Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sample Collection and Measurement
2.3. Soil Quality Assessment Methods
2.3.1. Standardization of Assessment Indicators
2.3.2. Construction of the Minimum Data Set (MDS)
2.3.3. Soil Quality Index (SQI) Area Method
2.4. Data Analysis
3. Results
3.1. Soil Hydrothermal Characteristics and Pore Structure
3.2. Soil Texture
3.3. Soil Aggregate Structure
3.3.1. Soil Mechanical Stability Aggregate Size Distribution
3.3.2. Soil Water-Stable Aggregate Size Distribution
3.3.3. Soil Aggregate Stability
3.4. Soil Nutrient
3.5. Comprehensive Evaluation of Soil Quality
4. Discussion
4.1. Variations in Soil Physicochemical Properties Under Different Greenhouse Lifespan
4.2. Drivers of Soil Quality Degradation Under Long-Term Greenhouse Operation
4.3. Targeted Soil Quality Improvement Strategies for Greenhouse
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bisbis, M.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality–A review. J. Clean. Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Y.M.; Zhang, Z.; Yang, L.; Pan, X.B.; Jia, Z. Mapping agricultural plastic greenhouses using Google Earth images and deep learning. Comput. Electron. Agric. 2021, 191, 106552. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Allison, S.; Mayes, M.; Luo, Y. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity. Biogeochemistry 2014, 119, 67–84. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Q.; Chen, S.; Chen, F.; Lv, H.; Li, J.; Chen, Q.; Zhou, J.; Liang, B. Nitrate leaching is the main driving factor of soil calcium and magnesium leaching loss in intensive plastic-shed vegetable production systems. Agric. Water Manag. 2024, 293, 108708. [Google Scholar] [CrossRef]
- Hu, Y.; Song, Z.; Lu, W.; Poschenrieder, C.; Schmidhalter, U. Current soil nutrient status of intensively managed greenhouses. Pedosphere 2012, 22, 825–833. [Google Scholar] [CrossRef]
- Gao, M.; Hu, W.; Li, M.; Wang, S.; Chu, L. Network analysis was effective in establishing the soil quality index and differentiated among changes in land-use type. Soil Tillage Res. 2025, 246, 106352. [Google Scholar] [CrossRef]
- Jin, H.; Shi, D.; Lou, Y.; Zhang, J.; Ye, Q.; Jiang, N. Evaluation of the quality of cultivated-layer soil based on different degrees of erosion in sloping farmland with purple soil in China. CATENA 2021, 198, 105048. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Y.; Hai, H.; Kuzyakov, Y.; Bol, R.; Chen, H.; Fan, M. Soil quality and ecosystem multifunctionality after 13-year of organic and nitrogen fertilization. Sci. Total Environ. 2024, 931, 172789. [Google Scholar] [CrossRef]
- Vasu, D.; Tiwari, G.; Sahoo, S.; Dash, B.; Jangir, A.; Sharma, R.; Naitam, R.; Tiwary, P.; Karthikeyan, K.; Chandran, P. A minimum data set of soil morphological properties for quantifying soil quality in coastal agroecosystems. CATENA 2021, 198, 105042. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Zhao, Y.; Song, M.; Liang, J. Soil quality assessment of reclaimed land in the urban-rural fringe. CATENA 2023, 220, 106692. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, J.; Hu, H.; Zhou, M.; Zhu, Y.; Wu, C.; Zhu, L.; Jiang, X.; Wang, J. Soil quality evaluation of different land use modes in small watersheds in the hilly region of southern Jiangsu. Ecol. Indic. 2024, 160, 111895. [Google Scholar] [CrossRef]
- Feng, W.; Sánchez-Rodríguez, A.; Bilyera, N.; Wang, J.; Wang, X.; Han, Y.; Ma, B.; Zhang, H.; Li, F.; Zhou, J.; et al. Mechanisms of biochar-based organic fertilizers enhancing maize yield on a Chinese Chernozem: Root traits, soil quality and soil microorganisms. Environ. Technol. Innov. 2024, 36, 103756. [Google Scholar] [CrossRef]
- Huo, R.; Wang, J.; Wang, K.; Zhang, Y.; Ren, T.; Li, X.; Cong, R.; Lu, J. Long-term straw return enhanced crop yield by improving ecosystem multifunctionality and soil quality under triple rotation system: An evidence from a 15 years study. Field Crops Res. 2024, 312, 109395. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Gunina, A.; Zamanian, K.; Tian, J.; Luo, Y.; Xu, X.; Yudina, A.; Aponte, H.; Alharbi, H.; Ovsepyan, L. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Front. Agric. Sci. Eng. 2020, 7, 282–288. [Google Scholar] [CrossRef]
- Jin, H.; Zhong, Y.; Shi, D.; Li, J.; Lou, Y.; Li, Y.; Li, J. Quantifying the impact of tillage measures on the cultivated-layer soil quality in the red soil hilly region: Establishing the thresholds of the minimum data set. Ecol. Indic. 2021, 130, 108013. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, X.; Zhao, L.; Zhou, B.; Weng, L.; Li, Y. Comparative study on the pollution status of organochlorine pesticides (OCPs) and bacterial community diversity and structure between plastic shed and open-field soils from northern China. Sci. Total Environ. 2020, 741, 139620. [Google Scholar] [CrossRef]
- Wu, G.; Zhao, M.; Liu, B.; Wang, X.; Yuan, M.; Wang, J.; Chen, X.; Wang, X.; Sun, Y. Environmental impact and mitigation potentials in Greenhouse tomatoes production system in Yangtze River Delta. Plant Soil 2024, 509, 289–300. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Zhang, P.; Li, X.; Duan, Z. How to remediate sulfate-nitrate salinized greenhouse soil? An optimal combination of organic amendment, fertilizer and irrigation. Sci. Hortic. 2023, 321, 112264. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, L.; Wang, M.; Xu, S.; Sun, W.; Yang, J.; Shi, Y.; Shi, X.; Xie, X. Decreased soil aggregation and reduced soil organic carbon activity in conventional vegetable fields converted from paddy fields. Eur. J. Soil Sci. 2022, 73, e13222. [Google Scholar] [CrossRef]
- Zong, M.; Lin, C.; Li, S.; Li, H.; Duan, C.; Peng, C.; Guo, Y.; An, R. Tillage activates iron to prevent soil organic carbon loss following forest conversion to cornfields in tropical acidic red soils. Sci. Total Environ. 2021, 761, 143253. [Google Scholar] [CrossRef]
- Obour, A.; Holman, J.; Simon, L.; Assefa, Y. Nitrogen fertilizer and tillage intensity affected winter wheat macronutrient uptake and utilization efficiencies. Agrosystems Geosci. Environ. 2023, 6, 20334. [Google Scholar] [CrossRef]
- Zeglin, L.; Dahm, C.; Barrett, J.; Gooseff, M.; Fitpatrick, S.; Takacs-Vesbach, C. Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams. Microb. Ecol. 2011, 61, 543–556. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Zheng, L.; Ma, L.; Ma, X.; Ma, J. Effects of Different Mulched Drip Irrigation Levels on the Soil Microorganisms and Yield of Greenhouse Tomatoes (Solanum lycopersicum L.). Horticulturae 2025, 11, 204. [Google Scholar] [CrossRef]
- Zhao, Y.; Mao, X.; Zhang, M.; Yang, W.; Di, H.; Ma, L.; Liu, W.; Li, B. Response of soil microbial communities to continuously mono-cropped cucumber under greenhouse conditions in a calcareous soil of north China. J. Soils Sediments 2020, 20, 2446–2459. [Google Scholar] [CrossRef]
- Hou, M.; Tang, S.; Zhu, Q.; Chen, J.; Ying, X.; Qiu, J.; Zhong, F. Long-term fermented organic fertilizer application reduce urea nitrogen-15 loss from plastic shed agricultural soils. Ann. Agric. Sci. 2023, 68, 108–117. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Wang, Q.; Zhu, M.; Xu, Y.; Zhang, M. Response of soil physicochemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Sci. Total Environ. 2017, 607, 1419–1427. [Google Scholar] [CrossRef]
- Nabi, F.; Yang, G.; Sajid, S.; Chen, H.; Kaleri, A.; Chen, T.; Wang, X.; Hu, Y. Linking soil microbial community with the changes in soil physicochemical properties in response to long-term agricultural land use change of different chronosequences and depth layers. Ecol. Indic. 2022, 145, 109727. [Google Scholar] [CrossRef]
- Wang, X.; Yang, M.; Gao, L.; Li, Y.; Liang, W.; Zhang, X. Continuous cropping obstacles: Insights from the community composition and the imbalance carbon fluxes within soil nematode food web. Geoderma 2024, 451, 117060. [Google Scholar] [CrossRef]
- Ahmad, N.; Virk, A.; Hafeez, M.; Ercisli, S.; Golokhvast, K.; Qi, Y.; Guo, X.; Zhang, Y.; Wang, R.; Wang, X.; et al. Effects of different tillage and residue management systems on soil organic carbon stock and grain yield of rice-wheat double cropping system. Ecol. Indic. 2024, 158, 111452. [Google Scholar] [CrossRef]
- Gong, D.; Wang, Z.; Zhang, Y. Spatial-temporal variation characteristics of greenhouse-vegetable land in Lhasa of Tibet from 2008 to 2018. Trans. Chin. Soc. Agric. Eng. 2020, 36, 233–241. (In Chinese) [Google Scholar]
- Zhang, J.; Liu, Y. Research on the evolution and driving factors of vegetable production agglomeration pattern in China’s provinces. J. Shenyang Agric. Univ. 2024, 55, 605–615. (In Chinese) [Google Scholar]
- Wang, X.; Dou, Z.; Shi, X.; Zou, C.; Liu, D.; Wang, Z.; Guan, X.; Sun, Y.; Wu, G.; Zhang, B.; et al. Innovative management programme reduces environmental impacts in Chinese vegetable production. Nat. Food 2021, 2, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kalkhajeh, Y.K.; Huang, B.; Hu, W.Y.; Ma, C.; Gao, H.J.; Thompson, M.L.; Hansen, H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021, 307, 107230. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Y.; Dong, W.; Zhou, C.; Zhang, G.; Yang, L. Effects of amendments on base cation and micronutrient availabilities in soils planted with tomato in a solar greenhouse. Soil Sci. Plant Nutr. 2018, 64, 782–792. [Google Scholar] [CrossRef]
- Li, X.; Quan, Z.; Huang, K.; Kang, R.; Su, C.; Liu, D.; Ma, J.; Chen, X.; Fang, Y. High soil nitrous oxide emissions from a greenhouse vegetable production system in Shouguang, Northern China. Atmos. Environ. 2024, 319, 120264. [Google Scholar] [CrossRef]
- Liu, B.; Wen, Y.; Lin, L.; Wen, X.; Gao, R.; Zhang, B.; Li, T.; Yao, S. Variations in soil quality indicators under different cultivation ages and slope positions of arable land in the Mollisol region of China. CATENA 2024, 246, 108418. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, P.; Li, C.; Wang, D.; Ming, C.; Chen, L.; Zhou, L.; Zhu, Q.; Tang, L.; Zhou, Y.; et al. Intercropping achieves long-term dual goals of yield gains and soil N2O emission mitigation. Resour. Environ. Sustain. 2025, 20, 100210. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T. Effects of water temperature on soil aggregate stability between soils developed from different parent materials in the subtropical hilly area of China. CATENA 2024, 241, 108080. [Google Scholar] [CrossRef]
- General Office of Yunnan Provincial People’s Government. Notice of Yunnan Provincial People’s Government on Printing and Distributing the ‘14th Five-Year Plan’ for Agricultural and Rural Modernization Development in Yunnan Province. Available online: https://www.yn.gov.cn/zwgk/zcwj/yzf/202204/t20220418_240826.html (accessed on 21 May 2022).
- Zhang, W.; Wu, J.; Xu, M.; Ma, T.; Lu, J.; Zhu, J.; Ren, T.; Cong, R.; Lu, Z.; Zhang, Y.; et al. Rice-crayfish farming increases soil organic carbon sequestration by promoting aggregate protection and microbial necromass accumulation. Agric. Ecosyst. Environ. 2025, 383, 109519. [Google Scholar] [CrossRef]
- Du, L.; Zheng, Z.; Li, T.; Wang, Y.; Huang, H.; Yu, H.; Ye, D.; Liu, T.; Zhang, X. Aggregate-associated carbon compositions explain the variation of carbon sequestration in soils after long-term planting of different tea varieties. Sci. Total Environ. 2023, 856, 159227. [Google Scholar] [CrossRef]
- Bao, S. Soil Agrochemical Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Corral-Pazos-de-Provens, E.; Rapp-Arraras, I.; Domingo-Santos, J. Estimating textural fractions of the USDA using those of the International System: A quantile approach. Geoderma 2022, 416, 115783. [Google Scholar] [CrossRef]
- Wang, G.; Dong, Y.; Rong, L.; Yang, W.; Duan, X. The influence of vegetation restoration on soil quality in abandoned farmlands in the Yuanjiang dry-hot valley. CATENA 2024, 242, 108109. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.; Li, P.; Chen, A.; Cui, J.; Chen, Y.; Gao, W. Organic management promotes nitrogen transformation in tea plantations soil: A case study from southwestern China. Appl. Soil Ecol. 2025, 206, 105878. [Google Scholar] [CrossRef]
- Wei, L.; Li, Y.; Zhu, Z.; Wang, F.; Liu, X.; Zhang, W.; Xiao, M.; Li, G.; Ding, J.; Chen, J.; et al. Soil health evaluation approaches along a reclamation consequence in Hangzhou Bay, China. Agric. Ecosyst. Environ. 2022, 337, 108045. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Z.; Li, W.; Liu, W.; Zhang, X.; Wu, S.; Ren, Z.; Wu, Q.; Shen, Z.; Ren, C.; et al. Effects of Robinia pseudoacacia afforestation on aggregate size distribution and organic C dynamics in the central Loess Plateau of China: A chronosequence approach. J. Environ. Manag. 2020, 268, 110558. [Google Scholar] [CrossRef]
- Ye, L.; Tan, W.; Fang, L.; Ji, L. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. Soil Tillage Res. 2019, 192, 1–11. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Wang, Y.; Wang, S.; Lei, L. Factors affecting the stability of soil aggregates of plinthosols in the middle reaches of the Yangtze River. CATENA 2023, 228, 107159. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Tillage Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Yang, J.; Xin, X.; Zhang, X.; Zhong, X.; Yang, W.; Ren, G.; Zhu, A. Effects of soil physical and chemical properties on phosphorus adsorption-desorption in fluvo-aquic soil under conservation tillage. Soil Tillage Res. 2023, 234, 105840. [Google Scholar] [CrossRef]
- Lin, L.; Han, S.; Zhao, P.; Li, L.; Zhang, C.; Wang, E. Influence of soil physical and chemical properties on mechanical characteristics under different cultivation durations with Mollisols. Soil Tillage Res. 2022, 224, 105520. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Q.; Zhang, C.; Ni, S.; Wang, J.; Cai, C. Aggregate pore structure, stability characteristics, and biochemical properties induced by different cultivation durations in the Mollisol region of Northeast China. Soil Tillage Res. 2023, 233, 105797. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, Y.; Miao, C.; Chen, H.; Zhang, J.; Qian, H.; Hou, P.; Ding, Y.; Liu, Z.; Li, W.; et al. Long-term straw return increases fungal residual contribution to soil microaggregate nitrogen pool: An eco-enzymatic stoichiometric study. Soil Tillage Res. 2024, 244, 106278. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Ding, Y.; Lu, H.; Li, L.; Cheng, K.; Zheng, J.; Filley, T.; Zhang, X.; Zheng, J.; et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 2016, 13, 6565–6586. [Google Scholar] [CrossRef]
- Jin, H.; Huang, S.; Shi, D.; Li, J.; Li, J.; Li, Y.; Zhu, H. Effects of different tillage practices on soil stability and erodibility for red soil sloping farmland in Southern China. Agronomy 2023, 13, 1310. [Google Scholar] [CrossRef]
- Tang, X.; Qiu, J.; Xu, Y.; Li, J.; Chen, J.; Li, B.; Lu, Y. Responses of soil aggregate stability to organic C and total N as controlled by land-use type in a region of south China affected by sheet erosion. CATENA 2022, 218, 106543. [Google Scholar] [CrossRef]
- Ren, Q.; Sun, R.; Zheng, K.; Liu, Y.; Ruan, X.; Wang, Y. Soil properties, heavy metal accumulation, and ecological risk in vegetable greenhouses of different planting years. Huanjing Kexue 2022, 43, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Rastinfard, A.; Dalisson, B.; Barralet, J. Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater. 2022, 145, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ai, Z.; Dang, X.; Hou, M.; Liu, H.; Li, Q.; Yao, Y.; Deng, Y.; Zhu, S.; Xiao, L. Effects of different reclamation measures on soil quality restoration in open-pit mines: A meta-analysis based on the Chinese Loess Plateau. Ecol. Eng. 2024, 203, 107257. [Google Scholar] [CrossRef]
- Sheng, Y.; He, P.; Xu, X.; Liu, Y. A large-scale assessment on spatial variability of potato yield and soil chemical properties in northern China. Soil Tillage Res. 2023, 231, 105743. [Google Scholar] [CrossRef]
- Visscher, A.; de Carvalho da Silva Pereira, M.; Kuyper, T.; Lavres, J., Jr.; Pellegrino Cerri, C.; Zarate do Couto, H.; Righi, C. Moderate swidden agriculture inside dense evergreen ombrophilous forests can sustain soil chemical properties over 10–15 year cycles within the Brazilian Atlantic Forest. CATENA 2021, 200, 105117. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Tian, H.; Xiao, Q.; Jiang, H. Pyrosequencing-based assessment of soil microbial community structure and analysis of soil properties with vegetable planted at different years under greenhouse conditions. Soil Tillage Res. 2019, 187, 1–10. [Google Scholar] [CrossRef]
- Zheng, S.; Bian, T.; Wang, S.; Zhang, X.; Li, X.; Zhang, Y.; Fu, H.; Sun, Z. Decoupling of P from C, N, and K elements in cucumber leaves caused by nutrient imbalance under a greenhouse continuous cropping system. Horticulturae 2021, 7, 528. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, M.; Cong, J.; Qi, Q.; Xiao, Y.; Cong, W.; Deng, Y.; Zhou, J.; Zhang, Y. Soil pH exerts stronger impacts than vegetation type and plant diversity on soil bacterial community composition in subtropical broad-leaved forests. Plant Soil 2020, 450, 273–286. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, Y.; Zhu-Barker, X.; He, X.; Horwath, W.; Luo, H.; Zhao, Y.; Jiang, X. Responses of nitrification and ammonia oxidizers to a range of background and adjusted pH in purple soils. Geoderma 2019, 334, 9–14. [Google Scholar] [CrossRef]
- Li, J.; Yan, K.; Duan, Q.; Li, J.; Chen, Z. Effects of tillage practices on water storage and soil conservation in red soil slope farmland in Southern China. Sci. Rep. 2024, 14, 28781. [Google Scholar] [CrossRef]
- Tu, A.; Xie, S.; Mo, M.; Song, Y.; Li, Y. Water budget components estimation for a mature citrus orchard of southern China based on HYDRUS-1D model. Agric. Water Manag. 2021, 243, 106426. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.; Kumar, V.; Kumar, S.; Chadd, R.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration-A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Zhou, S.; Su, S.; Meng, L.; Liu, X.; Zhang, H.; Bi, X. Potentially toxic trace element pollution in long-term fertilized agricultural soils in China: A meta-analysis. Sci. Total Environ. 2021, 789, 147967. [Google Scholar] [CrossRef]
- Umeohia, U.; Olapade, A. Physiological processes affecting postharvest quality of fresh fruits and vegetables. Asian Food Sci. J. 2024, 23, 1–14. [Google Scholar] [CrossRef]
- Du, L.; Zhang, Z.; Chen, Y.; Wang, Y.; Zhou, C.; Yang, H.; Zhang, W. Heterogeneous impact of soil acidification on crop yield reduction and its regulatory variables: A global meta-analysis. Field Crops Res. 2024, 319, 109643. [Google Scholar] [CrossRef]
- Zhang, G.; Zheng, C.; Wang, Y.; Li, Y.; Xin, Y. Soil organic carbon and microbial community structure exhibit different responses to three land use types in the North China Plain. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2015, 65, 341–349. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Xu, J.; Zhang, R.; Wang, J.; Zhang, M. Aerated irrigation enhancing quality and irrigation water use efficiency of muskmelon in plastic greenhouse. Trans. Chin. Soc. Agric. Eng. 2016, 32, 147–154. (In Chinese) [Google Scholar]
- Dong, J.; Gruda, N.; Lam, S.; Li, X.; Duan, Z. Effects of elevated CO2 on nutritional quality of vegetables: A review. Front. Plant Sci. 2018, 9, 00924. [Google Scholar] [CrossRef]
- Zoghlami, R.; Toukabri, W.; Boudabbous, K.; Hechmi, S.; Barbouchi, M.; Oueriemmi, H.; Moussa, M.; Bahri, H. Assessment of earthworm viability and soil health after two years of raw and composted de-Inking paper sludge amendment. Agriculture 2023, 13, 547. [Google Scholar] [CrossRef]
- Ji, C.; Ye, R.; Yin, Y.; Sun, X.; Ma, H.; Gao, R. Reductive soil disinfestation with biochar amendment modified microbial community composition in soils under plastic greenhouse vegetable production. Soil Tillage Res. 2022, 218, 105323. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.; Yadav, A.; Yadav, N.; Kumar, M.; Kumar, V.; Vyas, P.; Dhaliwal, H.; Saxena, A. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal. Agric. Biotechnol. 2020, 23, 101487. [Google Scholar] [CrossRef]
- Atieno, M.; Herrmann, L.; Nguyen, H.; Phan, H.; Nguyen, N.; Srean, P.; Than, M.; Zhiyong, R.; Tittabutr, P.; Shutsrirung, A.; et al. Assessment of biofertilizer use for sustainable agriculture in the Great Mekong Region. J. Environ. Manag. 2020, 275, 111300. [Google Scholar] [CrossRef]
Field Number | Greenhouse Lifespan | Soil Type | Crop Type | Multiple Cropping Index | Irrigation and Fertilization Model | Tillage and Cultivation | Soil Fertilization Management | Irrigation Regime |
---|---|---|---|---|---|---|---|---|
OF | Non-greenhouse-utilized | Red soil | Lettuce-cabbage crop rotation | 3 | Integrated water and fertilizer management, micro-spray irrigation (operating pressure < 0.2 MPa) | Plowing-multiple cropping | Each year, 14,000 kg of well-composted organic fertilizer, 150 kg of urea (N46%), 120 kg of P2O5, and 90 kg of K2O are applied per hectare as base fertilizer. The soil is tilled using a rotary tiller to ensure thorough mixing of the organic fertilizer with the soil. Supplementary fertilization is conducted monthly during each vegetable growing season. A quantified amount of solid fertilizer is dissolved in a 20 L water tank and subsequently applied via a drip irrigation system. The supplementary fertilizer application consists of 150 kg/hm2 of nitrogen (N46%) and 100 kg/hm2 of compound fertilizer (N:P:K ratio of 2:1:1). | The irrigation quota is consistently set at 12.5 mm. For the OF, the irrigation interval is 15 days from May to September, and 7 days during the remaining months. In contrast, the greenhouse has an irrigation interval of 5 days |
G2 | 2a | Rutabaga-celery-cabbage crop rotation | 6 | |||||
G5 | 5a | |||||||
G10 | 10a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, K.; Mei, X.; Li, J.; Zhao, X.; Duan, Q.; Chen, Z.; Hu, Y. Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland. Agronomy 2025, 15, 2343. https://doi.org/10.3390/agronomy15102343
Yan K, Mei X, Li J, Zhao X, Duan Q, Chen Z, Hu Y. Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland. Agronomy. 2025; 15(10):2343. https://doi.org/10.3390/agronomy15102343
Chicago/Turabian StyleYan, Keyu, Xiaohan Mei, Jing Li, Xinmei Zhao, Qingsong Duan, Zhengfa Chen, and Yanmei Hu. 2025. "Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland" Agronomy 15, no. 10: 2343. https://doi.org/10.3390/agronomy15102343
APA StyleYan, K., Mei, X., Li, J., Zhao, X., Duan, Q., Chen, Z., & Hu, Y. (2025). Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland. Agronomy, 15(10), 2343. https://doi.org/10.3390/agronomy15102343