Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.1.1. Rice Cultivar Trials Data
- (1)
- Data source
- (2)
- The data distribution of rice cultivar trials
2.1.2. Meteorological Data
2.2. Research Methods
2.2.1. Descriptive Statistical Analysis
2.2.2. Correlation Analysis
2.2.3. Model Evaluation Methods
2.2.4. Development of a Random Forest-Based Yield Prediction Model
3. Results
3.1. Correlation Analysis Between Influencing Factors and Rice Yield
3.1.1. The Correlation Between Geography, Phenology, and Rice Yield
3.1.2. The Correlation Between Rice Yield and Meteorology During Different Development Periods
3.1.3. The Correlation Between Cultivar Traits and Rice Yield
3.2. The Performance Comparison of Random Forest Model Based on Seven Different Feature Combinations
3.3. The Analysis of the Contribution of Feature Variables Based on the Optimal Model
4. Discussion
4.1. The Interaction Between Environment, Phenological Development, and Cultivar on Rice Yield
4.2. The Key Factors of Modeling Rice Yield
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Lat | Latitude. |
Lon | Longitude. |
Elev | Elevation. |
DOY_Sow | The day of year for sowing date. |
DOY_Hea | The day of year for heading date. |
DOY_Mat | The day of year for maturation date. |
GP | The entire development period from sowing to maturation. |
VGP | The vegetative growth period from sowing to heading. |
RGP | The reproductive growth period from heading to maturation. |
EPPA | The number of effective panicles per unit area. |
TGPP | Total number of grains per panicle. |
FGPP | Filled grains per panicle. |
SSR | Seed-setting rate. |
TGW | Thousand-grain weight. |
PH | Plant height. |
PL | Panicle length. |
TMin | Minimum temperature. |
TMax | Maximum temperature. |
TMean | Mean temperature. |
PRE | Accumulated precipitation. |
RHU | Relative humidity. |
Rns | Net solar radiation. |
TS | ≥8 °C thermal summation. |
DL | Daylength. |
HN | The frequency of high-temperature events (3 consecutive days with daily average temperature ≥30 °C). |
HD | Total days of HN. |
HDD | Accumulated heat of HD. |
CN | The frequency of cold damage events (daily mean temperature ≤ 17 °C above 36° N or ≤20 °C below 36° N for 3 consecutive days). |
CD | Total days of CN. |
CDD | Accumulated cold of CD. |
HHD | Total days with high-heat and high-humidity (daily average temperature ≥ 25.0 °C and relative humidity ≥ 90.0%). |
Appendix A
Appendix A.1
Category | Variable | Abbreviation | Description | Unit | Model |
---|---|---|---|---|---|
Geographic variable (Loc) | Longitude | Lon | Spatial coordinate (east–west) | ° E | 1, 4, 6, 7 |
Latitude | Lat | Spatial coordinate (north–south) | ° N | 1, 4, 6, 7 | |
Elevation | Elev | Height above sea level | m | 1, 4, 6, 7 | |
Phenological variable (Phen) | Sowing date | DOY_Sow | Day of year for sowing | - | 2, 5, 6, 7 |
Heading date | DOY_Hea | Day of year for heading | - | 2, 5, 6, 7 | |
Vegetative growth period | VGP | Days from sowing to heading | Days | 2, 5, 6, 7 | |
Reproductive growth period | RGP | Days from heading to maturity | Days | 2, 5, 6, 7 | |
The entire development period | GP | Days from sowing to maturity | Days | - | |
Meteorological variable (Meteo) | During Vegetative Growth Period (VGP) | ||||
Mean minimum temperature | VGP_TMin | Average daily minimum temperature during VGP | °C | 3, 4, 5, 6, 7 | |
Mean maximum temperature | VGP_TMax | Average daily maximum temperature during VGP | °C | 3, 4, 5, 6, 7 | |
Mean temperature | VGP_TMean | Average daily mean temperature during VGP | °C | 3, 4, 5, 6, 7 | |
Accumulated precipitation | VGP_PRE | Total precipitation during VGP | mm | 3, 4, 5, 6, 7 | |
Average relative humidity | VGP_RHU | Average daily relative humidity during VGP | % | - | |
Accumulated net solar radiation | VGP_Rns | Total net solar radiation during VGP | MJ·m−2·d−1 | 3, 4, 5, 6, 7 | |
Average daylength | VGP_DL | Average daily photoperiod during VGP | h | 3, 4, 5, 6, 7 | |
Thermal summation | VGP_TS | ≥8 °C thermal summation during VGP | °C·d | 3, 4, 5, 6, 7 | |
During Reproductive Growth Period (RGP) | |||||
Mean minimum temperature | RGP_TMin | Average daily minimum temperature during RGP | °C | 3, 4, 5, 6, 7 | |
Mean maximum temperature | RGP_TMax | Average daily maximum temperature during RGP | °C | 3, 4, 5, 6, 7 | |
Mean temperature | RGP_TMean | Average daily mean temperature during RGP | °C | 3, 4, 5, 6, 7 | |
Accumulated precipitation | RGP_PRE | Total precipitation during RGP | mm | 3, 4, 5, 6, 7 | |
Average relative humidity | RGP_RHU | Average daily relative humidity during RGP | % | 3, 4, 5, 6, 7 | |
Accumulated net solar radiation | RGP_Rns | Total net solar radiation during RGP | MJ·m−2·d−1 | 3, 4, 5, 6, 7 | |
Average daylength | RGP_DL | Average daily photoperiod during RGP | h | 3, 4, 5, 6, 7 | |
Thermal summation | RGP_TS | ≥8 °C thermal summation during RGP | °C·d | 3, 4, 5, 6, 7 | |
During the Entire Growth Period (GP) | |||||
Mean minimum temperature | GP_TMin | Average daily minimum temperature during GP | °C | - | |
Mean maximum temperature | GP_TMax | Average daily maximum temperature during GP | °C | - | |
Mean temperature | GP_TMean | Average daily mean temperature during GP | °C | - | |
Accumulated precipitation | GP_PRE | Total precipitation during GP | mm | - | |
Average relative humidity | GP_RHU | Average daily relative humidity during GP | % | - | |
Accumulated net solar radiation | GP_Rns | Total net solar radiation during GP | MJ·m−2·d−1 | - | |
Average daylength | GP_DL | Average daily photoperiod during GP | h | - | |
Thermal summation | GP_TS | ≥8 °C thermal summation during GP | °C·d | - | |
Stress Indicators | |||||
The frequency of high-temperature events | HN | A high temperature event refers to a period when the daily average temperature is ≥30 °C for three consecutive days | - | - | |
Total days of HN | HD | Total days of HN during GP | Days | - | |
Accumulated heat of HD | HDD | ≥30 °C thermal summation during high temperature events throughout the entire growing period | °C·d | - | |
The frequency of cold damage events | CN | A cold damage event refers to a period when the daily average temperature is ≤17 °C above 36° N or ≤20 °C below 36° N for consecutive 3 days | - | - | |
Total days of CN | CD | Total days of CN during GP | Days | - | |
Accumulated cold of CD | CDD | Accumulated chilling (≤17 °C above 36° N or ≤20 °C below 36° N) during cold damage events throughout the entire growing period | °C·d | - | |
High-heat and high-humidity days | HHD | Days with mean temperature ≥25 °C and relative humidity ≥90% | Days | 3, 4, 5, 6, 7 | |
Cultivar variables | Rice cultivar | Cultivar | Unique identifier for each rice cultivar (Categorical label) | - | 7 |
The number of effective panicles per unit area | EPPA | - | 104 panicles/ha | - | |
Total number of grains per panicle | TGPP | - | gains/panicle | - | |
Filled grains per panicle | FGPP | - | gains/panicle | - | |
Seed-setting rate | SSR | - | % | - | |
Thousand-grain weight | TGW | - | g | - | |
Plant height | PH | - | cm | - | |
Panicle length | PL | - | cm | - |
Appendix A.2
Variable | Min | 25% | 50% | Mean | 75% | Max | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|
Yield (kg/ha) | 5162.55 | 7792.50 | 8668.58 | 8664.00 | 9544.50 | 12,178.80 | 1290.00 | 0.15 |
Cultivar (Categorical label) | 0 | - | - | - | - | 2174 | - | - |
Lat (° N) | 19.15 | 27.25 | 29.43 | 29.02 | 31.02 | 46.67 | 3.31 | 0.11 |
Lon (° E) | 80.12 | 107.73 | 113.12 | 112.70 | 117.23 | 130.50 | 5.39 | 0.05 |
Elev (m) | 1.00 | 28.20 | 75.60 | 237.43 | 325.00 | 1318.00 | 336.77 | 1.42 |
DOY_Sow | 33 | 92 | 115 | 119.6 | 137 | 207 | 34.7 | 0.3 |
DOY_Hea | 114 | 209 | 224 | 220.5 | 237 | 293 | 28.3 | 0.1 |
VGP (days) | 60 | 87 | 100 | 100.9 | 114 | 149 | 16.0 | 0.2 |
RGP (days) | 16 | 32 | 36 | 36.7 | 41 | 80 | 6.8 | 0.2 |
VGP_TMean (°C) | 12.93 | 21.60 | 24.36 | 24.27 | 26.72 | 31.75 | 2.90 | 0.12 |
VGP_TMax (°C) | 18.44 | 25.77 | 28.42 | 28.24 | 30.46 | 35.73 | 2.83 | 0.10 |
VGP_TMin (°C) | 8.25 | 17.97 | 20.95 | 20.80 | 23.44 | 28.35 | 3.13 | 0.15 |
VGP_TS (°C·d) | 664.65 | 1499.75 | 1637.61 | 1613.38 | 1767.54 | 2419.91 | 235.19 | 0.15 |
VGP_PRE (mm) | 30.55 | 447.87 | 588.62 | 598.02 | 722.02 | 1400.55 | 200.93 | 0.34 |
VGP_DL (h) | 12.61 | 14.04 | 14.30 | 14.26 | 14.54 | 16.20 | 0.41 | 0.03 |
VGP_Rns (MJ·m−2·d−1) | 754.07 | 1287.31 | 1461.71 | 1466.88 | 1634.70 | 2703.49 | 241.41 | 0.16 |
RGP_TMean (°C) | 14.13 | 22.51 | 24.88 | 24.73 | 27.01 | 31.72 | 2.79 | 0.11 |
RGP_TMax (°C) | 17.60 | 26.40 | 28.71 | 28.59 | 30.79 | 37.49 | 2.86 | 0.10 |
RGP_TMin (°C) | 10.33 | 19.20 | 21.63 | 21.43 | 23.73 | 27.89 | 2.83 | 0.13 |
RGP_TS (°C·d) | 243.27 | 524.59 | 583.12 | 586.77 | 642.87 | 1253.94 | 95.20 | 0.16 |
RGP_PRE (mm) | 0.04 | 89.08 | 139.90 | 158.55 | 214.19 | 674.96 | 93.93 | 0.59 |
RGP_RHU (%) | 30.63 | 70.16 | 75.22 | 74.20 | 78.94 | 89.19 | 6.31 | 0.08 |
RGP_DL (h) | 11.83 | 13.08 | 13.46 | 13.48 | 13.97 | 15.44 | 0.66 | 0.05 |
RGP_Rns (MJ·m−2·d−1) | 148.80 | 427.52 | 476.19 | 482.44 | 529.85 | 1062.14 | 82.34 | 0.17 |
HHD (days) | 0 | 0 | 0 | 1.1 | 2 | 16 | 1.6 | 1.5 |
Appendix A.3
Variable Categories Input into the Model | |||||||
---|---|---|---|---|---|---|---|
Variable Importance (%) | All | Loc | Phe | Meteo | Phe + Meteo | Loc + Meteo | Loc + Phe + Meteo |
Cultivar | 8.82 | ||||||
VGP_DL | 8.07 | 14.35 | 9.59 | 11.40 | 8.64 | ||
Elev | 7.65 | 32.37 | 9.87 | 7.85 | |||
VGP_Rns | 6.69 | 12.17 | 8.72 | 9.46 | 7.46 | ||
DOY_Hea | 6.55 | 27.96 | 8.18 | 6.36 | |||
Lat | 5.93 | 43.72 | 7.99 | 6.06 | |||
DOY_Sow | 5.81 | 28.51 | 8.08 | 6.16 | |||
VGP | 5.61 | 24.54 | 6.81 | 6.30 | |||
RGP_DL | 4.44 | 10.05 | 6.01 | 6.88 | 4.78 | ||
Lon | 3.64 | 23.91 | 4.42 | 3.97 | |||
VGP_TMax | 3.62 | 6.54 | 5.06 | 5.19 | 4.29 | ||
VGP_PRE | 3.30 | 5.90 | 4.83 | 4.72 | 3.95 | ||
VGP_TMean | 3.30 | 6.40 | 4.72 | 4.83 | 3.79 | ||
VGP_TMin | 3.21 | 6.42 | 4.67 | 4.66 | 3.65 | ||
RGP_TMin | 3.09 | 5.69 | 4.70 | 4.09 | 3.51 | ||
RGP_RHU | 2.60 | 4.49 | 3.85 | 3.72 | 3.20 | ||
VGP_TS | 2.57 | 5.26 | 3.06 | 4.52 | 2.62 | ||
RGP_TMean | 2.49 | 4.50 | 3.72 | 3.39 | 2.85 | ||
RGP_PRE | 2.48 | 4.32 | 3.62 | 3.59 | 2.97 | ||
RGP | 2.42 | 18.98 | 3.53 | 2.78 | |||
RGP_Rns | 2.41 | 4.81 | 3.48 | 3.63 | 2.71 | ||
RGP_TMax | 2.23 | 3.73 | 3.18 | 3.10 | 2.54 | ||
RGP_TS | 2.09 | 3.55 | 2.62 | 3.27 | 2.34 | ||
HHD | 1.00 | 1.82 | 1.58 | 1.28 | 1.22 |
References
- Global Food and Agriculture Statistics of FAO 2024. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/d784864f-7f28-49d2-903e-6680d09a9d97/content/cd2971en.html (accessed on 19 September 2025).
- Bergeret, P. The Future of Food and Agriculture: Trends and Challenges, 1st ed.; Food and Agriculture Organization of the United Nations: Rome, Italia, 2017; pp. 39–56. [Google Scholar]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, S.R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2020; pp. 437–550. [Google Scholar]
- Zhao, Z.; Wang, E.; Kirkegaard, J.A.; Rebetzke, G.J. Novel Wheat Varieties Facilitate Deep Sowing to Beat the Heat of Changing Climates. Nat. Clim. Change 2022, 12, 291–296. [Google Scholar] [CrossRef]
- Qian, Q.; Guo, L.; Smith, S.M.; Li, J. Breeding High-Yield Superior Quality Hybrid Super Rice by Rational Design. Natl. Sci. Rev. 2016, 3, 283–294. [Google Scholar] [CrossRef]
- Lu, M. Impact of Climate Change on Rice and Adaptation Strategies: A Review. Adv. Res. Res. 2024, 4, 252–262. [Google Scholar] [CrossRef]
- Pan, Y.; Su, Z. A review on the growth simulation of rice during its growth period. J. Zhejiang Univ. Sci. 2011, 2, 434–438. [Google Scholar]
- Atkinson, D.; Porter, J.R. Temperature, Plant Development and Crop Yields. Trends Plant Sci. 1996, 1, 119–124. [Google Scholar] [CrossRef]
- Bloomfield, M.T.; Celestina, C.; Hunt, J.R.; Huth, N.; Zheng, B.; Brown, H.; Zhao, Z.; Wang, E.; Stefanova, K.; Hyles, J.; et al. Vernalisation and Photoperiod Responses of Diverse Wheat Genotypes. Crop Pasture Sci. 2023, 74, 405–422. [Google Scholar] [CrossRef]
- Liu, S.; Baret, F.; Abichou, M.; Manceau, L.; Andrieu, B.; Weiss, M.; Martre, P. Importance of the Description of Light Interception in Crop Growth Models. Plant Physiol. 2021, 186, 977–997. [Google Scholar] [CrossRef]
- Tao, F.; Hayashi, Y.; Zhang, Z.; Sakamoto, T.; Yokozawa, M. Global Warming, Rice Production, and Water Use in China: Developing a Probabilistic Assessment. Agric. For. Meteorol. 2008, 148, 94–110. [Google Scholar] [CrossRef]
- World Bank Group Water in Agriculture: Towards Sustainable Agriculture. Available online: http://documents.worldbank.org/curated/en/875921614166983369 (accessed on 19 September 2025).
- Vergara, B.S.; Chang, T.T. The Flowering Response of the Rice Plant to Photoperiod: A Review of the Literature, 4th ed.; International Rice Research Institute: Manila, Philippines, 1985; pp. 1–26. [Google Scholar]
- Yin, X.; Kropff, M.J.; Horie, T.; Nakagawa, H.; Centeno, H.G.S.; Zhu, D.; Goudriaan, J. A Model for Photothermal Responses of Flowering in Rice I. Model Description and Parameterization. Field Crop Res. 1997, 51, 189–200. [Google Scholar] [CrossRef]
- Awan, M.I.; van Oort, P.A.J.; Bastiaans, L.; van der Putten, P.E.L.; Yin, X.; Meinke, H. A Two-Step Approach to Quantify Photothermal Effects on Pre-Flowering Rice Phenology. Field Crop Res. 2014, 155, 14–22. [Google Scholar] [CrossRef]
- Shimono, H.; Okada, M.; Kanda, E.; Arakawa, I. Low Temperature-Induced Sterility in Rice: Evidence for the Effects of Temperature before Panicle Initiation. Field Crop Res. 2007, 101, 221–231. [Google Scholar] [CrossRef]
- Jagadish, S.; Craufurd, P.; Wheeler, T. High Temperature Stress and Spikelet Fertility in Rice (Oryza sativa L.). J. Exp. Bot. 2007, 58, 1627–1635. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Ling, X.; Huang, J.; Peng, S. Meta-Analysis and Dose-Response Analysis of High Temperature Effects on Rice Yield and Quality. Environ. Exp. Bot. 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Zainuddin, F.; Ismail, M.R.; Hatta, M.A.M.; Ramlee, S.I. Advancement in Modern Breeding and Genomic Approaches to Accelerate Rice Improvement: Speed Breeding Focus. Euphytica 2024, 220, 109. [Google Scholar] [CrossRef]
- Jia, Z. Study on photothermal reaction characteristics of Shanyou63. Cult. Plant. 1989, 16, 49–53. [Google Scholar] [CrossRef]
- Liang, G.; Cai, S. Study on the Critical Day Length of Panicle Emergence in Rice Varieties. J. South China Agric. Univ. 1980, 1, 54–66. [Google Scholar]
- Summerfield, R.J.; Collinson, S.T.; Ellis, R.H.; Roberts, E.H.; De Vries, F.W.T.P. Photothermal Responses of Flowering in Rice (Oryza sativa). Ann. Bot. 1992, 69, 101–112. [Google Scholar] [CrossRef]
- Nandram, B.; Berg, E.; Barboza, W. A Hierarchical Bayesian Model for Forecasting State-Level Corn Yield. Environ. Ecol. Stat. 2014, 21, 507–530. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asseng, S. Comparing Estimates of Climate Change Impacts from Proce-ssbased and Statistical Crop Models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Mathieu, J.A.; Aires, F. Assessment of the Agro-Climatic Indices to Improve Crop Yield Forecasting. Agric. For. Meteorol. 2018, 253, 15–30. [Google Scholar] [CrossRef]
- Sulṭānī, A.; Sinclair, T.R. Modeling Physiology of Crop Development, Growth and Yield; CABI: London, UK, 2012; pp. 154–196. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT Cropping System Model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Basso, B.; Liu, L.; Ritchie, J.T. A Comprehensive Review of the CERES-Wheat, -Maize and -Rice Models’ Performances. Adv. Agron. 2016, 136, 27–132. [Google Scholar]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z. An Overview of APSIM, a Model Designed for Farming Systems Simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Kropff, M.J.; Tuong, T.P.; Wopereis, M.C.S.; ten Berge, H.F.M.; van Laar, H.H. ORYZA2000: Modeling Lowland Rice; IRRI: Manila, Philippines, 2001; pp. 25–76. [Google Scholar]
- Zhao, M.; Peng, C.; Xiang, W.; Deng, X.; Tian, D.; Zhou, X.; Yu, G.; He, H.; Zhao, Z. Plant Phenological Modeling and Its Application in Global Climate Change Research: Overview and Future Challenges. Environ. Rev. 2013, 21, 1–14. [Google Scholar] [CrossRef]
- Silva, J.V.; Giller, K.E. Grand Challenges for the 21st Century: What Crop Models Can and Can’t (yet) Do. J. Agric. Sci. 2020, 158, 794–805. [Google Scholar] [CrossRef]
- Betts, R.A. Integrated Approaches to Climate–Crop Modelling: Needs and Challenges. Philos. Trans. R. Soc. B Int. J. Biol. Sci. 2005, 360, 2049–2065. [Google Scholar] [CrossRef]
- Challinor, A.J.; Ewert, F.; Arnold, S.; Simelton, E.; Fraser, E. Crops and Climate Change: Progress, Trends, and Challenges in Simulating Impacts and Informing Adaptation. J. Exp. Bot. 2009, 60, 2775–2789. [Google Scholar] [CrossRef]
- Yang, S.; Hu, X. China Rice New Cultivar Trials (2007–2018); China Agricultural Science and Technology Press: Beijing, China, 2019. [Google Scholar]
- Keisling, T.C. Calculation of the Length of Day. Agron. J. 1982, 74, 758–759. [Google Scholar] [CrossRef]
- Parihar, A.K.; Hazra, K.K.; Lamichaney, A.; Gupta, D.S.; Kumar, J.; Mishra, R.K.; Singh, A.K.; Bhartiya, A.; Sofi, P.A.; Lone, A.A.; et al. Multi-Location Evaluation of Field Pea in Indian Climates: Eco-Phenological Dynamics, Crop-Environment Relationships, and Identification of Mega-Environments. Int. J. Biometeorol. 2024, 68, 1973–1987. [Google Scholar] [CrossRef] [PubMed]
- Brinkhoff, J.; McGavin, S.L.; Dunn, T.; Dunn, B.W. Predicting Rice Phenology and Optimal Sowing Dates in Temperate Regions Using Machine Learning. Agron. J. 2024, 116, 871–885. [Google Scholar] [CrossRef]
- Wang, D.; Li, X.; Ye, C.; Xu, C.; Chen, S.; Chu, G.; Zhang, Y.; Zhang, X. Geographic Variation in the Yield Formation of Single-Season High-Yielding Hybrid Rice in Southern China. J. Integr. Agric. 2021, 20, 438–449. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhang, J.; Tao, F.; Chen, Y.; Ding, H. The Effect of Terrain Factors on Rice Production: A Case Study in Hunan Province. J. Geogr. Sci. 2019, 29, 287–305. [Google Scholar] [CrossRef]
- Baloch, N.; Liu, W.; Hou, P.; Ming, B.; Xie, R.; Wang, K.; Liu, Y.; Li, S. Effect of Latitude on Maize Kernel Weight and Grain Yield across China. Agron. J. 2021, 113, 1172–1182. [Google Scholar] [CrossRef]
- Bustos-Korts, D.; Malosetti, M.; Chenu, K.; Boer, P.M.; Chapman, S.; Zheng, B.; van Eeuwijk, A.F. From QTLs to Adaptation Landscapes: Using Genotype-To-Phenotype Models to Characterize G×E Over Time. Front. Plant Sci. 2019, 10, 1540. [Google Scholar] [CrossRef]
- Tan, J.; Zhao, G.; Tian, Q.; Zheng, L.; Kang, X.; He, Q.; Shi, Y.; Chen, B.; Wu, D.; Yao, N.; et al. Overcoming Mechanistic Limitations of Process-Based Phenological Models: A Data Clustering Method for Large-Scale Applications. Agric. For. Meteorol. 2024, 356, 110167. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Zhao, J.; Wang, C.; Feng, Y.; Zhao, M.; Shi, X.; Chen, F.; Chu, Q. Planting Date Adjustment and Varietal Replacement Can Effectively Adapt to Climate Warming in China Southern Rice Area. Agr. Syst. 2025, 226, 104330. [Google Scholar] [CrossRef]
- Ma, H.; Jia, Y.; Wang, W.; Wang, J.; Zou, D.; Wang, J.; Gong, W.; Han, Y.; Dang, Y.; Wang, J.; et al. Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice. Agron. J. 2025, 15, 417. [Google Scholar] [CrossRef]
- Adnan, M.R.; Wilujeng, E.D.I.; Aisyah, M.D.N.; Alif, T.; Galushasti, A. Preliminary Agronomic Characterization of Japonica Rice Carrying a Tiller Number Mutation under Greenhouse Conditions. Dysona Appl. Sci. 2025, 6, 291–299. [Google Scholar] [CrossRef]
- Miller, B.C.; Hill, J.E.; Roberts, S.R. Plant Population Effects on Growth and Yield in Water-Seeded Rice. Agron. J. 1991, 83, 291–297. [Google Scholar] [CrossRef]
- Gravois, K.A.; Helms, R.S. Path Analysis of Rice Yield and Yield Components as Affected by Seeding Rate. Agron. J. 1992, 84, 1–4. [Google Scholar] [CrossRef]
- Ottis, B.V.; Talbert, R.E. Rice Yield Components as Affected by Cultivar and Seeding Rate. Agron. J. 2005, 97, 1622–1625. [Google Scholar] [CrossRef]
- Fagade, S.O.; De Datta, S.K. Leaf Area Index, Tillering Capacity, and Grain Yield of Tropical Rice as Affected by Plant Density and Nitrogen Level1. Agron. J. 1971, 63, 503–506. [Google Scholar] [CrossRef]
- Wu, G.; Wilson, L.T.; McClung, A.M. Contribution of Rice Tillers to Dry Matter Accumulation and Yield. Agron. J. 1998, 90, 317–323. [Google Scholar] [CrossRef]
- Ma, J.; Ma, W.; Ming, D.; Yang, S.; Zhu, Q. Characteristics of Rice Plant with Heavy Panicle. Agric. Sci. China 2006, 5, 911–918. [Google Scholar] [CrossRef]
- Meng, T.; Wei, H.; Li, C.; Dai, Q.; Xu, K.; Huo, Z.; Wei, H.; Guo, B.; Zhnag, H. Morphological and Physiological Traits of Large-Panicle Rice Varieties with High Filled-Grain Percentage. J. Integr. Agric. 2016, 15, 1751–1762. [Google Scholar] [CrossRef]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate Prediction of Sugarcane Yield Using a Random Forest Algorithm. Agron. Sustain. Dev. 2016, 36, 1–27. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random Forests for Global and Regional Crop Yield Predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S. One-Hundred Years’ Development and Prospect of Rice Breeding in China. China Rice Sci. 2021, 27, 1–6. [Google Scholar] [CrossRef]
- Xu, H.; Yin, H.; Liu, Y.; Wang, B.; Song, H.; Zheng, Z.; Zhang, X.; Jiang, L.; Wang, S. Regional Winter Wheat Yield Prediction and Variable Importance Analysis Based on Multisource Environmental Data. Agron. J. 2024, 14, 1623. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, L.; Yang, X. Identifying Spatial Determinants of Rice Yields in Main Producing Areas of China Using Geospatial Machine Learning. ISPRS Int. J. Geo-Inf. 2024, 13, 76. [Google Scholar] [CrossRef]
- S, A.; Debnath, M.K.; R, K. Statistical and Machine Learning Models for Location-Specific Crop Yield Prediction Using Weather Indices. Int. J. Biometeorol. 2024, 68, 2453–2475. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tao, F. Rice Yield Response to Climate Variability Diverges Strongly among Climate Zones across China and Is Sensitive to Trait Variation. Field Crop Res. 2023, 301, 109034. [Google Scholar] [CrossRef]
- Devi, S.; Sharma, G.D. Blast Disease in Rice: A Review. AUJSAT Biomed. Environ. Sci. 2010, 6, 144–154. [Google Scholar] [CrossRef]
- Lee, J.; Mast, J.C.; Dessler, A.E. The Effect of Forced Change and Unforced Variability in Heat Waves, Temperature Extremes, and Associated Population Risk in a CO2-Warmed World. Atmos. Chem. Phys. 2021, 21, 11889–11904. [Google Scholar] [CrossRef]
EPPA | TGPP | FGPP | SSR | TGW | PH | PL | |
---|---|---|---|---|---|---|---|
VGP_TMean | 0.16 | 0.02 | 0.00 | −0.07 | −0.25 | 0.17 | 0.01 |
VGP_TMax | 0.17 | 0.01 | −0.02 | −0.08 | −0.24 | 0.16 | 0.01 |
VGP_TMin | 0.14 | 0.03 | 0.00 | −0.08 | −0.26 | 0.14 | 0.00 |
VGP_TS | −0.21 | 0.36 | 0.31 | −0.11 | 0.07 | 0.47 | 0.33 |
VGP_PRE | −0.24 | 0.18 | 0.19 | 0.01 | 0.13 | 0.11 | 0.14 |
VGP_RHU | −0.07 | 0.05 | 0.07 | 0.04 | −0.09 | −0.03 | −0.02 |
VGP_DL | −0.18 | 0.30 | 0.34 | 0.08 | 0.06 | 0.50 | 0.26 |
VGP_Rns | −0.26 | 0.31 | 0.28 | −0.04 | 0.32 | 0.35 | 0.34 |
RGP_TMean | - | - | −0.02 | 0.12 | −0.06 | 0.08 | 0.07 |
RGP_TMax | - | - | −0.01 | 0.12 | −0.06 | 0.09 | 0.08 |
RGP_TMin | - | - | −0.04 | 0.10 | −0.08 | 0.06 | 0.05 |
RGP_TS | - | - | 0.32 | 0.11 | −0.10 | 0.30 | 0.17 |
RGP_PRE | - | - | 0.03 | −0.07 | 0.05 | −0.02 | 0.02 |
RGP_RHU | - | - | −0.04 | −0.07 | 0.07 | −0.02 | 0.00 |
RGP_DL | - | - | −0.06 | 0.14 | 0.08 | −0.03 | 0.00 |
RGP_Rns | - | - | 0.26 | 0.16 | 0.04 | 0.15 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Jiang, L.; Wei, Y.; Yao, N.; Zhao, G.; Yu, Q. Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction. Agronomy 2025, 15, 2273. https://doi.org/10.3390/agronomy15102273
Tan J, Jiang L, Wei Y, Yao N, Zhao G, Yu Q. Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction. Agronomy. 2025; 15(10):2273. https://doi.org/10.3390/agronomy15102273
Chicago/Turabian StyleTan, Jiaojiao, Lu Jiang, Yingnan Wei, Ning Yao, Gang Zhao, and Qiang Yu. 2025. "Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction" Agronomy 15, no. 10: 2273. https://doi.org/10.3390/agronomy15102273
APA StyleTan, J., Jiang, L., Wei, Y., Yao, N., Zhao, G., & Yu, Q. (2025). Optimized Random Forest Framework for Integrating Cultivar, Environmental, and Phenological Interactions in Crop Yield Prediction. Agronomy, 15(10), 2273. https://doi.org/10.3390/agronomy15102273