Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems
Abstract
1. Introduction
2. Methodology
3. Agrivoltaic Production
3.1. Current Technologies and Applications
3.2. Environmental, Economic, and Social Benefits of AV Systems
3.3. Agricultural and Energy Yields
3.4. Challenges and Limitations
- Political: political instability and likelihood of collapse within a short period; bribery and corruption; lack of political support (i.e., disinterest from public institutions); regulatory barriers such as high taxes or legislation penalising the inclusion of PV installations in agricultural fields; uncertainty (political and legislative); and a bureaucracy characterised by complex approval processes [87,91].
- Economic: limited availability of market data for the products generated; lack of local capacity (and market) structures and dependence on imports (e.g., for spare parts); restrictive monopoly position of national energy suppliers; high initial investment; lack of financial resources and limited access to finance; long payback period; and financial insecurity (caused by weather, volatility of prices, etc.) [89,91,92].
- Social: lack of social acceptance associated, for example, with food security; reluctance to invest; complexity of coordination and planning processes; lack of knowledge and education; relationships marked by conflicts of interest; lack of inclusion and participatory schemes; historical inequality; previous negative experiences; adaptation to local practices; limited local stakeholder network; insufficient commitment; and individual opportunism [15,91,92].
- Environmental: direct or indirect damage to soil/crops and reduced agricultural profit [33].
3.5. Policies, Regulatory Framework, and Incentive Programmes
- SDG2. Zero hunger, boosting food generation in the face of the challenges of climate change and water scarcity;
- SDG3. Health and well-being, expanding food production while maintaining nutritional quality (taking into account secondary metabolites);
- SDG7. Affordable and clean energy, expanding renewable energy with little or no reduction in arable land use;
- SDG9. Industry, innovation and infrastructure, driving creative solutions that merge energy generation with agriculture, using technologies that enhance the services provided by agroecosystems;
- SDG12. Responsible production and consumption, simultaneously increasing energy and agricultural production, while minimising land degradation and water consumption;
- And SDG13. Climate action, reducing CO2 emissions resulting from human activities, including those associated with agriculture [54].
3.6. AV Systems around the World
4. Discussion
4.1. Synthesis of Findings
4.2. Knowledge Gaps and Future Areas to Explore
5. Conclusions
Supplementary Materials
Funding
Declaration of generative AI and AI-assisted technologies in the writing process
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- International Energy Agency. Outlook for Electricity–World Energy Outlook–Analysis; IEA: Paris, France, 2022. [Google Scholar]
- Kazak, T. European Green Deal. Yearb. Law. Dep. 2022, 9, 304–315. [Google Scholar] [CrossRef]
- Ossewaarde, M.; Ossewaarde-Lowtoo, R. The EU’s Green Deal: A Third Alternative to Green Growth and Degrowth? Sustainability 2020, 12, 9825. [Google Scholar] [CrossRef]
- European Commission. Factsheet: Revision of the EU Electricity Market Design; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Krexner, T.; Bauer, A.; Gronauer, A.; Mikovits, C.; Schmidt, J.; Kral, I. Environmental Life Cycle Assessment of a Stilted and Vertical Bifacial Crop-Based Agrivoltaic Multi Land-Use System and Comparison with a Mono Land-Use of Agricultural Land. Renew. Sustain. Energy Rev. 2024, 196, 114321. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; de Castro, C.; Arto, I. Assessing Vulnerabilities and Limits in the Transition to Renewable Energies: Land Requirements under 100% Solar Energy Scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef]
- Hermoso, V.; Bota, G.; Brotons, L.; Morán-Ordóñez, A. Addressing the Challenge of Photovoltaic Growth: Integrating Multiple Objectives towards Sustainable Green Energy Development. Land. Use Policy 2023, 128, 106592. [Google Scholar] [CrossRef]
- Enserink, M.; Van Etteger, R.; Van den Brink, A.; Stremke, S. To Support or Oppose Renewable Energy Projects? A Systematic Literature Review on the Factors Influencing Landscape Design and Social Acceptance. Energy Res. Soc. Sci. 2022, 91, 102740. [Google Scholar] [CrossRef]
- Roddis, P.; Roelich, K.; Tran, K.; Carver, S.; Dallimer, M.; Ziv, G. What Shapes Community Acceptance of Large-Scale Solar Farms? A Case Study of the UK’s First ‘Nationally Significant’ Solar Farm. Sol. Energy 2020, 209, 235–244. [Google Scholar] [CrossRef]
- DIN SPEC 91434:2021-05; Agri-Photovoltaic Systems-Requirements for Primary Agricultural Use. Institute for Standardization: Berlin, Germany, 2022.
- Pascaris, A.S.; Schelly, C.; Rouleau, M.; Pearce, J.M. Do Agrivoltaics Improve Public Support for Solar? A Survey on Perceptions, Preferences, and Priorities. Green. Technol. Resil. Sustain. 2022, 2, 8. [Google Scholar] [CrossRef]
- Widmer, J.; Christ, B.; Grenz, J.; Norgrove, L. Agrivoltaics, a Promising New Tool for Electricity and Food Production: A Systematic Review. Renew. Sustain. Energy Rev. 2024, 192, 114277. [Google Scholar] [CrossRef]
- Magarelli, A.; Mazzeo, A.; Ferrara, G. Fruit Crop Species with Agrivoltaic Systems: A Critical Review. Agronomy 2024, 14, 722. [Google Scholar] [CrossRef]
- Macknick, J.; Hartmann, H.; Barron-Gafford, G.; Beatty, B.; Burton, R.; Seok-Choi, C.; Davis, M.; Davis, R.; Figueroa, J.; Garrett, A.; et al. The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons from the InSPIRE Research Study; National Renewable Energy Laboratory: Golden, CO, USA, 2022. [Google Scholar]
- Vidotto, L.C.; Schneider, K.; Morato, R.W.; do Nascimento, L.R.; Rüther, R. An Evaluation of the Potential of Agrivoltaic Systems in Brazil. Appl. Energy 2024, 360, 122782. [Google Scholar] [CrossRef]
- Goetzberger, A.; Zastrow, A. On the Coexistence of Solar-Energy Conversion and Plant Cultivation. Int. J. Sol. Energy 1982, 1, 55–69. [Google Scholar] [CrossRef]
- Nagashima, A. Sunlight Power Generation System. Japan Patent No. 2005-277038, 6 October 2005. [Google Scholar]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining Solar Photovoltaic Panels and Food Crops for Optimising Land Use: Towards New Agrivoltaic Schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Cuppari, R.I.; Branscomb, A.; Graham, M.; Negash, F.; Smith, A.K.; Proctor, K.; Rupp, D.; Tilahun Ayalew, A.; Getaneh Tilaye, G.; Higgins, C.W.; et al. Agrivoltaics: Synergies and Trade-Offs in Achieving the Sustainable Development Goals at the Global and Local Scale. Appl. Energy 2024, 362, 122970. [Google Scholar] [CrossRef]
- Hartzell, S.; Bartlett, M.S.; Porporato, A. Unified Representation of the C3, C4, and CAM Photosynthetic Pathways with the Photo3 Model. Ecol. Model. 2018, 384, 173–187. [Google Scholar] [CrossRef]
- Mahendra, S.; Ogren, W.L.; Widholm, J.M. Photosynthetic Characteristics of Several C3 and C4 Plant Species Grown Under Different Light Intensities 1. Crop Sci. 1974, 14, 563–566. [Google Scholar] [CrossRef]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, a Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef]
- Gorjian, S.; Bousi, E.; Özdemir, Ö.E.; Trommsdorff, M.; Kumar, N.M.; Anand, A.; Kant, K.; Chopra, S.S. Progress and Challenges of Crop Production and Electricity Generation in Agrivoltaic Systems Using Semi-Transparent Photovoltaic Technology. Renew. Sustain. Energy Rev. 2022, 158, 112126. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Zikeli, S.; Lewandowski, I.; Högy, P. Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. Var. Rapaceum) Cultivated underneath an Agrivoltaic System. Agronomy 2021, 11, 733. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic Systems to Optimise Land Use for Electric Energy Production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Ferrara, G.; Boselli, M.; Palasciano, M.; Mazzeo, A. Effect of Shading Determined by Photovoltaic Panels Installed above the Vines on the Performance of Cv. Corvina (Vitis vinifera L.). Sci. Hortic. 2023, 308, 111595. [Google Scholar] [CrossRef]
- Andrew, A.C.; Higgins, C.W.; Smallman, M.A.; Graham, M.; Ates, S. Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System. Front. Sustain. Food Syst. 2021, 5, 659175. [Google Scholar] [CrossRef]
- Sharpe, K.T.; Heins, B.J.; Buchanan, E.S.; Reese, M.H. Evaluation of Solar Photovoltaic Systems to Shade Cows in a Pasture-Based Dairy Herd. J. Dairy. Sci. 2021, 104, 2794–2806. [Google Scholar] [CrossRef] [PubMed]
- Trommsdorff, M.; Dhal, I.S.; Özdemir, Ö.E.; Ketzer, D.; Weinberger, N.; Rösch, C. Agrivoltaics: Solar Power Generation and Food Production. In Solar Energy Advancements in Agriculture and Food Production Systems; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Lubitz, W.D. Effect of Manual Tilt Adjustments on Incident Irradiance on Fixed and Tracking Solar Panels. Appl. Energy 2011, 88, 1710–1719. [Google Scholar] [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the Total Productivity of a Land by Combining Mobile Photovoltaic Panels and Food Crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Reker, S.; Schneider, J.; Gerhards, C. Integration of Vertical Solar Power Plants into a Future German Energy System. Smart Energy 2022, 7, 100083. [Google Scholar] [CrossRef]
- Biró-Varga, K.; Sirnik, I.; Stremke, S. Landscape User Experiences of Interspace and Overhead Agrivoltaics: A Comparative Analysis of Two Novel Types of Solar Landscapes in the Netherlands. Energy Res. Soc. Sci. 2024, 109, 103408. [Google Scholar] [CrossRef]
- Cossu, M.; Tiloca, M.T.; Cossu, A.; Deligios, P.A.; Pala, T.; Ledda, L. Increasing the Agricultural Sustainability of Closed Agrivoltaic Systems with the Integration of Vertical Farming: A Case Study on Baby-Leaf Lettuce. Appl. Energy 2023, 344, 121278. [Google Scholar] [CrossRef]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the Experimental Cultivation of Peppers in Low-energy-demand Greenhouses. An Interdisciplinary Study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef]
- Kumar, M.; Haillot, D.; Gibout, S. Survey and Evaluation of Solar Technologies for Agricultural Greenhouse Application. Sol. Energy 2022, 232, 18–34. [Google Scholar] [CrossRef]
- Sato, D.; Yamada, N. Design and Testing of Highly Transparent Concentrator Photovoltaic Modules for Efficient Dual-Land-Use Applications. Energy Sci. Eng. 2020, 8, 779–788. [Google Scholar] [CrossRef]
- Temiz, M.; Dincer, I. Development of Concentrated Solar and Agrivoltaic Based System to Generate Water, Food and Energy with Hydrogen for Sustainable Agriculture. Appl. Energy 2024, 358, 122539. [Google Scholar] [CrossRef]
- Li, Z.; Yano, A.; Cossu, M.; Yoshioka, H.; Kita, I.; Ibaraki, Y. Shading and Electric Performance of a Prototype Greenhouse Blind System Based on Semi-Transparent Photovoltaic Technology. J. Agric. Meteorol. 2018, 74, 114–122. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Hao, Y.; Cui, Y.; Wang, W.; Ji, T.; Shi, F.; Wei, B. Visibly Transparent Organic Photovoltaic with Improved Transparency and Absorption Based on Tandem Photonic Crystal for Greenhouse Application. Appl. Opt. 2015, 54, 10232–10239. [Google Scholar] [CrossRef]
- Bambara, J.; Athienitis, A. Experimental Evaluation and Energy Modeling of a Greenhouse Concept with Semi-Transparent Photovoltaics. Energy Procedia 2015, 78, 435–440. [Google Scholar] [CrossRef]
- Zotti, M.; Mazzoleni, S.; Mercaldo, L.V.; Della Noce, M.; Ferrara, M.; Veneri, P.D.; Diano, M.; Esposito, S.; Cartenì, F. Testing the Effect of Semi-Transparent Spectrally Selective Thin Film Photovoltaics for Agrivoltaic Application: A Multi-Experimental and Multi-Specific Approach. Heliyon 2024, 10, e26323. [Google Scholar] [CrossRef]
- Madani, N.; Kimball, J.S.; Running, S.W. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data. J. Geophys. Res. Biogeosci 2017, 122, 2939–2951. [Google Scholar] [CrossRef]
- Song, W.; Ge, J.; Xie, L.; Chen, Z.; Ye, Q.; Sun, D.; Shi, J.; Tong, X.; Zhang, X.; Ge, Z. Semi-Transparent Organic Photovoltaics for Agrivoltaic Applications. Nano Energy 2023, 116, 108805. [Google Scholar] [CrossRef]
- Chang, L.Y.; Chang, C.C.; Rinawati, M.; Chang, Y.H.; Cheng, Y.S.; Ho, K.C.; Chen, C.C.; Lin, C.H.; Wang, C.H.; Yeh, M.H. Near-Infrared Photoelectrochromic Device with Graphene Quantum Dot Modified WO3 Thin Film toward Fast-Response Thermal Management for Self-Powered Agrivoltaics. Appl. Energy 2024, 361, 122930. [Google Scholar] [CrossRef]
- Mouhib, E.; Fernández-Solas, Á.; Pérez-Higueras, P.J.; Fernández-Ocaña, A.M.; Micheli, L.; Almonacid, F.; Fernández, E.F. Enhancing Land Use: Integrating Bifacial PV and Olive Trees in Agrivoltaic Systems. Appl. Energy 2024, 359, 122660. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How Does a Shelter of Solar Panels Influence Water Flows in a Soil–Crop System? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Uchanski, M.; Hickey, T.; Bousselot, J.; Barth, K.L. Characterization of Agrivoltaic Crop Environment Conditions Using Opaque and Thin-Film Semi-Transparent Modules. Energy 2023, 16, 3012. [Google Scholar] [CrossRef]
- Warmann, E.; Jenerette, G.D.; Barron-Gafford, G.A. Agrivoltaic System Design Tools for Managing Trade-Offs between Energy Production, Crop Productivity and Water Consumption. Environ. Res. Lett. 2024, 19, 034046. [Google Scholar] [CrossRef]
- Muñoz-García, M.A.; Hernández-Callejo, L. Photovoltaics and Electrification in Agriculture. Agronomy 2022, 12, 44. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Armstrong, A.; Burney, J.; Ryan, G.; Moore-O’Leary, K.; Diédhiou, I.; Grodsky, S.M.; Saul-Gershenz, L.; Davis, R.; Macknick, J.; et al. Techno–Ecological Synergies of Solar Energy for Global Sustainability. Nat. Sustain. 2019, 2, 560–568. [Google Scholar] [CrossRef]
- Schweiger, A.H.; Pataczek, L. How to Reconcile Renewable Energy and Agricultural Production in a Drying World. Plants People Planet. 2023, 5, 650–661. [Google Scholar] [CrossRef]
- Kim, D.; Oren, R.; Qian, S.S. Response to CO2 Enrichment of Understory Vegetation in the Shade of Forests. Glob. Chang. Biol. 2016, 22, 944–956. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Curci, L.M.; Leggieri, A.; Lenucci, M.; Basset, A.; Santino, A.; Piro, G.; De Caroli, M. Shading Effects in Agrivoltaic Systems Can Make the Difference in Boosting Food Security in Climate Change. Appl. Energy 2024, 358, 122565. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Fraunhofer ISE Agrivoltaics: Opportunities for Agriculture and the Energy Transition-Fraunhofer ISE. Fraunhofer Inst. Sol. Energy Syst. ISE 2022, 1–80. Available online: https://www.ise.fraunhofer.de/en/publications/studies/agrivoltaics-opportunities-for-agriculture-and-the-energy-transition.html (accessed on 13 August 2024).
- Agostini, A.; Colauzzi, M.; Amaducci, S. Innovative Agrivoltaic Systems to Produce Sustainable Energy: An Economic and Environmental Assessment. Appl. Energy 2021, 281, 116102. [Google Scholar] [CrossRef]
- Blair, N.; Diorio, N.; Freeman, J.; Gilman, P.; Janzou, S.; Neises, T.; Wagner, M.; Blair, N.; Diorio, N.; Freeman, J.; et al. System Advisor Model (SAM) General Description System Advisor Model (SAM) General Description (Version 2017.9.5); National Renewable Energy Laboratory: Golden, CO, USA, 2018; pp. 1–24. [Google Scholar]
- DeLucia, E.H.; Sipe, T.W.; Herrick, J.; Maherali, H. Sapling Biomass Allocation and Growth in the Understory of a Deciduous Hardwood Forest. Am. J. Bot. 1998, 85, 955–963. [Google Scholar] [CrossRef]
- Muñoz-García, M.Á.; Fouris, T.; Pilat, E. Analysis of the Soiling Effect under Different Conditions on Different Photovoltaic Glasses and Cells Using an Indoor Soiling Chamber. Renew. Energy 2021, 163, 955–963. [Google Scholar] [CrossRef]
- Muñoz-García, M.Á.; Fialho, L.; Moreda, G.P.; Baptista, F. Assessment of the Impact of Utility-Scale Photovoltaics on the Surrounding Environment in the Iberian Peninsula. Alternatives for the Coexistence with Agriculture. Sol. Energy 2024, 271, 112446. [Google Scholar] [CrossRef]
- Ali Abaker Omer, A.; Liu, W.; Li, M.; Zheng, J.; Zhang, F.; Zhang, X.; Osman Hamid Mohammed, S.; Fan, L.; Liu, Z.; Chen, F.; et al. Water Evaporation Reduction by the Agrivoltaic Systems Development. Sol. Energy 2022, 247, 13–23. [Google Scholar] [CrossRef]
- van de Ven, D.J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The Potential Land Requirements and Related Land Use Change Emissions of Solar Energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef]
- Lyu, X.; Mu, R.; Liu, B. Shade Avoidance Syndrome in Soybean and Ideotype toward Shade Tolerance. Mol. Breed. 2023, 43, 31. [Google Scholar] [CrossRef]
- Scarano, A.; Gerardi, C.; Sommella, E.; Campiglia, P.; Chieppa, M.; Butelli, E.; Santino, A. Engineering the Polyphenolic Biosynthetic Pathway Stimulates Metabolic and Molecular Changes during Fruit Ripening in “Bronze” Tomato. Hortic. Res. 2022, 9, uhac097. [Google Scholar] [CrossRef]
- Luo, J.; Luo, Z.; Li, W.; Shi, W.; Sui, X. The Early Effects of an Agrivoltaic System within a Different Crop Cultivation on Soil Quality in Dry–Hot Valley Eco-Fragile Areas. Agronomy 2024, 14, 584. [Google Scholar] [CrossRef]
- Bai, Z.; Jia, A.; Bai, Z.; Qu, S.; Zhang, M.; Kong, L.; Sun, R.; Wang, M. Photovoltaic Panels Have Altered Grassland Plant Biodiversity and Soil Microbial Diversity. Front. Microbiol. 2022, 13, 1065899. [Google Scholar] [CrossRef] [PubMed]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic Systems: Applications, Challenges, and Opportunities. A Review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Moscatelli, M.C.; Marabottini, R.; Massaccesi, L.; Marinari, S. Soil Properties Changes after Seven Years of Ground Mounted Photovoltaic Panels in Central Italy Coastal Area. Geoderma Reg. 2022, 29, e00500. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The Potential of Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Sojib Ahmed, M.; Rezwan Khan, M.; Haque, A.; Ryyan Khan, M. Agrivoltaics Analysis in a Techno-Economic Framework: Understanding Why Agrivoltaics on Rice Will Always Be Profitable. Appl. Energy 2022, 323, 119560. [Google Scholar] [CrossRef]
- Jain, P.; Raina, G.; Sinha, S.; Malik, P.; Mathur, S. Agrovoltaics: Step towards Sustainable Energy-Food Combination. Bioresour. Technol. Rep. 2021, 15, 100766. [Google Scholar] [CrossRef]
- Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Jansri, S.N. Efficiency Improvement of Ground-Mounted Solar Power Generation in Agrivoltaic System by Cultivation of Bok Choy (Brassica rapa Subsp. Chinensis L.) under the Panels. Int. J. Renew. Energy Dev. 2022, 11, 103–110. [Google Scholar] [CrossRef]
- Burney, J.; Woltering, L.; Burke, M.; Naylor, R.; Pasternak, D. Solar-Powered Drip Irrigation Enhances Food Security in the Sudano-Sahel. Proc. Natl. Acad. Sci. USA 2010, 107, 1848–1853. [Google Scholar] [CrossRef] [PubMed]
- Ayala, P. AgroPV: Mancomunión Energía Solar y Agricultura; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Kavga, A.; Trypanagnostopoulos, G.; Zervoudakis, G.; Tripanagnostopoulos, Y. Growth and Physiological Characteristics of Lettuce (Lactuca sativa L.) and Rocket (Eruca sativa Mill.) Plants Cultivated under Photovoltaic Panels. Not. Bot. Horti Agrobot. Cluj. Napoca 2018, 46, 206–212. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and Radiation Use Efficiency of Lettuces Grown in the Partial Shade of Photovoltaic Panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Cossu, M.; Murgia, L.; Ledda, L.; Deligios, P.A.; Sirigu, A.; Chessa, F.; Pazzona, A. Solar Radiation Distribution inside a Greenhouse with South-Oriented Photovoltaic Roofs and Effects on Crop Productivity. Appl. Energy 2014, 133, 89–100. [Google Scholar] [CrossRef]
- López-Díaz, G.; Carreño-Ortega, A.; Fatnassi, H.; Poncet, C.; Díaz-Pérez, M. The Effect of Different Levels of Shading in a Photovoltaic Greenhouse with a North-South Orientation. Appl. Sci. 2020, 10, 882. [Google Scholar] [CrossRef]
- Kallioğlu, M.A.; Avcı, A.S.; Sharma, A.; Khargotra, R.; Singh, T. Solar Collector Tilt Angle Optimization for Agrivoltaic Systems. Case Stud. Therm. Eng. 2024, 54, 103998. [Google Scholar] [CrossRef]
- Heins, B.J.; Sharpe, K.T.; Buchanan, E.S.; Reese, M.H. Agrivoltaics to Shade Cows in a Pasture-Based Dairy System. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2635. [Google Scholar]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An Overview of the Crop Model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Kang, J.; Reise, C.; Schindele, S.; Bopp, G.; Ehmann, A.; Weselek, A.; Högy, P.; Obergfell, T. Combining Food and Energy Production: Design of an Agrivoltaic System Applied in Arable and Vegetable Farming in Germany. Renew. Sustain. Energy Rev. 2021, 140, 110694. [Google Scholar] [CrossRef]
- Fernández, E.F.; Villar-Fernández, A.; Montes-Romero, J.; Ruiz-Torres, L.; Rodrigo, P.M.; Manzaneda, A.J.; Almonacid, F. Global Energy Assessment of the Potential of Photovoltaics for Greenhouse Farming. Appl. Energy 2022, 309, 118474. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G. Water Budget and Crop Modelling for Agrivoltaic Systems: Application to Irrigated Lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Padilla, J.; Toledo, C.; Abad, J. Enovoltaics: Symbiotic Integration of Photovoltaics in Vineyards. Front. Energy Res. 2022, 10, 1007383. [Google Scholar] [CrossRef]
- Reher, T.; Lavaert, C.; Willockx, B.; Huyghe, Y.; Bisschop, J.; Martens, J.A.; Diels, J.; Cappelle, J.; Van de Poel, B. Potential of Sugar Beet (Beta vulgaris) and Wheat (Triticum aestivum) Production in Vertical Bifacial, Tracked, or Elevated Agrivoltaic Systems in Belgium. Appl. Energy 2024, 359, 122679. [Google Scholar] [CrossRef]
- Willockx, B.; Lavaert, C.; Cappelle, J. Geospatial Assessment of Elevated Agrivoltaics on Arable Land in Europe to Highlight the Implications on Design, Land Use and Economic Level. Energy Rep. 2022, 8, 8736–8751. [Google Scholar] [CrossRef]
- Adelhardt, N.; Berneiser, J. Risk Analysis for Agrivoltaic Projects in Rural Farming Communities in SSA. Appl. Energy 2024, 362, 122933. [Google Scholar] [CrossRef]
- Basu, R. Implementing Quality: A Practical Guide to Tools and Techniques. Int. J. Oper. Prod. Manag. 2005, 25, 1034. [Google Scholar] [CrossRef]
- Chatzipanagi, A.; Taylor, N.; Jaeger-Waldau, A. Overview of the Potential and Challenges for Agri-Photovoltaics in the European Union; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Chalgynbayeva, A.; Balogh, P.; Szőllősi, L.; Gabnai, Z.; Apáti, F.; Sipos, M.; Bai, A. The Economic Potential of Agrivoltaic Systems in Apple Cultivation—A Hungarian Case Study. Sustainability 2024, 16, 2325. [Google Scholar] [CrossRef]
- Willockx, B.; Reher, T.; Lavaert, C.; Herteleer, B.; Van de Poel, B.; Cappelle, J. Design and Evaluation of an Agrivoltaic System for a Pear Orchard. Appl. Energy 2024, 353, 122166. [Google Scholar] [CrossRef]
- Ya’acob, M.E.; Lu, L.; Zulkifli, S.A.; Roslan, N.; Ahmad, W.F.H.W. Agrivoltaic Approach in Improving Soil Resistivity in Large Scale Solar Farms for Energy Sustainability. Appl. Energy 2023, 352, 121943. [Google Scholar] [CrossRef]
- Torma, G.; Aschemann-Witzel, J. Social Acceptance of Dual Land Use Approaches: Stakeholders’ Perceptions of the Drivers and Barriers Confronting Agrivoltaics Diffusion. J. Rural. Stud. 2023, 97, 610–625. [Google Scholar] [CrossRef]
- Vladu, M.; Tudor, V.C.; Mărcuță, L.; Mihai, D.; Tudor, A.D. Study on the Production and Valorization of Sugar Beet in the European Union. Rom. Agric. Res. 2021, 38, 447–455. [Google Scholar] [CrossRef]
- Beed, F.D.; Paveley, N.D.; Sylvester-Bradley, R. Predictability of Wheat Growth and Yield in Light-Limited Conditions. J. Agric. Sci. 2007, 145, 63–79. [Google Scholar] [CrossRef]
- Lázaro, L.; Abbate, P.E.; Cogliatti, D.H.; Andrade, F.H. Relationship between Yield, Growth and Spike Weight in Wheat under Phosphorus Deficiency and Shading. J. Agric. Sci. 2010, 148, 83–93. [Google Scholar] [CrossRef]
- Arenas-Corraliza, M.G.; López-Díaz, M.L.; Rolo, V.; Moreno, G. Wheat and Barley Cultivars Show Plant Traits Acclimation and Increase Grain Yield under Simulated Shade in Mediterranean Conditions. J. Agron. Crop Sci. 2021, 207, 100–119. [Google Scholar] [CrossRef]
- Touil, S.; Richa, A.; Fizir, M.; Bingwa, B. Shading Effect of Photovoltaic Panels on Horticulture Crops Production: A Mini Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 281–296. [Google Scholar] [CrossRef]
- Sytar, O.; Zivcak, M.; Bruckova, K.; Brestic, M.; Hemmerich, I.; Rauh, C.; Simko, I. Shift in Accumulation of Flavonoids and Phenolic Acids in Lettuce Attributable to Changes in Ultraviolet Radiation and Temperature. Sci. Hortic. 2018, 239, 193–204. [Google Scholar] [CrossRef]
- Rivera, G.; Porras, R.; Florencia, R.; Sánchez-Solís, J.P. LiDAR Applications in Precision Agriculture for Cultivating Crops: A Review of Recent Advances. Comput. Electron. Agric. 2023, 207, 107737. [Google Scholar] [CrossRef]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-Cleaning and Antireflective Packaging Glass for Solar Modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Petroli, P.A.; Camargo, P.S.S.; de Souza, R.A.; Veit, H.M. Assessment of Toxicity Tests for Photovoltaic Panels: A Review. Curr. Opin. Green. Sustain. Chem. 2024, 47, 100885. [Google Scholar] [CrossRef]
- Sirnik, I.; Oudes, D.; Stremke, S. Agrivoltaics and Landscape Change: First Evidence from Built Cases in the Netherlands. Land. Use Policy 2024, 140, 107099. [Google Scholar] [CrossRef]
- Ravilla, A.; Shirkey, G.; Chen, J.; Jarchow, M.; Stary, O.; Celik, I. Techno-Economic and Life Cycle Assessment of Agrivoltaic System (AVS) Designs. Sci. Total Environ. 2024, 912, 169274. [Google Scholar] [CrossRef]
- Feuerbacher, A.; Herrmann, T.; Neuenfeldt, S.; Laub, M.; Gocht, A. Estimating the Economics and Adoption Potential of Agrivoltaics in Germany Using a Farm-Level Bottom-up Approach. Renew. Sustain. Energy Rev. 2022, 168, 112784. [Google Scholar] [CrossRef]
- Doedt, C.; Tajima, M.; Iida, T. Agrivoltaics in Japan. AgriVoltaics Conf. Proc. 2024, 1. [Google Scholar] [CrossRef]
- Tajima, M.; Iida, T. Evolution of Agrivoltaic Farms in Japan. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2021; Volume 2361. [Google Scholar]
- Kim, M.; Oh, S.Y.; Jung, J.H. History and Legal Aspect of Agrivoltaics in Korea. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2635. [Google Scholar]
- Hrabanski, M.; Verdeil, S.; Ducastel, A. Agrivoltaics in France: The Multi-Level and Uncertain Regulation of an Energy Decarbonisation Policy. Rev. Agric. Food Environ. Stud. 2024, 1–27. [Google Scholar] [CrossRef]
- Vollprecht, J.; Trommsdorff, M.; Kather, N. Legal Framework of Agrivoltaics in Germany. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2022; Volume 2635. [Google Scholar]
- Maisch, M. Croatia Adopts Legal Framework for Agrivoltaics. PV Magazine. 2023. Available online: https://www.pv-magazine.com/2024/02/16/croatia-deployed-238-7-mw-of-solar-in-2023/#:~:text=In%202023%2C%20the%20Croatian%20government,by%20pv%20magazine%20in%20November (accessed on 13 August 2024).
- Boyd, M. The Potential of Agrivoltaics for the US Solar Industry, Farmers and Communities; Solar Energy Technologies Office: Washington, DC, USA, 2023.
- Moerman, R. An Endless Appetite for PV. PV Magazine. 2021. Available online: https://www.pv-magazine.com/magazine-archive/an-endless-appetite-for-pv/ (accessed on 13 August 2024).
- Deboutte, G. France Allocates 172.9 MW of Solar Capacity at Average Price of $0.09/KWh. PV Magazine. 2023. Available online: https://www.pv-magazine.com/2023/01/09/france-allocates-172-9-mw-of-solar-capacity-at-average-price-of-0-09-kwh/ (accessed on 13 August 2024).
- Juillion, P.; Lopez, G.; Fumey, D.; Lesniak, V.; Génard, M.; Vercambre, G. Shading Apple Trees with an Agrivoltaic System: Impact on Water Relations, Leaf Morphophysiological Characteristics and Yield Determinants. Sci. Hortic. 2022, 306, 111434. [Google Scholar] [CrossRef]
- Ciocia, A.; Enescu, D.; Amato, A.; Malgaroli, G.; Polacco, R.; Amico, F.; Spertino, F. Agrivoltaic System: A Case Study of PV Production and Olive Cultivation in Southern Italy. In Proceedings of the 2022 57th International Universities Power Engineering Conference: Big Data and Smart Grids, UPEC 2022-Proceedings, Istanbul, Turkey, 30 August–2 September 2022. [Google Scholar]
- Fernández-Solas, Á.; Fernández-Ocaña, A.M.; Almonacid, F.; Fernández, E.F. Potential of Agrivoltaics Systems into Olive Groves in the Mediterranean Region. Appl. Energy 2023, 352, 121988. [Google Scholar] [CrossRef]
- Martinez, M. Sistema Que Combina Produção de Comida e Energia Solar Pode Ajudar Famílias No Semiárido. Mongabay. 2022. Available online: https://brasil.mongabay.com/2022/06/sistema-que-combina-producao-de-comida-e-energia-solar-pode-ajudar-familias-no-semiarido/ (accessed on 12 August 2024).
- Grüttner, D. Agriphotovoltaics in the Village of the Indigenous Pankará. Atmosfair. 2021. Available online: https://www.atmosfair.de/en/climate-protection-projects/solar-energy/brazil-agriphotovoltaics-in-the-village-of-the-indigenous-pankara/ (accessed on 12 August 2024).
- Bhandari, S.N.; Schlüter, S.; Kuckshinrichs, W.; Schlör, H.; Adamou, R.; Bhandari, R. Economic Feasibility of Agrivoltaic Systems in Food-Energy Nexus Context: Modelling and a Case Study in Niger. Agronomy 2021, 11, 1906. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; Lara, E.; Onyango, J.; Temu, E.J.; Hartley, S.E. Agrivoltaics in East Africa: Opportunities and Challenges. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2021; Volume 2361. [Google Scholar]
- Thornton, K. Australian Guide to Agrisolar for Large-Scale Solar; Clean Energy Council: Melbourne, Australia, 2021. [Google Scholar]
- Nordberg, E.J.; Julian Caley, M.; Schwarzkopf, L. Designing Solar Farms for Synergistic Commercial and Conservation Outcomes. Sol. Energy 2021, 228, 586–593. [Google Scholar] [CrossRef]
- Sturchio, M.A.; Kannenberg, S.A.; Knapp, A.K. Agrivoltaic Arrays Can Maintain Semi-Arid Grassland Productivity and Extend the Seasonality of Forage Quality. Appl. Energy 2024, 356, 122418. [Google Scholar] [CrossRef]
- Shcherbakov, A.; Baramykov, M. The Concept of Agricultural Complex Based on Agrivoltaics and Precision Agriculture. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 949. [Google Scholar]
- Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Narrat Jansri, S. Design and Test. of Agri-Voltaic System. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 2395–2404. [Google Scholar]
- Kumpanalaisatit, M.; Setthapun, W.; Sintuya, H.; Pattiya, A.; Jansri, S.N. Current Status of Agrivoltaic Systems and Their Benefits to Energy, Food, Environment, Economy, and Society. Sustain. Prod. Consum. 2022, 33, 952–963. [Google Scholar] [CrossRef]
- Abidin, M.A.Z.; Mahyuddin, M.N.; Zainuri, M.A.A.M. Optimal Efficient Energy Production by PV Module Tilt-Orientation Prediction Without Compromising Crop-Light Demands in Agrivoltaic Systems. IEEE Access 2023, 11, 71557–71572. [Google Scholar] [CrossRef]
- Chae, S.H.; Kim, H.J.; Moon, H.W.; Kim, Y.H.; Ku, K.M. Agrivoltaic Systems Enhance Farmers’ Profits through Broccoli Visual Quality and Electricity Production without Dramatic Changes in Yield, Antioxidant Capacity, and Glucosinolates. Agronomy 2022, 12, 1415. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Yoon, C.Y. An Efficient Structure of an Agrophotovoltaic System in a Temperate Climate Region. Agronomy 2021, 11, 1584. [Google Scholar] [CrossRef]
- Cho, J.; Park, S.M.; Reum Park, A.; Lee, O.C.; Nam, G.; Ra, I.H. Application of Photovoltaic Systems for Ag-riculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture. Energies 2020, 13, 4815. [Google Scholar] [CrossRef]
- Jo, H.; Asekova, S.; Bayat, M.A.; Ali, L.; Song, J.T.; Ha, Y.S.; Hong, D.H.; Lee, J.D. Comparison of Yield and Yield Components of Several Crops Grown under Agro-Photovoltaic System in Korea. Agriculture 2022, 12, 619. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, H.H.; Kim, Y.O.; Kuk, Y.I. Crop Cultivation Underneath Agro-Photovoltaic Systems and Its Effects on Crop Growth, Yield, and Photosynthetic Efficiency. Agronomy 2022, 12, 1842. [Google Scholar] [CrossRef]
- Ko, D.Y.; Chae, S.H.; Moon, H.W.; Kim, H.J.; Seong, J.; Lee, M.S.; Ku, K.M. Agrivoltaic Farming Insights: A Case Study on the Cultivation and Quality of Kimchi Cabbage and Garlic. Agronomy 2023, 13, 2625. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, H.; Pan, S.; Wang, Q.; He, J.; Jia, X. An Agrivoltaic Park Enhancing Ecological, Economic and Social Benefits on Degraded Land in Jiangshan, China. AIP Conf. Proc. 2022, 2635, 1. [Google Scholar]
- Jiang, S.; Tang, D.; Zhao, L.; Liang, C.; Cui, N.; Gong, D.; Wang, Y.; Feng, Y.; Hu, X.; Peng, Y. Effects of Different Photovoltaic Shading Levels on Kiwifruit Growth, Yield and Water Productivity under “Agrivoltaic” System in Southwest China. Agric. Water Manag. 2022, 269, 107675. [Google Scholar] [CrossRef]
- Ramos-Fuentes, I.A.; Elamri, Y.; Cheviron, B.; Dejean, C.; Belaud, G.; Fumey, D. Effects of Shade and Deficit Irrigation on Maize Growth and Development in Fixed and Dynamic AgriVoltaic Systems. Agric. Water Manag. 2023, 280, 108187. [Google Scholar] [CrossRef]
- Weselek, A.; Bauerle, A.; Hartung, J.; Zikeli, S.; Lewandowski, I.; Högy, P. Agrivoltaic System Impacts on Microclimate and Yield of Different Crops within an Organic Crop Rotation in a Temperate Climate. Agron. Sustain. Dev. 2021, 41, 59. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic Potential on Grape Farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Agrivoltaic System: Experimental Analysis for Enhancing Land Productivity and Revenue of Farmers. Energy Sustain. Dev. 2022, 70, 54–61. [Google Scholar] [CrossRef]
- Giri, N.C.; Mohanty, R.C. Design of Agrivoltaic System to Optimize Land Use for Clean Energy-Food Pro-duction: A Socio-Economic and Environmental Assessment. Clean Technol. Environ. Policy 2022, 24, 2595–2606. [Google Scholar] [CrossRef]
- Prakash, V.; Lunagaria, M.M.; Trivedi, A.P.; Upadhyaya, A.; Kumar, R.; Das, A.; Kumar Gupta, A.; Kumar, Y. Shading and PAR under Different Density Agrivoltaic Systems, Their Simulation and Effect on Wheat Productivity. Eur. J. Agron. 2023, 149, 126922. [Google Scholar] [CrossRef]
- Poonia, S.; Jat, N.K.; Santra, P.; Singh, A.K.; Jain, D.; Meena, H.M. Techno-Economic Evaluation of Different Agri-Voltaic Designs for the Hot Arid Ecosystem India. Renew. Energy 2022, 184, 149–163. [Google Scholar] [CrossRef]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland. Adv. Energy Mater. 2020, 10, 2001189. [Google Scholar] [CrossRef]
- Potenza, E.; Croci, M.; Colauzzi, M.; Amaducci, S. Agrivoltaic System and Modelling Simulation: A Case Study of Soybean (Glycine Max L.) in Italy. Horticulturae 2022, 8, 1160. [Google Scholar] [CrossRef]
- Dal Prà, A.; Miglietta, F.; Genesio, L.; Lanini, G.M.; Bozzi, R.; Morè, N.; Greco, A.; Fabbri, M.C. Determination of Feed Yield and Quality Parameters of Whole Crop Durum Wheat (Triticum Durum Desf.) Biomass under Agrivoltaic System. Agrofor. Syst. 2024. [Google Scholar] [CrossRef]
- Mohammedi, S.; Dragonetti, G.; Admane, N.; Fouial, A. The Impact of Agrivoltaic Systems on Tomato Crop: A Case Study in Southern Italy. Processes 2023, 11, 3370. [Google Scholar] [CrossRef]
- Moreda, G.P.; Muñoz-García, M.A.; Alonso-García, M.C.; Hernández-Callejo, L. Techno-Economic Viability of Agro-Photovoltaic Irrigated Arable Lands in the Eu-Med Region: A Case-Study in Southwestern Spain. Agronomy 2021, 11, 593. [Google Scholar] [CrossRef]
- Carreño-Ortega, A.; Do Paço, T.A.; Díaz-Pérez, M.; Gómez-Galán, M. Lettuce Production under Mini-PV Modules Arranged in Patterned Designs. Agronomy 2021, 11, 2554. [Google Scholar] [CrossRef]
- Katsikogiannis, O.A.; Ziar, H.; Isabella, O. Integration of Bifacial Photovoltaics in Agrivoltaic Systems: A Synergistic Design Approach. Appl. Energy 2022, 309, 118475. [Google Scholar] [CrossRef]
- Akbar, A.; Mahmood, F.i.; Alam, H.; Aziz, F.; Bashir, K.; Zafar Butt, N. Field Assessment of Vertical Bifacial Agrivoltaics with Vegetable Production: A Case Study in Lahore, Pakistan. Renew. Energy 2024, 227, 120513. [Google Scholar] [CrossRef]
- Zheng, J.; Meng, S.; Zhang, X.; Zhao, H.; Ning, X.; Chen, F.; Omer, A.A.A.; Ingenhoff, J.; Liu, W. Increasing the Comprehensive Economic Benefits of Farmland with Even-Lighting Agrivoltaic Systems. PLoS ONE 2021, 16, e0254482. [Google Scholar] [CrossRef]
- Gnayem, N.; Magadley, E.; Haj-Yahya, A.; Masalha, S.; Kabha, R.; Abasi, A.; Barhom, H.; Matar, M.; Attrash, M.; Yehia, I. Examining the Effect of Different Photovoltaic Modules on Cucumber Crops in a Greenhouse Agrivoltaic System: A Case Study. Biosyst. Eng. 2024, 241, 83–94. [Google Scholar] [CrossRef]
- Patel, U.R.; Gadhiya, G.A.; Chauhan, P.M. Techno-Economic Analysis of Agrivoltaic System for Affordable and Clean Energy with Food Production in India. Clean Technol. Environ. Policy 2024, 26, 2117–2135. [Google Scholar] [CrossRef]
- Campana, P.E.; Stridh, B.; Hörndahl, T.; Svensson, S.E.; Zainali, S.; Lu, S.M.; Zidane, T.E.K.; De Luca, P.; Amaducci, S.; Colauzzi, M. Experimental Results, Integrated Model Validation, and Economic Aspects of Agrivoltaic Systems at Northern Latitudes. J. Clean Prod. 2024, 437, 140235. [Google Scholar] [CrossRef]
- Kostik, N.; Bobyl, A.; Rud, V.; Salamov, I. The Potential of Agrivoltaic Systems in the Conditions of Southern Regions of Russian Federation. IOP Conf. Ser. Earth Environ. Sci. 2020, 578, 012047. [Google Scholar] [CrossRef]
- Toledo, C.; Ramos-Escudero, A.; Serrano-Luján, L.; Urbina, A. Photovoltaic Technology as a Tool for Ecosys-tem Recovery: A Case Study for the Mar Menor Coastal Lagoon. Appl. Energy 2024, 356, 122350. [Google Scholar] [CrossRef]
- Trommsdorff, M.; Hopf, M.; Hörnle, O.; Berwind, M.; Schindele, S.; Wydra, K. Can Synergies in Agriculture through an Integration of Solar Energy Reduce the Cost of Agrivoltaics? An Economic Analysis in Apple Farming. Appl. Energy 2023, 350, 121619. [Google Scholar] [CrossRef]
- Casares de la Torre, F.J.; Varo-Martinez, M.; López-Luque, R.; Ramírez-Faz, J.; Fernández-Ahumada, L.M. Design and Analysis of a Tracking/Backtracking Strategy for PV Plants with Horizontal Trackers after Their Conversion to Agrivoltaic Plants. Renew. Energy 2022, 187, 537–550. [Google Scholar] [CrossRef]
- Arena, R.; Aneli, S.; Gagliano, A.; Tina, G.M. Optimal Photovoltaic Array Layout of Agrivoltaic Systems Based on Vertical Bifacial Photovoltaic Modules. Sol. RRL 2024, 8, 2300505. [Google Scholar] [CrossRef]
- Edouard, S.; Combes, D.; Van Iseghem, M.; Ng Wing Tin, M.; Escobar-Gutiérrez, A.J. Increasing Land Productivity with Agriphotovoltaics: Application to an Alfalfa Field. Appl. Energy 2023, 329, 120207. [Google Scholar] [CrossRef]
- Ferreira, R.F.; Marques Lameirinhas, R.A.; P. Correia V. Bernardo, C.; João, J.P.; Santos, M. Agri-PV in Portugal: How to Combine Agriculture and Photovoltaic Production. Energy Sustain. Dev. 2024, 79, 101408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Gómez, D. Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems. Agronomy 2024, 14, 1824. https://doi.org/10.3390/agronomy14081824
Soto-Gómez D. Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems. Agronomy. 2024; 14(8):1824. https://doi.org/10.3390/agronomy14081824
Chicago/Turabian StyleSoto-Gómez, Diego. 2024. "Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems" Agronomy 14, no. 8: 1824. https://doi.org/10.3390/agronomy14081824
APA StyleSoto-Gómez, D. (2024). Integration of Crops, Livestock, and Solar Panels: A Review of Agrivoltaic Systems. Agronomy, 14(8), 1824. https://doi.org/10.3390/agronomy14081824