Evaluation of Food Legumes Pest and Disease Control in China: Evidence Using a Provincial-Level Dataset
Abstract
1. Introduction
2. Methods and Data Sources
2.1. Method: The Construction of Double Machine Learning Model
2.2. Variable Selection and Data Description
2.2.1. The Scientific Research Investment in Plant Protection
2.2.2. Data Sources for Food Legume Output and Extreme Climate
2.2.3. The Descriptive Statistics of Overall Sample
2.3. Baseline Regression
2.4. Robustness Test
2.4.1. Winsorization and Adjustment of Control Variables
2.4.2. Lag Effects
2.4.3. Replacing Algorithm Model
2.4.4. Alternative Time Windows
2.4.5. Changing Control Variable
3. Discussion
3.1. Investment in Food Legume Plant Protection Research Shows a Significant Upward Trend
3.2. Contribution of Pest and Disease Control Measures to Mitigating Output Loss
3.3. High Marginal Returns on Investment in Plant Protection Research
4. Conclusions and Recommendations
4.1. Strengthen Long-Term Investment in Plant Protection Research
4.2. Foster Collaboration Between Research Institutions and Enterprises
4.3. Establish a Diversified Funding Mechanism
4.4. Promote a Virtuous Cycle Between Regional Innovation and Commercialization
4.5. Enhance the Application of Artificial Intelligence in Plant Protection
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
DML | Double Machine Learning |
FAO | Food and Agriculture Organization of the United Nations |
IoT | Internet of Things |
IPM | Integrated Pest Management |
NBS | National Bureau of Statistics |
NSFC | National Natural Science Foundation |
PPPs | Public–private partnerships |
R&D | Research and Development |
References
- Zhang, H.; Ma, J.; Yue, H.; Qian, J. Edible Bean Industry and Development in China; China Agriculture Press: Beijing, China, 2021. [Google Scholar]
- FAO. Soils and Pulses: Symbiosis for Life; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Wu, H.; Xu, L.; Wei, L.; Liu, Q.; Zhang, K.; Ge, T.; Wang, C. The Characteristics of Soil Organic Carbon Stocks and Its Environmental Factors in the Main Producing Regions of Faba Bean (Vicia faba L.) in China. J. Jiangxi Norm. Univ. (Nat. Sci. Ed.) 2024, 48, 175–182. [Google Scholar]
- Ma, J.; Qu, J.; Khan, N.; Zhang, H. Towards sustainable agricultural development for edible beans in China: Evidence from 848 households. Sustainability 2022, 14, 9328. [Google Scholar] [CrossRef]
- Dahl, W.J.; Foster, L.M.; Tyler, R.T. Review of the health benefits of peas (Pisum sativum L.). Br. J. Nutr. 2012, 108, S3–S10. [Google Scholar] [CrossRef]
- Pulse Canada. Nutrition and Health Benefits. Available online: https://pulsecanada.com/pulse/nutrition-health/benefits (accessed on 22 May 2025).
- Cheng, X. Collaborative Innovation and Determined Progress: A Decade of Achievements in the National Edible Bean Industry Technology System; China Agricultural Science and Technology Press: Beijing, China, 2021. [Google Scholar]
- Waterfield, G.; Zilberman, D. Pest management in food systems: An economic perspective. Annu. Rev. Environ. Resour. 2012, 37, 223–245. [Google Scholar] [CrossRef]
- Juroszek, P.; Von Tiedemann, A. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol. 2011, 60, 100–112. [Google Scholar] [CrossRef]
- Kubiak, A.; Wolna-Maruwka, A.; Niewiadomska, A.; Pilarska, A.A. The problem of weed infestation of agricultural plantations vs. the assumptions of the European biodiversity strategy. Agronomy 2022, 12, 1808. [Google Scholar] [CrossRef]
- He, D.C.; He, M.H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological control of plant diseases: An evolutionary and eco-economic consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Deguine, J.P.; Aubertot, J.N.; Flor, R.J.; Lescourret, F.; Wyckhuys, K.A.; Ratnadass, A. Integrated pest management: Good intentions, hard realities. A review. Agron. Sustain. Dev. 2021, 41, 38. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Chatzitheodoridis, F.; Papaevangelou, O. Role of crop-protection technologies in sustainable agricultural productivity and management. Land 2022, 11, 1680. [Google Scholar] [CrossRef]
- Joshi-Saha, A.; Sethy, S.K.; Misra, G.; Dixit, G.; Srivastava, A.; Sarker, A. Biofortified legumes: Present scenario, possibilities and challenges. Field Crops Res. 2022, 279, 108467. [Google Scholar] [CrossRef]
- Batzer, J.C.; Singh, A.; Rairdin, A.; Chiteri, K.; Mueller, D.S. Mungbean: A preview of disease management challenges for an alternative US cash crop. J. Integr. Pest Manag. 2022, 13, 4. [Google Scholar] [CrossRef]
- Deng, D.; Sun, F.; Sun, S.; He, Y.; Duan, C.; Zhu, Z. Molecular identification of pathogens causing rust disease on faba bean and pea. J. Plant Prot. 2022, 49, 1071–1076. [Google Scholar]
- Shen, Y.; Zhang, Z.; Sun, S.; Wang, Y.; Fan, B.; Liu, C.; Wang, S.; Su, Q.; Shi, H.; Zhu, Z.; et al. Identification and Screening for Resistance Germplasm Resources to Fusarium Wilt in Mungbean. J. Plant Genet. Resour. 2022, 23, 1660–1669. [Google Scholar]
- Mahmoud, G.A.E. Biotic stress to legumes: Fungal diseases as major biotic stress factor. In Sustainable Agriculture Reviews 51; Legume Agriculture and Biotechnology; Springer: Cham, Switzerland, 2021; Volume 2, pp. 181–212. [Google Scholar]
- Richard, B.; Qi, A.; Fitt, B.D.L. Control of crop diseases through Integrated Crop Management to deliver climate-smart farming systems for low-and high-input crop production. Plant Pathol. 2022, 71, 187–206. [Google Scholar] [CrossRef]
- Gao, J.; Gai, Q.; Liu, B.; Shi, Q. Farm size and pesticide use: Evidence from agricultural production in China. China Agric. Econ. Rev. 2021, 13, 912–929. [Google Scholar] [CrossRef]
- UNICEF. The State of Food Security and Nutrition in the World 2024: Financing to End Hunger, Food Insecurity and Malnutrition in All Its Forms; Food & Agriculture Organization: Rome, Italy, 2024. [Google Scholar]
- Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/debiased machine learning for treatment and structural parameters. Econom. J. 2018, 21, 1–68. [Google Scholar] [CrossRef]
- Xie, B.; Chen, L.; Zhou, Z. Can digital rural construction help promote inclusive and green growth in rural areas: Causal inference based on dual machine learning. China Popul. Resour. Environ. 2024, 34, 167–179. [Google Scholar]
- Zhang, T.; Li, J. Network infrastructure, inclusive green growth, and regional disparities: From causal inference based on double machine learning. J. Quant. Tech. Econ. 2023, 40, 113–135. [Google Scholar]
- Han, X.; Gou, Y.; Xiao, Y.; Li, X. The Power of Institutional Innovation in Building a Digital Ecological Civilization: A Perspective of Policy Synergy Empowerment. China Ind. Econ. 2024, 11, 62–80. [Google Scholar]
- Nelson, R. International plant pathology: Past and future contributions to global food security. Phytopathology 2020, 110, 245–253. [Google Scholar] [CrossRef]
- Kogan, M. Integrated pest management: Historical perspectives and contemporary developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Casida, J.E.; Quistad, G.B. Golden age of insecticide research: Past, present, or future? Annu. Rev. Entomol. 1998, 43, 1–16. [Google Scholar] [CrossRef]
- Russell, P.E. A century of fungicide evolution. J. Agric. Sci. 2005, 143, 11–25. [Google Scholar] [CrossRef]
- Mullenn, J.D.; Alston, J.M.; Sumner, D.A.; Kreith, M.T.; Kuminoff, N.V. The Payoff to Public Investments in Pest-Management R&D: General Issues and a Case Study Emphasizing Integrated Pest Management in California. Appl. Econ. Perspect. Policy 2005, 27, 558–573. [Google Scholar]
- Guo, K.; Ji, Q.; Zhang, D. A dataset to measure global climate physical risk. Data Br. 2024, 54, 100502. [Google Scholar] [CrossRef]
- Jia, G.; Diao, X. Current Status and Perspectives of Innovation Studies Related to Foxtail Millet Seed Industry in China. Sci. Agric. Sin. 2022, 55, 653–665. [Google Scholar]
Variable Type | Variable Name | Variable Description | Mean Value | Standard Deviation | Sample Size |
---|---|---|---|---|---|
Dependent variable | Food legume output | Food legume output (10 thousand tons) | 95.936 | 136.742 | 496 |
Independent variable | Scientific research investment of plant protection | Accumulated scientific research investment of plant protection (10 thousand yuan) | 381.197 | 465.735 | 496 |
Control variable | Sown area | Sown area of food legume crops (ha.) | 61,522.9 | 75,378.42 | 496 |
Disaster affected rate | Ratio of crop disaster affected area to sown area | 0.157 | 0.14 | 496 | |
total power of Agricultural machinery | Total power of agricultural machinery (kilowatt) | 314,403.5 | 314,379 | 496 | |
Fertilizer application | Net usage of agricultural chemical fertilizers (ton) | 18,083.15 | 20,504.59 | 496 | |
Pesticide application | Pesticide application (ton) | 480.335 | 521.893 | 496 | |
Film plastic usage | usage of agricultural plastic film (ton) | 822.972 | 1097.59 | 496 | |
Extreme low temperature days | Days with extreme low temperature | 42.495 | 17.637 | 496 | |
Extreme high temperature days | Days with extreme high temperature | 64.004 | 14.987 | 496 | |
Extreme precipitation days | Days with extreme precipitation | 43.06 | 22.791 | 496 | |
Extreme drought days | Days with extreme drought | 35.141 | 14.439 | 496 |
Variable Name | Food Legume Output | Food Legume Output | Food Legume Output |
---|---|---|---|
Random Forest | Random Forest | Random Forest | |
Scientific research investment in plant protection | 0.186 *** | 0.192 *** | 0.200 *** |
(0.044) | (0.048) | (0.049) | |
First-order term of control variable | YES | YES | YES |
Second-order term of control variable | NO | NO | YES |
Provincial fixed effects | YES | YES | YES |
Year fixed effects | NO | YES | YES |
Observation | 496 | 496 | 496 |
Variable Name | Food Legume Output | Food Legume Output | Food Legume Output |
---|---|---|---|
1% Winsorization | 3% Winsorization | Adjusting Control Variables | |
Scientific research investment in plant protection | 0.165 *** | 0.169 *** | 0.204 *** |
(0.035) | (0.035) | (0.048) | |
First-order term of control variable | YES | YES | YES |
Second-order term of control variable | YES | YES | YES |
Provincial fixed effects | YES | YES | YES |
Year fixed effects | YES | YES | YES |
Observation | 496 | 496 | 496 |
Variable Name | Food Legume Output | Food Legume Output |
---|---|---|
First Lag Period | Second Lag Period | |
L.Scientific research investment in plant protection | 0.156 *** | |
(0.046) | ||
LL.Scientific research investment in plant protection | 0.109 *** | |
(0.042) | ||
First-order term of control variable | YES | YES |
Second-order term of control variable | YES | YES |
Provincial fixed effects | YES | YES |
Year fixed effects | YES | YES |
Observation | 465 | 434 |
Variable Name | Food Legume Output | Food Legume Output | Food Legume Output |
---|---|---|---|
Lasso | Gradient Boost | Neural Networks | |
Scientific research investment in plant protection | 0.104 * | 0.191 *** | 0.090 *** |
(0.053) | (0.047) | (0.025) | |
First-order term of control variable | YES | YES | YES |
Second-order term of control variable | YES | YES | YES |
Provincial fixed effects | YES | YES | YES |
Year fixed effects | YES | YES | YES |
Observation | 496 | 496 | 496 |
Variable Name | Food Legume Output | Food Legume Output |
---|---|---|
2008–2015 | 2016–2023 | |
Scientific research investment in plant protection | 0.215 *** | 0.312 * |
(0.065) | (0.169) | |
First-order term of control variable | YES | YES |
Second-order term of control variable | YES | YES |
Provincial fixed effects | YES | YES |
Year fixed effects | YES | YES |
Observation | 248 | 248 |
Variable Name | Food Legume Output | Food Legume Output |
---|---|---|
Controlling Pesticide Usage | Not Controlling Pesticide Usage | |
Scientific research investment in plant protection | 0.200 *** | 0.198 *** |
(0.049) | (0.050) | |
First-order term of control variable | YES | YES |
Second-order term of control variable | YES | YES |
Provincial fixed effects | YES | YES |
Year fixed effects | YES | YES |
Observation | 496 | 496 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yin, G.; He, Y.; Liu, Y.; Luo, H.; Zhang, J.; Zhou, B.; Liu, Z.; Zhang, X.; Zhu, X.; et al. Evaluation of Food Legumes Pest and Disease Control in China: Evidence Using a Provincial-Level Dataset. Agronomy 2025, 15, 2404. https://doi.org/10.3390/agronomy15102404
Zhang H, Yin G, He Y, Liu Y, Luo H, Zhang J, Zhou B, Liu Z, Zhang X, Zhu X, et al. Evaluation of Food Legumes Pest and Disease Control in China: Evidence Using a Provincial-Level Dataset. Agronomy. 2025; 15(10):2404. https://doi.org/10.3390/agronomy15102404
Chicago/Turabian StyleZhang, Huijie, Guodong Yin, Yuhua He, Yujiao Liu, Hongmei Luo, Jijun Zhang, Bin Zhou, Zhenxing Liu, Xiaoyan Zhang, Xu Zhu, and et al. 2025. "Evaluation of Food Legumes Pest and Disease Control in China: Evidence Using a Provincial-Level Dataset" Agronomy 15, no. 10: 2404. https://doi.org/10.3390/agronomy15102404
APA StyleZhang, H., Yin, G., He, Y., Liu, Y., Luo, H., Zhang, J., Zhou, B., Liu, Z., Zhang, X., Zhu, X., Shao, Y., Lian, R., Xiang, C., Wei, Y., Wang, X., Yuan, X., Zhu, Z., Chen, X., & Jiang, C. (2025). Evaluation of Food Legumes Pest and Disease Control in China: Evidence Using a Provincial-Level Dataset. Agronomy, 15(10), 2404. https://doi.org/10.3390/agronomy15102404