Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization
Abstract
1. Introduction
2. Materials and Methods
2.1. Global Research Analysis
2.2. Screening of Empirical Evidence on Residue Valorization
3. Results
3.1. Description and Evolution of Scientific Production on Opuntia spp.
3.1.1. Main Information
3.1.2. Publication Sources and Leading Authors
3.1.3. Thematic Analysis of Keywords
3.1.4. Analysis of the Most Cited Documents
3.2. Empirical Evidence on Residue Valorization in Mexico
3.2.1. Selection of Relevant Studies
3.2.2. Characterization of the Mexican Studies
4. Discussion
4.1. Global Landscape and Regional Gaps
4.2. Valorization Processes of Cladodes Residues
4.3. Quality and Properties of the Products
4.4. Why Mexican Research Lags Behind
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sáenz, C.; Berger, H.; García, J.; Galletti, L.; de Cortázar, V.; Higuera, I.; Mondragón, C.; Rodriguez-Félix, A.; Sepúlvida, E.; Varnero, M. Utilización Agroindustrial del Nopal, 1st ed.; FAO: Rome, Italy, 2006; p. 182. [Google Scholar]
- Inglese, P.; Saenz, C.; Mondragon, C.; Nefzaoui, A.; Louhaichi, M. Crop Ecology, Cultivation and Uses of Cactus Pear, 1st ed.; Inglese, P., Mondragon, C., Nefzaoui, A., Sáenz, C., Eds.; FAO: Rome, Italy, 2017; p. 244. [Google Scholar]
- Tenorio-Escandón, P.; Ramírez-Hernández, A.; Flores, J.; Juan-Vicedo, J.; Martínez-Falcón, A.P. A Systematic Review on Opuntia (Cactaceae; Opuntioideae) Flower-Visiting Insects in the World with Emphasis on Mexico: Implications for Biodiversity Conservation. Plants 2022, 11, 131. [Google Scholar] [CrossRef]
- Dirección General del Servicio de Información Agroalimentaria y Pesquera. ¡Y el Nopal Ingreso en la Dieta Simbólica y Real de los Mexicanos! Available online: https://www.gob.mx/agricultura%7Cdgsiap/articulos/y-el-nopal-ingreso-en-la-dieta-simbolica-y-real-de-los-mexicanos (accessed on 15 May 2025).
- Secretaría de Agricultura y Desarrollo Rural. Crece en México el Consumo y Producción de Nopal: Agricultura. Available online: http://www.gob.mx/agricultura/prensa/crece-en-mexico-el-consumo-y-produccion-de-nopal-agricultura?idiom=es (accessed on 10 September 2025).
- Carmona Motolinia, J.R.; Tetreault, D. Pueblos originarios, formas de comunalidad y resistencia en Milpa Alta. Rev. Mex. Cienc. Políticas Y Soc. 2020, 66, 155–180. [Google Scholar] [CrossRef]
- Wacher-Rodarte, M.M. Nahuas de Milpa Alta. Gobierno de la Ciudad de México, 1st ed.; Comisión Nacional para el Desarrollo de los Pueblos Indígenas: Mexico City, Mexico, 2006; Volume 1, p. 58. [Google Scholar]
- Barboza-Palomino, M. Una guía para desarrollar estudios bibliométricos en psicología. Rev. Peru. Hist. Psicol. 2021, 7, 37–43. [Google Scholar]
- Manterola, C.; Rivadeneira Dueñas, J.; Salgado Castillo, C. Estudios bibliométricos. Una opción para desarrollar investigación en cirugía y disciplinas afines. Rev. Cir. 2024, 76, 147–156. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Shackleton, C.M.; Kull, C.A. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manag. 2019, 229, 145–157. [Google Scholar] [CrossRef]
- De Wit, M.; Hugo, A.; Shongwe, N. Quality Assessment of Seed Oil from Selected Cactus Pear Cultivars (Opuntia ficus-indica and Opuntia robusta). J. Food Process. Preserv. 2017, 41, e12898. [Google Scholar] [CrossRef]
- De Wit, M.; Hugo, A.; Shongwe, N. South African Cactus Pear Seed Oil: A Comprehensive Study on 42 Spineless Burbank Opuntia ficus-indica and Opuntia robusta Cultivars. Euro J. Lipid Sci. Technol. 2018, 120, 1700343. [Google Scholar] [CrossRef]
- Du Toit, A.; Mpemba, O.; De Wit, M.; Venter, S.L.; Hugo, A. The effect of size, cultivar and season on the edible qualities of nopalitos from South African cactus pear cultivars. S. Afr. J. Bot. 2021, 142, 459–466. [Google Scholar] [CrossRef]
- De Wit, M.; Du Toit, A.; Fouché, H.J.; Hugo, A.; Venter, S.L. Screening of cladodes from 42 South African spineless cactus pear cultivars for morphology, mucilage yield and mucilage viscosity. Acta Hortic. 2019, 1247, 47–56. [Google Scholar] [CrossRef]
- Donato, P.E.R.; Donato, S.L.R.; Silva, J.A.; Pires, A.J.V.; Silva Junior, A.A.E. Extraction/exportation of macronutrients by cladodes of ‘Gigante’ cactus pear under different spacings and organic fertilization. Rev. Bras. Eng. Agríc. Ambient. 2017, 21, 238–243. [Google Scholar] [CrossRef]
- Fonseca, V.A.; Donato, S.L.R.; Santos, M.R.D.; Silva, J.A.D.; Oliveira, C.M.; Batista, R.D.S. Morphometry and yield of ‘Gigante’ forage cactus pear under irrigation and different planting densities. Rev. Caatinga 2023, 36, 690–701. [Google Scholar] [CrossRef]
- Fouché, H.J.; Coetzer, G.M.; Smith, M.F. Genotype × environmental interactions of cactus pear (Opuntia ficus-indica) in semi-arid regions of South Africa: Cladode production. Acta Hortic. 2019, 1247, 81–90. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu+2 and Ni+2 from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef]
- Ribeiro, R.; Barreto, S.; Ostrosky, E.; Rocha-Filho, P.; Veríssimo, L.; Ferrari, M. Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L.) Mill Extract as Moisturizing Agent. Molecules 2015, 20, 2492–2509. [Google Scholar] [CrossRef]
- Saleem, M.; Bachmann, R.T. A contemporary review on plant-based coagulants for applications in water treatment. J. Ind. Eng. Chem. 2019, 72, 281–297. [Google Scholar] [CrossRef]
- Elazzouzi, M.; Haboubi, K.; Elyoubi, M.S. Electrocoagulation flocculation as a low-cost process for pollutants removal from urban wastewater. Chem. Eng. Res. Des. 2017, 117, 614–626. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; Heredia, N.; Alanís-Guzmán, M.G.; Arévalo-Niño, K. Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). Postharvest Biol. Technol. 2017, 128, 63–75. [Google Scholar] [CrossRef]
- Yang, L.; Lu, M.; Carl, S.; Mayer, J.A.; Cushman, J.C.; Tian, E.; Lin, H. Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. Biomass Bioenergy 2015, 76, 43–53. [Google Scholar] [CrossRef]
- Panda, S.K.; Behera, S.K.; Witness Qaku, X.; Sekar, S.; Ndinteh, D.T.; Nanjundaswamy, H.M.; Ray, R.C.; Kayitesi, E. Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum—ATCC 9338. LWT 2017, 75, 453–459. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Panneerselvam, P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv. 2018, 8, 30455–30467. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Gurupranes, S.V.; Kaliappan, S.; Natrayan, L.; Patil, P.P. Characterization of prickly pear short fiber and red onion peel biocarbon nanosheets toughened epoxy composites. Polym. Compos. 2022, 43, 4899–4908. [Google Scholar] [CrossRef]
- Escamilla-García, P.E.; Alvarado-Raya, H.E.; Caire Alfaro, C.; Dorantes Hernández, P.I.; Ángeles Tovar, L.C. Standardization Process for the Production of Nopal-Based (Opuntia ficus-indica (L.) Mill.) Compost: A Technical and Economic Analysis. Compost. Sci. Util. 2025, 1–16. [Google Scholar] [CrossRef]
- Cruz-Méndez, A.S.; Ortega-Ramírez, E.; Lucho-Constantino, C.A.; Arce-Cervantes, O.; Vázquez-Rodríguez, G.A.; Coronel-Olivares, C.; Beltrán-Hernández, R.I. Bamboo Biochar and a Nopal-Based Biofertilizer as Improvers of Alkaline Soils with Low Buffer Capacity. Appl. Sci. 2021, 11, 6502. [Google Scholar] [CrossRef]
- Rodas-Gaitán, H.A.; Palma-García, J.M.; Olivares-Sáenz, E.; Gutiérrez-Castorena, E.V.; Vázquez-Alvarado, R. Biodynamic preparations on static pile composting from prickly pear cactus and moringa crop wastes. Open Agric. 2019, 4, 247–257. [Google Scholar] [CrossRef]
- González-Torres, G.Y.; Bernardino-Nicanor, A.; Fernández-Avalos, S.; Acosta-García, G.; Juárez-Goiz, J.M.S.; González-Cruz, L. Effects of Nopal and Goat Manure on Soil Fertility and the Growth, Yield and Physical Characteristics of Tomato and Carrot Plants. Agronomy 2024, 14, 1221. [Google Scholar] [CrossRef]
- Alvarado Raya, H.E.; Salinas Callejas, E.; Ortiz Huerta, G. Peso fresco y calidad de nopalito (Opuntia ficus-indica L.) fertilizado con composta de estiércol de vaca: Fresh weight and quality of nopalito (Opuntia ficus-indica L.) fertilized with cow manure compost. TECNOCIENCIA Chih. 2016, 10, 13–22. [Google Scholar] [CrossRef]
- Abiven, S.; Menasseri, S.; Chenu, C. The effects of organic inputs over time on soil aggregate stability—A literature analysis. Soil Biol. Biochem. 2009, 41, 1–12. [Google Scholar] [CrossRef]
- NMX-AA-180-SCFI-2018; Norma Mexicana NMX-AA-180-SCFI-2018, Que Establece los Métodos y Procedimientos Para el Tratamiento Aerobio de la Fracción Orgánica de los Residuos Sólidos Urbanos y de Manejo Especial, Así Como la Información Comercial y de Sus Parámetros de Calidad de los Productos Finales. Secretaría de Economía: Mexico City, Mexico, 2018; p. 52.
- NADF-020-AMBT-2011; Norma Ambiental Para el Distrito Federal NADF-024-AMBT-2013, Que Establece los Criterios y Especificaciones Técnicas Bajo los Cuales se Deberá Realizar la Separación, Clasificación, Recolección Selectiva y Almacenamiento de los Residuos del Distrito Federal. Secretaría del Medio Ambiente: Mexico City, Mexico, 2012; p. 15.
- Andreu, L. Valorization of Prickly Pear (Opuntia ficusindica (L.) Mill): Study of Its Phytochemical, Nutraceutical, and Functional Properties. Ph.D. Thesis, Universidad Miguel Hernández de Elche, Alicante, Spain, 2022. [Google Scholar]
- Gajender, R.; Yadav, J.; Dagar, J.; Lal, K.; Gurbachan, S. Growth and fruit characteristics of edible cactus (Opuntia ficus-indica) under salt stress environment. J. Soil Salin. Water Qual. 2013, 2013, 135–142. [Google Scholar]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
Country | Total Citations | Average Citations | Documents |
---|---|---|---|
Mexico | 1976 | 12.70 | 155 |
Italy | 1189 | 16.50 | 91 |
Brazil | 922 | 10.10 | 72 |
India | 893 | 28.80 | 31 |
Morocco | 668 | 15.90 | 42 |
South Africa | 620 | 23.00 | 27 |
Egypt | 520 | 19.30 | 27 |
Tunisia | 376 | 13.40 | 28 |
Algeria | 373 | 12.00 | 31 |
Switzerland | 252 | 252.00 | 1 |
Sources | Documents |
---|---|
Journal of the Professional Association for Cactus Development | 19 |
Acta Horticulturae | 17 |
Opuntia spp.: Chemistry, Bioactivity and Industrial Applications | 16 |
Journal of Food Processing and Preservation | 13 |
Tropical Animal Health and Production | 13 |
Polymers | 11 |
Agronomy | 10 |
Foods | 10 |
Revista Brasileira de Engenharia Agricola e Ambiental | 9 |
Revista Caatinga | 9 |
Authors | Documents |
---|---|
De Wit, M. | 17 |
Donato, S. | 13 |
Hugo, A. | 13 |
Louhaichi, M. | 13 |
Hassan, S. | 12 |
Welti-Chanes, J. | 10 |
Edvan, R. | 8 |
Fouché, H. | 8 |
Venter, S. | 8 |
Da Silva, J. | 7 |
Title | Reference | Source | Citations |
---|---|---|---|
Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu + 2 and Ni + 2 from water. | Choudhary, M., 2020 [22]. | Journal of Hazardous Materials | 348 |
The role of invasive alien species in shaping local livelihoods and human well-being: A review. | Shackleton, R., 2019 [14]. | Journal of Environmental Management | 252 |
Production and Characterization of Cosmetic Nanoemulsions Containing Opuntia ficus-indica (L.) Mill Extract as Moisturizing Agent. | Ribeiro, R., 2015 [23]. | Molecules | 178 |
A Contemporary Review on Plant-Based Coagulants for Applications in Water Treatment. | Saleem, M., 2019 [24]. | Journal of Industrial and Engineering Chemistry | 143 |
Electrocoagulation-flocculation as a low-cost process for pollutants removal from urban wastewater. | Elazzouzi, M., 2017 [25]. | Chemical Engineering Research and Design | 117 |
Layer-by-layer Edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus). | Treviño-Garza, M., 2017 [26]. | Postharvest Biology and Technology | 111 |
Biomass characterization of Agave and Opuntia as potential biofuel feedstocks. | Yang, L., 2015 [27]. | Biomass & Bioenergy | 110 |
Quality enhancement of prickly pears (Opuntia sp.) juice through probiotic fermentation using Lactobacillus fermentum | Panda, S., 2017 [28]. | LWT—Food Science and Technology | 104 |
Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic (III) and hypochlorite ions from drinking water. | Radhakrishnan, K., 2018 [29]. | Royal Society of Chemistry Advances | 97 |
Characterization of prickly pear short fiber and red onion peel biocarbon nanosheets toughened epoxy composites. | Ramaswamy, S. 2022 [30] | Polymer Composites | 95 |
Author and Year | Objective | Study Design | Intervention (Residues, Method, and Duration) | Application and Comparison | Quantitative Results and Observations | Key Conclusions |
---|---|---|---|---|---|---|
Escamilla-García et al. (2025) [31] | Standardize the composting process of cladodes residues for agricultural use. | Technical and economic analysis. | Windrow composting with manual turning using cladodes residues, cow manure, and grass for 120 days. | Not applicable. The study focused on compost production. | Final compost with a C:N ratio of 26.5 and 32.9% organic matter. | The standardized process is a technically and economically viable solution for the valorization of cladodes. |
Cruz-Méndez et al. (2021) [32] | Evaluate cladodes residues and biochar-based biofertilizer to improve alkaline soils. | Greenhouse experiment with randomized block design. | Anaerobic fermentation of cladodes residues and rabbit manure for 50 days to produce a biofertilizer. | Applied to tomatillo crops, compared with chemical fertilization and a control. | Improved water retention capacity and available phosphorus in the soil. | The Opuntia biofertilizer is a suitable amendment for improving low-buffering-capacity soils. |
Rodas-Gaitán et al. (2019) [33] | Evaluate the effect of biodynamic preparations (BD) in the composting of cladodes and moringa. | Field experiment with a 2 × 2 factorial design. | Static pile composting with passive aeration using cladodes/moringa and manure for 1 year. | Not applicable. Focused on the composting process and product stability. | Final compost C:N ratio ranged from 12–14. | Using cladodes residues as a substrate produces high-quality compost. |
González-Torres et al. (2024) [34] | Investigate the effect of raw cladodes and goat manure on soil and crops. | Field experiment with randomized block design. | Direct application to the soil of raw cladodes residues and goat manure. Duration: N/A. | Applied to tomato and carrot crops, compared with control and residue combinations. | Increased carrot yields up to 3.3 times and tomato yields up to 3.9 kg/plant. | Adding Opuntia components to the soil is a viable alternative that enhances horticultural crop production. |
Alvarado-Raya et al. (2016) [35] | Compare compost, fresh manure, and synthetic fertilizer in Opuntia cultivation. | Comparative field trial. | Composting on concrete beds with manual turning using manure, cladodes residues, and garden waste for 3 months. | Applied to Opuntia crop, compared with fresh manure and synthetic fertilizer. | No significant differences in yield among treatments. Compost influenced the firmness and shelf life of the cladodes. Final compost had a C:N ratio of 25.5. | Manure compost is an adequate substitute in vegetable Opuntia fertilization without negatively affecting yield. |
Product | C/N Ratio | pH | Moisture | Organic Matter | Electrical Conductivity (EC) | Main Nutrients |
---|---|---|---|---|---|---|
Aerobic Composting with Manual Turning | 25.5:1 | 7.8–9.0 (slightly alkaline) | N/A | High (exact% not provided) | N/A | Assumed N, P, K, Ca, Mg from cattle manure [35,36] |
Standardized Compost (120 days) | 26.5:1 | 8.6 | 40% | 32.9% | 2.89 mS/cm | N: 1120 mg/L, P: 355 mg/L, K: 990 mg/L, Ca: 335 mg/L, Mg: 187 mg/L, Zn: 8.6 mg/L, Fe: 15.1 mg/L [31,37,38,39,40] |
Biodynamic Static Compost (1 year) | 12:1–14:1 | 7.8–9.0 (alkaline) | N/A | Higher in prickly pear (exact% not reported) | N/A | Increased P, Ca, Mg, Fe, Zn, Mn (exact values not provided) [33,40,41] |
Liquid Biofertilizer (Anaerobic Fermentation) | N/A | 5.9 (acidic) | N/A | 1.8% (total organic carbon) | 3.83 mS/cm | K: 5568 mg/L, N: 1120 mg/L, P: 355 mg/L, Fe: 15.1 mg/L, Ca, Mg, Zn [32,37,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Sandoval, A.J.; Ortiz-Hernández, Y.D.; Tavera-Cortés, M.E.; Acevedo-Ortiz, M.A.; Lugo-Espinosa, G. Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization. Agronomy 2025, 15, 2311. https://doi.org/10.3390/agronomy15102311
Torres-Sandoval AJ, Ortiz-Hernández YD, Tavera-Cortés ME, Acevedo-Ortiz MA, Lugo-Espinosa G. Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization. Agronomy. 2025; 15(10):2311. https://doi.org/10.3390/agronomy15102311
Chicago/Turabian StyleTorres-Sandoval, Alan Jesús, Yolanda Donají Ortiz-Hernández, María Elena Tavera-Cortés, Marco Aurelio Acevedo-Ortiz, and Gema Lugo-Espinosa. 2025. "Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization" Agronomy 15, no. 10: 2311. https://doi.org/10.3390/agronomy15102311
APA StyleTorres-Sandoval, A. J., Ortiz-Hernández, Y. D., Tavera-Cortés, M. E., Acevedo-Ortiz, M. A., & Lugo-Espinosa, G. (2025). Closing the Loop in Opuntia Cultivation: Opportunities and Challenges in Residue Valorization. Agronomy, 15(10), 2311. https://doi.org/10.3390/agronomy15102311