 544–550. [Google Scholar] [CrossRef]
 - Dehbi, M.; Dehbi, F.; Kanjal, M.I.; Tahraoui, H.; Zamouche, M.; Amrane, A.; Assadi, A.A.; Hadadi, A.; Mouni, L. Analysis of heavy metal contamination in macroalgae from surface waters in Djelfa, Algeria. Water 2023, 15, 974. [Google Scholar] [CrossRef]
 - Peller, J.; Nevers, M.B.; Byappanahalli, M.; Nelson, C.; Babu, B.G.; Evans, M.A.; Kostelnik, E.; Keller, M.; Johnston, J.; Shidler, S. Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes. Environ. Pollut. 2021, 276, 116695. [Google Scholar] [CrossRef]
 - Gautam, R.K.; Goswami, M.; Mishra, R.K.; Chaturvedi, P.; Awashthi, M.K.; Singh, R.S.; Giri, B.S.; Pandey, A. Biochar for remediation of agrochemicals and synthetic dyes from environmental samples: A review. Chemosphere 2021, 272, 129917. [Google Scholar] [CrossRef]
 - Bird, M.I.; Wurster, C.M.; de Paula Silva, P.H.; Paul, N.A.; de Nys, R. Algal biochar: Effects and applications. GCB Bioenergy 2012, 4, 61–69. [Google Scholar] [CrossRef]
 - Beusch, C. Biochar as a soil ameliorant: How biochar properties benefit soil fertility—A review. J. Geosci. Environ. Prot. 2021, 9, 28–46. [Google Scholar] [CrossRef]
 - Chaiwong, K.; Kiatsiriroat, T.; Vorayos, N.; Thararax, C. Biochar production from freshwater algae by slow pyrolysis. Int. J. Sci. Technol. 2012, 6, 186–195. [Google Scholar]
 - Michalak, I.; Baśladyńska, S.; Mokrzycki, J.; Rutkowski, P. Biochar from a freshwater macroalga as a potential biosorbent for wastewater treatment. Water 2019, 11, 1390. [Google Scholar] [CrossRef]
 - Chen, B.; Gu, Z.; Wu, M.; Ma, Z.; Lim, H.R.; Khoo, K.S.; Show, P.L. Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass Bioenergy 2022, 167, 106650. [Google Scholar] [CrossRef]
 - Thies, J.E.; Rillig, M.C. Characteristics of biochar. In Biochar for Environmental Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 85–105. [Google Scholar]
 - Appler, H.N.; Jauncey, K. The utilization of a filamentous green alga (Cladophora glomerata (L.) Kutzing) as a protein source in pelleted feeds for Sarotherodon (Tilapia) niloticus fingerlings. Aquaculture 1983, 30, 21–30. [Google Scholar] [CrossRef]
 - Ali, A.; Abid, R. Cladophora glomerata (L.) Kützing, as feed supplement to broiler chicks. Int. J. Biol. Biotechnol. 2006, 3, 425–428. [Google Scholar]
 - Abu Hafsa, S.H.; Khalel, M.S.; El–Gindy, Y.M.; Hassan, A.A. Nutritional potential of marine and freshwater algae as dietary supplements for growing rabbits. Ital. J. Anim. Sci. 2021, 20, 784–793. [Google Scholar] [CrossRef]
 - Albrektsen, S.; Kortet, R.; Skov, P.V.; Ytteborg, E.; Gitlesen, S.; Kleinegris, D.; Mydland, L.T.; Hansen, J.Ø.; Lock, E.J.; Mørkøre, T.; et al. Future feed resources in sustainable salmonid production: A review. Rev. Aquac. 2022, 14, 1790–1812. [Google Scholar] [CrossRef]
 - Anh, N.T.; Hai, T.N.; Hien, T.T. Effects of partial replacement of fishmeal protein with green seaweed (Cladophora spp.) protein in practical diets for the black tiger shrimp (Penaeus monodon) postlarvae. J. Appl. Phycol. 2018, 30, 2649–2658. [Google Scholar] [CrossRef]
 - Nutautaitė, M.; Racevičiūtė-Stupelienė, A.; Bliznikas, S.; Vilienė, V. Enhancement of rabbit meat functionality by replacing traditional feed raw materials with freshwater Cladophora glomerata biomass. Foods 2023, 12, 744. [Google Scholar] [CrossRef]
 - Michalak, I.; Mironiuk, M.; Marycz, K. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS ONE 2018, 13, e0205590. [Google Scholar] [CrossRef]
 - Bourebaba, L.; Michalak, I.; Röcken, M.; Marycz, K. Cladophora glomerata methanolic extract decreases oxidative stress and improves viability and mitochondrial potential in equine adipose-derived mesenchymal stem cells (ASCs). Biomed. Pharmacother. 2019, 111, 6–18. [Google Scholar] [CrossRef]
 - Bourebaba, L.; Michalak, I.; Baouche, M.B. Cladophora glomerata methanolic extract promotes chondrogenic gene expression and cartilage phenotype differentiation in equine adipose-derived mesenchymal stromal stem cells affected by metabolic syndrome. Stem Cell Res. Ther. 2019, 10, 392. [Google Scholar] [CrossRef]
 - Ishac, M.M.; Bishai, H.M. The possible role of the algae Cladophora glomerata on the biological control of Biomphalaria boissyi, the snail host of Schistosoma mansoni. Hydrobiologia 1968, 32, 168–180. [Google Scholar] [CrossRef]
 - Poveda, J.; Díez-Méndez, A. Use of elicitors from macroalgae and microalgae in pest and disease management in agriculture. Phytoparasitica 2023, 51, 667–701. [Google Scholar] [CrossRef]
 - Saber, A.A.; Hamed, S.M.; Abdel-Rahim, E.F.M.; Cantonati, M. Insecticidal prospects of algal and cyanobacterial extracts against the cotton leafworm Spodoptera littoralis. Vie Et Milieu 2018, 68, 199–212. [Google Scholar]
 - Bucholc, K.; Szymczak-Żyła, M.; Lubecki, L.; Zamojska, A.; Hapter, P.; Tjernström, E.; Kowalewska, G. Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Sci. Total Environ. 2014, 473–474, 298–307. [Google Scholar] [CrossRef] [PubMed]
 - Sırakaya, S. Pros and Cons of Ulva lactuca and Cladophora glomerata grown in freshwater as feed. Environ. Sci. Pollut. Res. Int. 2023, 30, 33446–33454. [Google Scholar] [CrossRef]
 - Verhougstraete, M.P.; Byappanahalli, M.N.; Rose, J.B.; Whitman, R.L. Cladophora in the Great Lakes: Impacts on beach water quality and human health. Water Sci. Technol. 2010, 62, 68–76. [Google Scholar] [CrossRef] [PubMed]
 - Algae-Economy Based Ecological Service of Aquatic Ecosystems (LIFE17 ENV/LT/000407). Layman’s Report. 2023. Available online: https://algaeservice.gamtostyrimai.lt/material/ (accessed on 22 October 2025).
 

| Compounds | Cladophora sp. | Cladophora glomerata | 
|---|---|---|
| Protein, % (DW) | up 10.7 to 17.69 | up 14.49 to 26.59 | 
| Lipids, % (DW) | up 2.04 to 2.56 | up 0.78 to 5.16 | 
| Ash, % (DW) | up 14.7 to 16.9 | up 14.69 to 39.25 | 
| Moisture, % (DW) | up 9.9 to 11.3 | 1.60 | 
| Fiber, % (DW) | up 20.7 to 26.1 | up 15.6 to 27.19 | 
| Carbohydrate, % (DW) | up 52.5 to 60.9 | up 62.8 to 74.5 | 
| Phenols, mg GAE/g | up 1.32 to 29.62 | |
| Macroelements | N, P, K | N, P, K | 
| Vitamins | E, C, B1 = B2, A | E, C, B1 = B2, A | 
| Pigments | chlorophyll a,b, lutein, zeaxantin, β-carotene  | chlorophyll a,b, carotenoids, lutein | 
| Metals | Mg, Fe, Ca, K, Zn | Mg, Fe, Ca, K, Zn, Cu, Na | 
| References | [15,33] | [15,17,18,19,31,32,34] | 
| Plant Species | Form of C. glomerata | Measured Effects | References | 
|---|---|---|---|
| Soybean Glycine max varieties  | extract obtained with ultrasound-assisted extraction | morphometric biochemical parameters; seed germination  | [36,37] | 
| Common name Carrots  | extract obtained with ultrasound-assisted extraction  | morphometric biochemical parameters; seed germination  | [38] | 
| 
                Lupin varieties
                 (cv. Homer, Jowisz, and Tytan)  | extract obtained with ultrasound-assisted extraction | seed germination; morphometric biochemical parameters  | [39] | 
| Red radish (Raphanus sativus)  | extract | morphometric parameters  | [40] | 
| Vigna radiata | biomass | morphometric parameters  | [41] | 
| Sezamum indicum | biomass | morphometric parameters  | [41] | 
| Garden cress  Lepidium sativum  | extract | productivity; morphometric parameters  | [42] | 
| Maize | liquid fertilizer  with NPK  | morphometric parameters; productivity  | [43] | 
| Tomato (Solanum lycoperiscum)  | aqueous extract with silver nanoparticles (Ag-NPs) | nematicidal effect | [44] | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ričkienė, A.; Karosienė, J.; Jurkonienė, S. Using Freshwater Cladophora glomerata to Develop Sustainable Farming. Agronomy 2025, 15, 2551. https://doi.org/10.3390/agronomy15112551
Ričkienė A, Karosienė J, Jurkonienė S. Using Freshwater Cladophora glomerata to Develop Sustainable Farming. Agronomy. 2025; 15(11):2551. https://doi.org/10.3390/agronomy15112551
Chicago/Turabian StyleRičkienė, Aurika, Jūratė Karosienė, and Sigita Jurkonienė. 2025. "Using Freshwater Cladophora glomerata to Develop Sustainable Farming" Agronomy 15, no. 11: 2551. https://doi.org/10.3390/agronomy15112551
APA StyleRičkienė, A., Karosienė, J., & Jurkonienė, S. (2025). Using Freshwater Cladophora glomerata to Develop Sustainable Farming. Agronomy, 15(11), 2551. https://doi.org/10.3390/agronomy15112551
        
