Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description and Plant Materials
2.2. Experimental Design
2.3. Statistical Analysis
2.4. Evaluated Variables
2.4.1. Plant Growth and Yield
2.4.2. Soil Sampling
3. Results
3.1. Rainfall and Irrigation
3.2. Plant Growth and Yield
3.2.1. Plant Height
3.2.2. Tillering
3.2.3. Leaf Area Index (LAI)
3.2.4. Shoot Dry Matter (SDM)
3.2.5. Yield and Its Components
Year | Treatment | Panicle per Unit Area (Panicles m−2) | Grain Number per Panicle | Seed Setting Rate (%) | Thousand-Grain Weight (g) | Theoretical Production (kg hm−2) |
---|---|---|---|---|---|---|
2023 | LA | 603.3 ± 19.7 a | 78.1 ± 0.6 a | 88.3 ± 1.4 a | 24.6 ± 0.2 b | 10,233.3 ± 152.8 a |
MA | 561.3 ± 25.9 a | 76.4 ± 3.7 a | 88.5 ± 1.6 a | 24.8 ± 0.4 ab | 9383.3 ± 144.3 b | |
SA | 544.7 ± 38.2 a | 76.5 ± 4.7 a | 88.6 ± 2.6 a | 24.4 ± 0.5 b | 8966.7 ± 189.3 c | |
CK | 558.8 ± 36.0 a | 74.3 ± 2.0 a | 90.6 ± 2.0 a | 25.4 ± 0.3 a | 9533.3 ± 125.8 b | |
2024 | LA | 587.0 ± 34.0 a | 74.6 ± 5.8 a | 88.1 ± 1.4 ab | 25.5 ± 0.2 a | 9832.7 ± 15.7 a |
MA | 581.5 ± 11.6 a | 70.5 ± 1.9 a | 82.1 ± 1.1 b | 25.4 ± 0.2 a | 8555.4 ± 162.9 b | |
SA | 564.8 ± 25.1 a | 69.4 ± 12.7 a | 84.7 ± 2.8 ab | 25.2 ± 0.4 a | 8384.8 ± 186.6 b | |
CK | 579.6 ± 19.5 a | 68.1 ± 7.4 a | 91.3 ± 6.3 a | 25.7 ± 0.3 a | 8970.2 ± 330.0 ab |
3.2.6. Water Consumption and WUE
3.3. Nutrient Availability in the Soil
3.3.1. Soil Nitrate Nitrogen (NO3−-N)
3.3.2. Soil Available Phosphorus (AP)
3.3.3. Soil Available Potassium (AK)
4. Discussion
4.1. Effects of AWD on Rice Growth and Development
4.2. Effects of AWD Irrigation on Paddy Soil Nutrients
4.3. Effects of AWD Irrigation on Rice Yield and WUE
5. Conclusions
- (1)
- Alternate wetting and drying irrigation reduced plant height and tiller number, with the reduction was increased as water control intensity intensified. Light water regulation was beneficial for leaf area index and shoot dry matter, while moderate and severe water regulation had adverse effects.
- (2)
- Light and moderate water regulation facilitated the release of soil nutrients, including nitrate nitrogen, available phosphorus, and available potassium. The advantages may weaken as the intensity of water control is enhanced. Thus, alternate wetting and drying irrigation with severe water control decreased those soil available nutrients.
- (3)
- Alternate wetting and drying irrigation accelerated the rice grain-filling in the Sanjiang Plain, increased effective panicles per unit area and grains per panicle, but reduced the seed setting rate and thousand-grain weight. Yield decreased as water control enhanced. Compared to check treatment, light water control increased yield while moderate and severe water control reduced it. The water use efficiency of alternate wetting and drying irrigation was significantly higher than that of the check treatment, though it decreased as the control level increased.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, L.X.; Duan, Z.; Zhu, H.J.; Liang, L.Y.; Wang, Y.L.; Wen, S.; Wang, X.H. Effects of Fertilization Patterns with Different Organic Fertilizer Substitution Ratios on Rice Yield Formation and Nitrogen Fertilizer Utilization. Jiangsu Agric. Sci. 2024, 52, 94–100. [Google Scholar] [CrossRef]
- Si, Z.J.; Wang, Y.; Teng, Y. Problems and Countermeasures of Developing Water-Saving Irrigation. Hydro Sci. Cold Zone Eng. 2018, 1, 131–134. [Google Scholar] [CrossRef]
- Wang, G.Y.; Liu, W.; Lei, B.; Du, L.J.; Xu, Z.H. Evaluation of Water Saving and Emission Reduction Potential of Rice in Heilongjiang Province under Different Water-Saving Irrigation Methods. Water Sav. Irrig. 2023, 34–38. [Google Scholar] [CrossRef]
- Wang, J.K.; Wang, T.Y.; Zhang, X.D.; Guan, L.Z.; Wang, Q.B.; Hu, H.X.; Zhao, Y.C. An Approach to the Changes of Black Soil Quality (I)—Changes of the Indices of Black Soil with the Year(S) of Reclamation. J. Shenyang Agric. Univ. 2002, 43–47. [Google Scholar] [CrossRef]
- Qiu, S.J.; Hao, X.Y.; Zhao, S.C.; Xu, X.P.; Wang, X.B.; He, P.; Zhou, W. Causes of Fertility Decline and Countermeasures for Protection and Utilization of Upland Black Soil—An Analysis from the Perspective of Nutrient Resources High-Efficient Utilization. Plant Nutr. Fert. Sci. 2025, 31, 1–11. [Google Scholar] [CrossRef]
- Wang, J.K.; Xu, X.R.; Pei, J.B.; Li, S.Y. Current Situations of Black Soil Quality and Facing Opportunities and Challenges in Northeast China. Chin. J. Soil Sci. 2021, 52, 695–701. [Google Scholar] [CrossRef]
- Ma, S.H.; Yang, C.; Wang, G.B.; Zhang, G.; Li, X.K. Research Progress of Rice Water-Saving Irrigation Technology Mode. Water Sav. Irrig. 2021, 19–24. [Google Scholar] [CrossRef]
- Chen, T.Y.; Yang, X.M.; Zuo, Z.; Xu, H.J.; Yang, X.J.; Zheng, X.J.; He, S.R.; Wu, X.; Lin, X.M.; Li, Y.T.; et al. Shallow Wet Irrigation Reduces Nitrogen Leaching Loss Rate in Paddy Fields by Microbial Regulation and Lowers Rate of Downward Migration of Leaching Water: A 15N-tracer Study. Front. Plant Sci. 2024, 15, 1340336. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.X.; Deng, J.H.; Tian, J.H.; Cai, K.Z. Effects of Biochar Addition on Transformation, Availability and Soybean Plant Uptake of Silicon and Phosphorus in Red Soil. J. South China Agric. Univ. 2025, 46, 141–150. [Google Scholar] [CrossRef]
- Cheng, H.M.; Shu, K.X.; Zhu, T.Y.; Wang, L.; Liu, X.; Cai, W.; Qi, Z.M.; Feng, S.Y. Effects of Alternate Wetting and Drying Irrigation on Yield, Water and Nitrogen Use, and Greenhouse Gas Emissions in Rice Paddy Fields. J. Cleaner Prod. 2022, 349, 131487. [Google Scholar] [CrossRef]
- Tu, G.Q.; Wu, J.X.; Xu, J.L. Effects of Alternate Wetting and Drying Irrigation at Key Growth Periods on Rice Yield and Nitrogen and Phosphorus Loss Characteristics in Erhai Lake Basin. China Soils Fert. 2025, 194–201. [Google Scholar] [CrossRef]
- Xu, G.W.; Zhao, X.H.; Jiang, M.M.; Lu, D.K.; Chen, M.C. Alternate Wetting and Moderate Drying Irrigation Harmonize Rice Root and Shoot Growth, Improves Grain Yield and Nitrogen Use Efficiency. Plant Nutr. Fert. Sci. 2021, 27, 1388–1396. [Google Scholar] [CrossRef]
- Hoang, T.N.; Minamikawa, K.; Tokida, T.; Wagai, R.; Tran, T.X.P.; Tran, T.H.D.; Tran, D.H. Higher Rice Grain Yield and Lower Methane Emission Achieved by Alternate Wetting and Drying in Central Vietnam. Eur. J. Agron. 2023, 151, 126992. [Google Scholar] [CrossRef]
- Qin, Z.Y.; Zhang, Z.X.; Zheng, H.X.; Chang, L.M.; Han, Z.H.; Du, S.C. Effects of Water and Nitrogen Management on Stoichiometric Characteristics of Soil Carbon, Nitrogen and Phosphorus in Rice Farming Area of Black Soil. Soils 2024, 56, 264–272. [Google Scholar] [CrossRef]
- Chen, J.M.; Black, T.A. Defining Leaf Area Index for Non-Flat Leaves. Plant Cell Environ. 1992, 15, 421–429. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar] [CrossRef]
- Panda, D.; Barik, J. Flooding Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Sci. 2021, 28, 43–57. [Google Scholar] [CrossRef]
- Cao, X.C.; Liu, X.X.; Ma, C.; Tian, C.; Zhu, L.F.; Wu, L.L.; Zhang, J.H.; Jin, Q.Y.; Zhu, C.Q.; Kong, Y.L.; et al. Alternative Dry-Wet Irrigation Improves the Rhizospheric Oxygen Environment and Nitrogen Transformation, and Increases Nitrogen Absorption by Rice Plants. Plant Nutr. Fert. Sci. 2022, 28, 1–14. [Google Scholar] [CrossRef]
- Cao, X.C.; Zhang, J.H.; Yu, Y.J.; Ma, Q.X.; Kong, Y.L.; Pan, W.K.; Wu, L.H.; Jin, Q.Y. Alternate Wetting–Drying Enhances Soil Nitrogen Availability by Altering Organic Nitrogen Partitioning in Rice-Microbe System. Geoderma 2022, 424, 115993. [Google Scholar] [CrossRef]
- Xu, G.W.; Jiang, M.M.; Lu, D.K.; Zhao, X.H.; Chen, M.C. Optimum Combination of Irrigation and Nitrogen Supply Form Achieving High Photosynthetic and Nitrogen Utilization Efficiency. Plant Nutr. Fert. Sci. 2020, 26, 1239–1250. [Google Scholar] [CrossRef]
- Xiao, Z.L.; Zhang, N.; Zhang, Y.; Zhu, K.Y.; Wang, W.L.; Zhang, W.Y.; Gu, J.F.; Zhang, G.B.; Liu, L.J.; Zhang, J.H. Synergistic Mechanism of Moderate Wetting Drying Irrigation Improving Rice Productivity and Environmental Sustainability. Field Crops Res. 2025, 332, 110035. [Google Scholar] [CrossRef]
- Hossain, M.; Islam, M. Farmers’ Participatory Alternate Wetting and Drying Irrigation Method Reduces Greenhouse Gas Emission and Improves Water Productivity and Paddy Yield in Bangladesh. Water 2022, 14, 1056. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wang, B.; Zhang, B.Y.; Ma, D.H.; Zhang, C.H.; Bai, X.L.; Yang, Z.H.; Wu, J.M.; Liu, P.T.; Zhang, J.H. The Effect of Alternating Wet and Dry Irrigation on the Photosynthetic Characteristics and Yield of Rice Grown on Saline-Alkali Land in the Yellow River Irrigation District. Nongye Gongcheng Xuebao 2025, 41, 111–121. [Google Scholar] [CrossRef]
- Wu, H.B.; Liu, D.H.; Zhong, M.; Wang, Y.Y. Effects of Water Management and Potash Application on Grain Yield and Lodging Resistance of Rice. Crops 2019, 127–133. [Google Scholar] [CrossRef]
- Wang, R.X.; Yang, J.; Fang, Z.; Zhang, S.Y.; Zhou, X.B. Effects of Water Management on Selenium Accumulation in Rice Grains and Bacterial Community Diversity in Rhizosphere Soil. Acta Pedol. Sin. 2021, 58, 1574–1584. [Google Scholar] [CrossRef]
- He, J.; Zhang, Y.H.; Ye, L.; Zhong, S.J.; He, T.K.; Zhao, S.J.; Gao, M.L. The Effects of Slow-Release Fertilizer Levels on Rice Growth Characteristics and Yields under Alternate Wetting and Drying. China Rural Water Hydropower 2021, 103–107. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Wang, D.M.; Li, M.X. Effect of Drying-Rewetting Intensity on Soil Nutrient Availability. J. Soil Water Conserv. 2021, 35, 265–270. [Google Scholar] [CrossRef]
- Chen, S.J.; Li, F.S.; Nong, M.L. Effect of Nitrogen Fertigation Management on Soil Nitrogen Fractions and N2O Emissions from Ratoon Sugarcane Fields. J. South China Agric. Univ. 2023, 44, 230–238. [Google Scholar] [CrossRef]
- Gui, J.; Chen, X.Y.; Liu, M.Q.; Zhuang, X.P.; Sun, Z.; Hu, F. Influences of Water-Saved and Nitrogen-Reduced Practice on Soil Microbial and Microfauna Assemblage in Paddy Field. Chin. J. Appl. Ecol. 2016, 27, 107–116. [Google Scholar] [CrossRef]
- Fan, X.H.; Zhu, Z.L. Nitrification and Denitrification in Upland Soils. Chin. J. Soil Sci. 2002, 385–391. [Google Scholar] [CrossRef]
- Zhai, Y.Q.; Ma, K.; Jia, B.; Wei, X.; Yun, B.Y.; Ma, J.Z.; Zhang, H.; Ji, L.; Li, J.R. Soil Nitrate-N Distribution, Leaching Loss and Nitrogen Uptake and Utilization of Maize under Drip Irrigation in Different Precipitation Years. Chin. J. Eco-Agric. 2023, 31, 765–775. [Google Scholar] [CrossRef]
- Xu, A.X.; Li, L.X.; Xie, J.H.; Wang, X.Z.; Coulter, J.A.; Liu, C.; Wang, L.L. Effect of Long-Term Nitrogen Addition on Wheat Yield, Nitrogen Use Efficiency, and Residual Soil Nitrate in a Semiarid Area of the Loess Plateau of China. Sustainability 2020, 12, 1735. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Z.M.; Shi, Y.; Yan, J.L.; He, M.J.; Wei, S.Q. Effect of Low Molecular Weight Organic Acids on Phosphorus Leaching from Typical Soils in Water-Level Fluctuation Zone of Three Gorges Reservoir Areas. J. Soil Water Conserv. 2015, 29, 126–131. [Google Scholar] [CrossRef]
- Li, J.; Yuan, L.; Zhao, B.Q.; Li, Y.T.; Wen, Y.C.; Li, W.; Lin, Z.A. Effect of Adding Humic Acid to Phosphorous Fertilizer on Maize Yield and Phosphorus Uptake and Soil Available Phosphorus Content. Plant Nutr. Fert. Sci. 2017, 23, 641–648. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhao, X.H.; Xie, X.W.; Lu, D.K.; Xu, G.W. Difference of Soil Enzyme Activity and Soil Nutrient Content of Rice under Alternative Wetting and Drying Irrigation and Nitrogen Form Interaction. J. Plant Physiol. 2021, 57, 1123–1134. [Google Scholar] [CrossRef]
- Hua, L.L.; Wang, H.Y.; Zhai, L.M.; Fu, B.; Gai, X.P.; Hu, W.L. Effects of Maize Stover Biochar on Phosphorus Losses in Rice-Oilseed Rape Cropping System. J. Agro-Environ. Sci. 2016, 35, 1376–1383. [Google Scholar] [CrossRef]
- Wu, L.L.; Zhang, S.Q.; Huang, S.M.; Du, W.; Liu, X.Q.; Wang, X.H.; Lü, J.L. Effect of Long-Term Fertilization on Phosphorus Fraction and Availability in Fluvo-Aquic Soil. Chin. J. Soil Sci. 2021, 52, 379–386. [Google Scholar] [CrossRef]
- Shen, J.B.; Yuan, L.X.; Zhang, J.L.; Li, H.G.; Bai, Z.H.; Chen, X.P.; Zhang, W.F.; Zhang, F.S. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef]
- Yang, X.Q.; Li, J.P.; Lian, J.L.; Han, C.; Luo, X.; Zhao, Y.; Zhao, Y.X. Influence of Precipitation Change on the Ecological Stoichiometry of Carbon, Nitrogen, and Phosphorus within Desert Steppe Soil. Acta Agrestia Sin. 2025, 47, 20–30. [Google Scholar] [CrossRef]
- Huang, L.; Fan, X.K. The Effects of Phosphate and Potash Fertilizers in Diffierent Facilities on Soil Nutrient Migration. J. Soil Water Conserv. 2018, 32, 184–190. [Google Scholar] [CrossRef]
- Zhang, L.; Song, H.; Chen, X.Q.; Lu, D.J.; Wang, H.Y. Primary Study on Nutrient Migration under Hole Fertilization in Soils. Soils 2020, 52, 1145–1151. [Google Scholar] [CrossRef]
- Yin, Z.R.; Lei, J.Y.; Zhao, Y.; Gui, L.G.; Huang, J.C. Effects of Drip Irrigation Amounts on Characteristics of Moisture and Nutrient Transfer in Soil in the Lycium Barbarum Field. Res. Soil Water Conserv. 2021, 28, 62–69. [Google Scholar] [CrossRef]
- Qi, H.J.; Lei, X.T.; Lei, J.Y.; Wang, R.; Ji, L.D.; Yang, Y.; Yin, Z.R.; Zhou, L.N. Effects of Irrigation Water Quantity and Ph Value on Soil Nutrients and Celery Yield and Quality in Southern Ningxia Mountain Area. Water Sav. Irrig. 2021, 9, 29–34. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Tuong, T.P. Field Water Management to Save Water and Increase Its Productivity in Irrigated Lowland Rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Xu, R.; Yang, W.Y.; Zhu, J.L.; Chen, S.; Xu, C.M.; Liu, Y.H.; Zhang, X.F.; Wang, D.Y.; Chu, G. Effects of Different Irrigation Regimes on Grain Yield and Water Use Efficiency in Japonica-Indica Hybrid Rice Cultivar Yongyou 1540. Crop J. 2024, 50, 425–439. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Li, T.T.; Li, S.Y.; Li, G.M.; Zhang, W.Y.; Zhang, H.; Gu, J.F.; Liu, L.J.; Yang, J.C. Effects of Alternate Wetting and Moderate Soil Drying Irrigation on Root Traits, Grain Yield and Soil Properties in Rice. Chin. J. Rice Sci. 2022, 36, 269. [Google Scholar] [CrossRef]
- Chu, G.; Zhan, M.F.; Zhu, K.Y.; Wang, Z.Q.; Yang, J.C. Effects of Alternate Wetting and Drying Irrigation on Yield and Water Use Efficiency of Rice. Crop J. 2016, 42, 1026–1036. [Google Scholar] [CrossRef]
- Wang, N.N.; Huang, M.; Chen, D.W.; Xu, S.H.; Wei, S.Q.; Jiang, L.G. Effects of Water Stress on Root and Yield of Rice at Different Growth Stages. Chin. J. Trop. Crops 2013, 34, 1650–1656. [Google Scholar] [CrossRef]
- Liu, L.J.; Chen, T.T.; Wang, Z.Q.; Zhang, H.; Yang, J.C.; Zhang, J.H. Combination of Site-Specific Nitrogen Management and Alternate Wetting and Drying Irrigation Increases Grain Yield and Nitrogen and Water Use Efficiency in Super Rice. Field Crops Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Gao, R.; Zhuo, L.; Duan, Y.D.; Yan, C.J.; Yue, Z.W.; Zhao, Z.K.; Wu, P.T. Effects of Alternate Wetting and Drying Irrigation on Yield, Water-Saving, and Emission Reduction in Rice Fields: A Global Meta-Analysis. Agric. For. Meteorol. 2024, 353, 110075. [Google Scholar] [CrossRef]
Treatment | Irrigation Threshold | Re-Growth Stage | Early to Mid-Tillering Stage | Late Tillering Stage | Jointing-Booting to Heading-Flowering Stage | Milk-Ripening Stage |
---|---|---|---|---|---|---|
CK | Upper limit | 30 mm | 50 mm | 50 mm | 50 mm | 50 mm |
Lower limit | 10 mm | 10 mm | 10 mm | 10 mm | 10 mm | |
LA | Upper limit | 30 mm | 30 mm | 30 mm | 30 mm | 30 mm |
Lower limit | 10 mm | −10 kPa | −20 kPa | −10 kPa | −10 kPa | |
MA | Upper limit | 30 mm | 30 mm | 30 mm | 30 mm | 30 mm |
Lower limit | 10 mm | −20 kPa | −30 kPa | −20 kPa | −20 kPa | |
SA | Upper limit | 30 mm | 30 mm | 30 mm | 30 mm | 30 mm |
Lower limit | 10 mm | −30 kPa | −40 kPa | −30 kPa | −30 kPa |
Treatment | 2023 | 2024 |
---|---|---|
LA | 25.3 a | 24.7 b |
MA | 23.7 a | 24.1 b |
SA | 24.7 a | 23.1 b |
CK | 26.7 a | 26.3 a |
Year | Treatment | Irrigation Water (mm) | Precipitation (mm) | Field Drainage (mm) | WUE (kg m−3) |
---|---|---|---|---|---|
2023 | LA | 109.0 ab | 457.5 | 165.2 | 2.6 a |
MA | 94.0 b | 457.5 | 164.4 | 2.4 a | |
SA | 33.0 c | 457.5 | 130 | 2.5 a | |
CK | 111.0 a | 457.5 | 95.6 | 2.0 b | |
2024 | LA | 122.0 b | 379.9 | 103.0 | 2.5 a |
MA | 58.0 c | 379.9 | 78.5 | 2.4 a | |
SA | 56.0 c | 379.9 | 85.0 | 2.4 a | |
CK | 142.0 a | 379.9 | 80.0 | 2.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, C.; Qian, C.; Lv, Y.; Sun, Y. Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China. Agronomy 2025, 15, 2372. https://doi.org/10.3390/agronomy15102372
Dou C, Qian C, Lv Y, Sun Y. Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China. Agronomy. 2025; 15(10):2372. https://doi.org/10.3390/agronomy15102372
Chicago/Turabian StyleDou, Chaoyin, Chen Qian, Yuping Lv, and Yidi Sun. 2025. "Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China" Agronomy 15, no. 10: 2372. https://doi.org/10.3390/agronomy15102372
APA StyleDou, C., Qian, C., Lv, Y., & Sun, Y. (2025). Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China. Agronomy, 15(10), 2372. https://doi.org/10.3390/agronomy15102372