Speed Breeding with Early Harvest Shortens the Growth Cycle of Barley
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Growing Conditions and Planting
2.4. Phenological and Phenotypic Evaluation
2.5. Statistical Models and Analysis
2.5.1. Phenology and Plant Height Traits
2.5.2. Yield Components and Germination Traits
3. Results
3.1. Growing Stages and Plant Height Comparison
3.2. Effect of Early Harvest on Seed Number
3.3. Effect of Early Harvest on Seed Germination and Viability
4. Discussion
4.1. Cycle Length Under Speed Breeding
4.2. Early Harvest for Enhanced Efficiency
4.3. Germination and Seed Viability at Premature Harvest
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- FAOSTAT. Cereals Balance Data 2023. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 29 August 2025).
- Geng, L.; Li, M.; Zhang, G.; Ye, L. Barley: A Potential Cereal for Producing Healthy and Functional Foods. Food Qual. Saf. 2022, 6, fyac012. [Google Scholar] [CrossRef]
- Meints, B.; Hayes, P.M. Breeding Naked Barley for Food, Feed, and Malt. In Plant Breeding Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 95–119. ISBN 978-1-119-61680-1. [Google Scholar]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A Meta-Analysis of Projected Global Food Demand and Population at Risk of Hunger for the Period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Lenaerts, B.; Collard, B.C.Y.; Demont, M. Review: Improving Global Food Security through Accelerated Plant Breeding. Plant Sci. 2019, 287, 110207. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A. Plant Abiotic Stress Challenges from the Changing Environment. Front. Plant Sci. 2016, 7, 1123. [Google Scholar] [CrossRef] [PubMed]
- Jorasch, P. The Global Need for Plant Breeding Innovation. Transgenic Res. 2019, 28, 81–86. [Google Scholar] [CrossRef]
- Baker, B.P.; Meints, B.M.; Hayes, P.M. Organic Barley Producers’ Desired Qualities for Crop Improvement. Org. Agric. 2020, 10, 35–42. [Google Scholar] [CrossRef]
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for Feeding the World More Sustainably with Organic Agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of Organic Farming for Achieving Sustainability in Agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Cooper, M.; Voss-Fels, K.P.; Messina, C.D.; Tang, T.; Hammer, G.L. Tackling G × E × M Interactions to Close On-Farm Yield-Gaps: Creating Novel Pathways for Crop Improvement by Predicting Contributions of Genetics and Management to Crop Productivity. Theor. Appl. Genet. 2021, 134, 1625–1644. [Google Scholar] [CrossRef]
- Cooper, M.; Messina, C.D.; Tang, T.; Gho, C.; Powell, O.M.; Podlich, D.W.; Technow, F.; Hammer, G.L. Predicting Genotype × Environment × Management (G × E × M) Interactions for the Design of Crop Improvement Strategies. In Plant Breeding Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2022; pp. 467–585. ISBN 978-1-119-87415-7. [Google Scholar]
- Priyadarshan, P.M. Breeding Self-Pollinated Crops. In PLANT BREEDING: Classical to Modern; Priyadarshan, P.M., Ed.; Springer: Singapore, 2019; pp. 223–241. ISBN 978-981-13-7095-3. [Google Scholar]
- Acquaah, G. Principles of Plant Genetics and Breeding, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012; ISBN 978-0470664759. [Google Scholar]
- Ohnoutkova, L.; Vlcko, T.; Ayalew, M. Barley Anther Culture. In Barley: Methods and Protocols; Harwood, W.A., Ed.; Springer: New York, NY, USA, 2019; pp. 37–52. ISBN 978-1-4939-8944-7. [Google Scholar]
- Castillo, A.M.; Vallés, M.P.; Cistué, L. Comparison of Anther and Isolated Microspore Cultures in Barley. Effects of Culture Density and Regeneration Medium. Euphytica 2000, 113, 1–8. [Google Scholar] [CrossRef]
- Humphreys, D.G.; Knox, R.E. Doubled Haploid Breeding in Cereals. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 241–290. ISBN 978-3-319-22521-0. [Google Scholar]
- Zheng, Z.; Wang, H.B.; Chen, G.D.; Yan, G.J.; Liu, C.J. A Procedure Allowing up to Eight Generations of Wheat and Nine Generations of Barley per Annum. Euphytica 2013, 191, 311–316. [Google Scholar] [CrossRef]
- Shen, X.; Gmitter, F.G.; Grosser, J.W. Immature Embryo Rescue and Culture. In Plant Embryo Culture; Thorpe, T.A., Yeung, E.C., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 710, pp. 75–92. ISBN 978-1-61737-987-1. [Google Scholar]
- Rogo, U.; Fambrini, M.; Pugliesi, C. Embryo Rescue in Plant Breeding. Plants 2023, 12, 3106. [Google Scholar] [CrossRef] [PubMed]
- Powell, W.; Caligari, P.D.S.; Thomas, W.T.B. Comparison of Spring Barley Lines Produced by Single Seed Descent, Pedigree Inbreeding and Doubled Haploidy. Plant Breed. 1986, 97, 138–146. [Google Scholar] [CrossRef]
- Surma, M.; Adamski, T.; Kaczmarek, Z.; Czajka, S. Phenotypic Distribution of Barley SSD Lines and Doubled Haploids Derived from F1 and F2 Hybrids. Euphytica 2006, 149, 19–25. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Asyraf Md Hatta, M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed Breeding Is a Powerful Tool to Accelerate Crop Research and Breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef]
- Hickey, L.T.; Dieters, M.J.; DeLacy, I.H.; Kravchuk, O.Y.; Mares, D.J.; Banks, P.M. Grain Dormancy in Fixed Lines of White-Grained Wheat (Triticum aestivum L.) Grown under Controlled Environmental Conditions. Euphytica 2009, 168, 303–310. [Google Scholar] [CrossRef]
- Bhatta, M.; Sandro, P.; Smith, M.R.; Delaney, O.; Voss-Fels, K.P.; Gutierrez, L.; Hickey, L.T. Need for Speed: Manipulating Plant Growth to Accelerate Breeding Cycles. Curr. Opin. Plant Biol. 2021, 60, 101986. [Google Scholar] [CrossRef]
- Samantara, K.; Bohra, A.; Mohapatra, S.R.; Prihatini, R.; Asibe, F.; Singh, L.; Reyes, V.P.; Tiwari, A.; Maurya, A.K.; Croser, J.S.; et al. Breeding More Crops in Less Time: A Perspective on Speed Breeding. Biology 2022, 11, 275. [Google Scholar] [CrossRef]
- Marenkova, A.G.; Blinkov, A.O.; Radzeniece, S.; Kocheshkova, A.A.; Karlov, G.I.; Lavygina, V.A.; Patrushev, M.V.; Divashuk, M.G. Testing and Modification of the Protocol for Accelerated Growth of Malting Barley under Speed Breeding Conditions. Nanotechnol. Russ. 2024, 19, 808–814. [Google Scholar] [CrossRef]
- Gaoua, O.; Arslan, M.; Obedgiu, S. Speed Breeding Advancements in Safflower (Carthamus tinctorius L.): A Simplified and Efficient Approach for Accelerating Breeding Programs. Mol. Breed. 2025, 45, 13. [Google Scholar] [CrossRef]
- Wang, G.; Sun, Z.; Yang, J.; Ma, Q.; Wang, X.; Ke, H.; Huang, X.; Zhang, L.; Wang, G.; Gu, Q.; et al. The Speed Breeding Technology of Five Generations per Year in Cotton. Theor. Appl. Genet. 2025, 138, 79. [Google Scholar] [CrossRef]
- González-Barrios, P.; Bhatta, M.; Halley, M.; Sandro, P.; Gutiérrez, L. Speed Breeding and Early Panicle Harvest Accelerates Oat (Avena sativa L.) Breeding Cycles. Crop Sci. 2021, 61, 320–330. [Google Scholar] [CrossRef]
- Hill, C.B.; Li, C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. Front. Plant Sci. 2016, 7, 1906. [Google Scholar] [CrossRef] [PubMed]
- Aiqing, S.; Somayanda, I.; Sebastian, S.V.; Singh, K.; Gill, K.; Prasad, P.V.V.; Jagadish, S.V.K. Heat Stress during Flowering Affects Time of Day of Flowering, Seed Set, and Grain Quality in Spring Wheat. Crop Sci. 2018, 58, 380–392. [Google Scholar] [CrossRef]
- Haas, M.; Schreiber, M.; Mascher, M. Domestication and Crop Evolution of Wheat and Barley: Genes, Genomics, and Future Directions. J. Integr. Plant Biol. 2019, 61, 204–225. [Google Scholar] [CrossRef]
- Kirby, E.J.M.; Eisenberg, B.E. Some Effects of Photoperiod on Barley. J. Exp. Bot. 1966, 17, 204–213. [Google Scholar] [CrossRef]
- Takahashi, R.; Yasuda, S. Varietal Differences in Responses to Photoperiod and Temperature in Barley. Berichte Des. Ohara Inst. Für Landwirtsch. Biol. 1960, 11, 365–384. [Google Scholar]
- Ochagavía, H.; Kiss, T.; Karsai, I.; Casas, A.M.; Igartua, E. Responses of Barley to High Ambient Temperature Are Modulated by Vernalization. Front. Plant Sci. 2022, 12, 776982. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Sharma, R.; Pasam, R.K.; Graner, A.; Kilian, B.; Schnurbusch, T. Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley. PLoS ONE 2014, 9, e113120. [Google Scholar] [CrossRef]
- Göransson, M.; Hallsson, J.H.; Lillemo, M.; Orabi, J.; Backes, G.; Jahoor, A.; Hermannsson, J.; Christerson, T.; Tuvesson, S.; Gertsson, B.; et al. Identification of Ideal Allele Combinations for the Adaptation of Spring Barley to Northern Latitudes. Front. Plant Sci. 2019, 10, 542. [Google Scholar] [CrossRef]
- Sreenivasulu, N.; Borisjuk, L.; Junker, B.H.; Mock, H.-P.; Rolletschek, H.; Seiffert, U.; Weschke, W.; Wobus, U. Barley Grain Development. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 281, pp. 49–89. ISBN 978-0-12-381258-2. [Google Scholar]
- Ghosh, S.; Watson, A.; Gonzalez-Navarro, O.E.; Ramirez-Gonzalez, R.H.; Yanes, L.; Mendoza-Suárez, M.; Simmonds, J.; Wells, R.; Rayner, T.; Green, P.; et al. Speed Breeding in Growth Chambers and Glasshouses for Crop Breeding and Model Plant Research. Nat. Protoc. 2018, 13, 2944–2963. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Beales, J.; Faure, S.; Dunford, R.P.; Laurie, D.A. The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2005, 310, 1031–1034. [Google Scholar] [CrossRef]
- Maurer, A.; Draba, V.; Jiang, Y.; Schnaithmann, F.; Sharma, R.; Schumann, E.; Kilian, B.; Reif, J.C.; Pillen, K. Modelling the Genetic Architecture of Flowering Time Control in Barley through Nested Association Mapping. BMC Genom. 2015, 16, 290. [Google Scholar] [CrossRef]
- Walia, H.; Wilson, C.; Condamine, P.; Ismail, A.M.; Xu, J.; Cui, X.; Close, T.J. Array-Based Genotyping and Expression Analysis of Barley Cv. Maythorpe and Golden Promise. BMC Genom. 2007, 8, 87. [Google Scholar] [CrossRef]
- Massman, C.; Meints, B.; Hernandez, J.; Kunze, K.; Hayes, P.M.; Sorrells, M.E.; Smith, K.P.; Dawson, J.C.; Gutierrez, L. Genetic Characterization of Agronomic Traits and Grain Threshability for Organic Naked Barley in the Northern United States. Crop Sci. 2022, 62, 690–703. [Google Scholar] [CrossRef]
- Hu, H.; Wang, P.; Angessa, T.T.; Zhang, X.-Q.; Chalmers, K.J.; Zhou, G.; Hill, C.B.; Jia, Y.; Simpson, C.; Fuller, J.; et al. Genomic Signatures of Barley Breeding for Environmental Adaptation to the New Continents. Plant Biotechnol. J. 2023, 21, 1719–1721. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A Decimal Code for the Growth Stages of Cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R.E. Estimated Marginal Means, Aka Least-Square Means; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef]
- Parrado, J.D.; Savin, R.; Slafer, G.A. Photoperiod Sensitivity of Ppd-H1 and Ppd-H1 Isogenic Lines of a Spring Barley Cultivar: Exploring Extreme Photoperiods. J. Exp. Bot. 2023, 74, 6608–6618. [Google Scholar] [CrossRef]
- Rossi, N.; Powell, W.; Mackay, I.J.; Hickey, L.; Maurer, A.; Pillen, K.; Halliday, K.; Sharma, R. Investigating the Genetic Control of Plant Development in Spring Barley under Speed Breeding Conditions. Theor. Appl. Genet. 2024, 137, 115. [Google Scholar] [CrossRef]
- Cockram, J.; Jones, H.; Leigh, F.J.; O’Sullivan, D.; Powell, W.; Laurie, D.A.; Greenland, A.J. Control of Flowering Time in Temperate Cereals: Genes, Domestication, and Sustainable Productivity. J. Exp. Bot. 2007, 58, 1231–1244. [Google Scholar] [CrossRef]
- Jones, H.; Leigh, F.J.; Mackay, I.; Bower, M.A.; Smith, L.M.J.; Charles, M.P.; Jones, G.; Jones, M.K.; Brown, T.A.; Powell, W. Population-Based Resequencing Reveals That the Flowering Time Adaptation of Cultivated Barley Originated East of the Fertile Crescent. Mol. Biol. Evol. 2008, 25, 2211–2219. [Google Scholar] [CrossRef]
- Hemming, M.N.; Walford, S.A.; Fieg, S.; Dennis, E.S.; Trevaskis, B. Identification of High-Temperature-Responsive Genes in Cereals. Plant Physiol. 2012, 158, 1439–1450. [Google Scholar] [CrossRef]
- Porker, K.; Coventry, S.; Fettell, N.; Cozzolino, D.; Eglinton, J. Using a Novel PLS Approach for Envirotyping of Barley Phenology and Adaptation. Field Crops Res. 2020, 246, 107697. [Google Scholar] [CrossRef]
- Gol, L.; Tomé, F.; von Korff, M. Floral Transitions in Wheat and Barley: Interactions between Photoperiod, Abiotic Stresses, and Nutrient Status. J. Exp. Bot. 2017, 68, 1399–1410. [Google Scholar] [CrossRef]
- García, G.A.; Serrago, R.A.; Dreccer, M.F.; Miralles, D.J. Post-Anthesis Warm Nights Reduce Grain Weight in Field-Grown Wheat and Barley. Field Crops Res. 2016, 195, 50–59. [Google Scholar] [CrossRef]
- Digel, B.; Pankin, A.; von Korff, M. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley. Plant Cell 2015, 27, 2318–2334. [Google Scholar] [CrossRef]
- Wan, Y.; Poole, R.L.; Huttly, A.K.; Toscano-Underwood, C.; Feeney, K.; Welham, S.; Gooding, M.J.; Mills, C.; Edwards, K.J.; Shewry, P.R.; et al. Transcriptome Analysis of Grain Development in Hexaploid Wheat. BMC Genom. 2008, 9, 121. [Google Scholar] [CrossRef]
- Acquaah, G. Conventional Plant Breeding to Modern Plant Breeding: Evolution, Achievements, and Limitations. In Plant Molecular Breeding in Genomics Era: Concepts and Tools; Al-Khayri, J.M., Ingle, K.P., Jain, S.M., Penna, S., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 1–42. ISBN 978-3-031-68586-6. [Google Scholar]
- Varshney, R.K.; Roorkiwal, M.; Sorrells, M.E. (Eds.) Genomic Selection for Crop Improvement; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-63168-4. [Google Scholar]
- Crossa, J.; Fritsche-Neto, R.; Montesinos-Lopez, O.A.; Costa-Neto, G.; Dreisigacker, S.; Montesinos-Lopez, A.; Bentley, A.R. The Modern Plant Breeding Triangle: Optimizing the Use of Genomics, Phenomics, and Enviromics Data. Front. Plant Sci. 2021, 12, 651480. [Google Scholar] [CrossRef]
- Berro, I.; Lado, B.; Nalin, R.S.; Quincke, M.; Gutiérrez, L. Training Population Optimization for Genomic Selection. Plant Genome 2019, 12, 1–14. [Google Scholar] [CrossRef]
- Berro, I.; Varela, J.; Gutiérrez, L. An Image-Based Methodology to Evaluate Oat Panicle Architecture. Crop Sci. 2023, 63, 648–661. [Google Scholar] [CrossRef]
- Hoefler, R.; González-Barrios, P.; Bhatta, M.; Nunes, J.A.R.; Berro, I.; Nalin, R.S.; Borges, A.; Covarrubias, E.; Diaz-Garcia, L.; Quincke, M.; et al. Do Spatial Designs Outperform Classic Experimental Designs? J. Agric. Biol. Environ. Stat. 2020, 25, 523–552. [Google Scholar] [CrossRef]
- Kunze, K.H.; Meints, B.; Massman, C.; Gutiérrez, L.; Hayes, P.M.; Smith, K.P.; Bergstrom, G.C.; Sorrells, M.E. Genome-Wide Association of an Organic Naked Barley Diversity Panel Identified Quantitative Trait Loci for Disease Resistance. Plant Genome 2024, 17, e20530. [Google Scholar] [CrossRef]
- Kunze, K.H.; Meints, B.; Massman, C.; Gutiérrez, L.; Hayes, P.M.; Smith, K.P.; Sorrells, M.E. Genotype × Environment Interactions of Organic Winter Naked Barley for Agronomic, Disease, and Grain Quality Traits. Crop Sci. 2024, 64, 678–696. [Google Scholar] [CrossRef]
- Massman, C.; Meints, B.; Hernandez, J.; Kunze, K.; Smith, K.P.; Sorrells, M.E.; Hayes, P.M.; Gutierrez, L. Genomic Prediction of Threshability in Naked Barley. Crop Sci. 2023, 63, 674–689. [Google Scholar] [CrossRef]
- Neyhart, J.; Silverstein, K.A.T.; Smith, K.P. Accurate Predictions of Barley Phenotypes Using Genomewide Markers and Environmental Covariates. Crop Sci. 2022, 62, 1821–1833. [Google Scholar] [CrossRef]
- Hickey, L.T.; Germán, S.E.; Pereyra, S.A.; Diaz, J.E.; Ziems, L.A.; Fowler, R.A.; Platz, G.J.; Franckowiak, J.D.; Dieters, M.J. Speed Breeding for Multiple Disease Resistance in Barley. Euphytica 2017, 213, 64. [Google Scholar] [CrossRef]
- Nannuru, V.K.R.; Dieseth, J.A.; Lillemo, M.; Meuwissen, T.H.E. Evaluating Genomic Selection and Speed Breeding for Fusarium Head Blight Resistance in Wheat Using Stochastic Simulations. Mol. Breed. 2025, 45, 14. [Google Scholar] [CrossRef] [PubMed]
- Bhatta, M.; Gutierrez, L.; Cammarota, L.; Cardozo, F.; Germán, S.; Gómez-Guerrero, B.; Pardo, M.F.; Lanaro, V.; Sayas, M.; Castro, A.J. Multi-Trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and Malting Quality Traits in Barley (Hordeum vulgare L.). G3 Genes Genomes Genet. 2020, 10, 1113–1124. [Google Scholar] [CrossRef]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate Change Challenges Plant Breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopinathan, G.; Meints, B.; Sandro, P.; Gutiérrez, L. Speed Breeding with Early Harvest Shortens the Growth Cycle of Barley. Agronomy 2025, 15, 2275. https://doi.org/10.3390/agronomy15102275
Gopinathan G, Meints B, Sandro P, Gutiérrez L. Speed Breeding with Early Harvest Shortens the Growth Cycle of Barley. Agronomy. 2025; 15(10):2275. https://doi.org/10.3390/agronomy15102275
Chicago/Turabian StyleGopinathan, Gopika, Brigid Meints, Pablo Sandro, and Lucia Gutiérrez. 2025. "Speed Breeding with Early Harvest Shortens the Growth Cycle of Barley" Agronomy 15, no. 10: 2275. https://doi.org/10.3390/agronomy15102275
APA StyleGopinathan, G., Meints, B., Sandro, P., & Gutiérrez, L. (2025). Speed Breeding with Early Harvest Shortens the Growth Cycle of Barley. Agronomy, 15(10), 2275. https://doi.org/10.3390/agronomy15102275