Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,260)

Search Parameters:
Keywords = solar technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 4081 KiB  
Review
Sulfur Vacancy Engineering in Photocatalysts for CO2 Reduction: Mechanistic Insights and Material Design
by Bingqing Chang, Xin Liu, Xianghai Song, Yangyang Yang, Jisheng Zhang, Weiqiang Zhou and Pengwei Huo
Catalysts 2025, 15(8), 782; https://doi.org/10.3390/catal15080782 (registering DOI) - 16 Aug 2025
Abstract
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly [...] Read more.
Against the backdrop of increasing global warming, exploring sustainable pathways to mitigate the greenhouse effect has become a central issue for the ecological and energy future. Photocatalytic reduction of CO2 technology shows a broad application prospect due to its ability to directly convert CO2 into high-value-added hydrocarbon fuels and to use solar energy, a clean energy source, to drive the reaction. However, traditional semiconductor catalysts generally suffer from insufficient activity and poor product selectivity in the actual reaction, which cannot meet the requirements of practical applications. In recent years, sulfur vacancy, as an effective material modulation strategy, has demonstrated a remarkable role in enhancing photocatalytic performance. This paper reviews a series of research reports on sulfur vacancies in recent years, introduces the methods of preparing sulfur vacancies, and summarizes the commonly used characterization methods of sulfur vacancies. Finally, the mechanism of introducing sulfur vacancies to promote CO2 reduction is discussed, which improves the photocatalytic activity and selectivity by enhancing light absorption, facilitating carrier separation, improving CO2 adsorption and activation, and promoting the stability of reaction intermediates. This review aims to provide theoretical support for an in-depth understanding of the role of sulfur vacancies in photocatalytic systems and to provide a view on the future direction and potential challenges of sulfur vacancies. Full article
(This article belongs to the Special Issue Catalytic Carbon Emission Reduction and Conversion in the Environment)
Show Figures

Figure 1

17 pages, 483 KiB  
Article
A New Model to Investigate Effect of Heat Conduction Between Tubes on Overall Performance of a Coil Absorber for Flat-Plate Solar Collectors
by Elena G. Martínez-Morales, Ricardo Romero-Méndez, Francisco G. Pérez-Gutiérrez and Pedro García-Zugasti
Energies 2025, 18(16), 4360; https://doi.org/10.3390/en18164360 - 15 Aug 2025
Abstract
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along [...] Read more.
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along the plate-fins of serpentine-type flat-plate solar collectors. The focus of this investigation is the analysis of tube-to-tube thermal conduction through the absorbent plate and its effect on the heat gain of the circulating fluid. The model used here does not consider the adiabatic boundary condition in the plate mid-distance between tubes but applies the prescribed temperatures of the tubes as a boundary condition for the plate-fins. This type of boundary condition allows for heat conduction between rows of tubes. The analysis demonstrates that tube-to-tube heat conduction along the absorber plate has a detrimental effect on the heat gain of the circulating fluid. This effect is responsible for a decrease of up to 10% of the circulating fluid heat gain. This investigation defines the set of parameters that affect the performance of plate solar heaters because of tube-to-tube thermal conduction along the plates, and it helps to choose operation and designs parameters, leading to better design of these devices. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 2009 KiB  
Article
Artificial Intelligence and Sustainable Practices in Coastal Marinas: A Comparative Study of Monaco and Ibiza
by Florin Ioras and Indrachapa Bandara
Sustainability 2025, 17(16), 7404; https://doi.org/10.3390/su17167404 - 15 Aug 2025
Abstract
Artificial intelligence (AI) is playing an increasingly important role in driving sustainable change across coastal and marine environments. Artificial intelligence offers strong support for environmental decision-making by helping to process complex data, anticipate outcomes, and fine-tune day-to-day operations. In busy coastal zones such [...] Read more.
Artificial intelligence (AI) is playing an increasingly important role in driving sustainable change across coastal and marine environments. Artificial intelligence offers strong support for environmental decision-making by helping to process complex data, anticipate outcomes, and fine-tune day-to-day operations. In busy coastal zones such as the Mediterranean where tourism and boating place significant strain on marine ecosystems, AI can be an effective means for marinas to reduce their ecological impact without sacrificing economic viability. This research examines the contribution of artificial intelligence toward the development of environmental sustainability in marina management. It investigates how AI can potentially reconcile economic imperatives with ecological conservation, especially in high-traffic coastal areas. Through a focus on the impact of social and technological context, this study emphasizes the way in which local conditions constrain the design, deployment, and reach of AI systems. The marinas of Ibiza and Monaco are used as a comparative backdrop to depict these dynamics. In Monaco, efforts like the SEA Index® and predictive maintenance for superyachts contributed to a 28% drop in CO2 emissions between 2020 and 2025. In contrast, Ibiza focused on circular economy practices, reaching an 85% landfill diversion rate using solar power, AI-assisted waste systems, and targeted biodiversity conservation initiatives. This research organizes AI tools into three main categories: supervised learning, anomaly detection, and rule-based systems. Their effectiveness is assessed using statistical techniques, including t-test results contextualized with Cohen’s d to convey practical effect sizes. Regression R2 values are interpreted in light of real-world policy relevance, such as thresholds for energy audits or emissions certification. In addition to measuring technical outcomes, this study considers the ethical concerns, the role of local communities, and comparisons to global best practices. The findings highlight how artificial intelligence can meaningfully contribute to environmental conservation while also supporting sustainable economic development in maritime contexts. However, the analysis also reveals ongoing difficulties, particularly in areas such as ethical oversight, regulatory coherence, and the practical replication of successful initiatives across diverse regions. In response, this study outlines several practical steps forward: promoting AI-as-a-Service models to lower adoption barriers, piloting regulatory sandboxes within the EU to test innovative solutions safely, improving access to open-source platforms, and working toward common standards for the stewardship of marine environmental data. Full article
Show Figures

Figure 1

21 pages, 6984 KiB  
Article
Limitations of Polar-Orbiting Satellite Observations inCapturing the Diurnal Variability of Tropospheric NO2: A Case Study Using TROPOMI, GOME-2C, and Pandora Data
by Yichen Li, Chao Yu, Jing Fan, Meng Fan, Ying Zhang, Jinhua Tao and Liangfu Chen
Remote Sens. 2025, 17(16), 2846; https://doi.org/10.3390/rs17162846 - 15 Aug 2025
Abstract
Nitrogen dioxide (NO2) plays a crucial role in environmental processes and public health. In recent years, NO2 pollution has been monitored using a combination of in situ measurements and satellite remote sensing, supported by the development of advanced retrieval algorithms. [...] Read more.
Nitrogen dioxide (NO2) plays a crucial role in environmental processes and public health. In recent years, NO2 pollution has been monitored using a combination of in situ measurements and satellite remote sensing, supported by the development of advanced retrieval algorithms. With advancements in satellite technology, large-scale NO2 monitoring is now feasible through instruments such as GOME-2C and TROPOMI. However, the fixed local overpass times of polar-orbiting satellites limit their ability to capture the complete diurnal cycle of NO2, introducing uncertainties in emission estimation and pollution trend analysis. In this study, we evaluated differences in NO2 observations between GOME-2C (morning overpass at ~09:30 LT) and TROPOMI (afternoon overpass at ~13:30 LT) across three representative regions—East Asia, Central Africa, and Europe—that exhibit distinct emission sources and atmospheric conditions. By comparing satellite-derived tropospheric NO2 column densities with ground-based measurements from the Pandora network, we analyzed spatial distribution patterns and seasonal variability in NO2 concentrations. Our results show that East Asia experiences the highest NO2 concentrations in densely populated urban and industrial areas. During winter, lower boundary layer heights and weakened photolysis processes lead to stronger accumulation of NO2 in the morning. In Central Africa, where biomass burning is the dominant emission source, afternoon fire activity is significantly higher, resulting in a substantial difference (1.01 × 1016 molecules/cm2) between GOME-2C and TROPOMI observations. Over Europe, NO2 pollution is primarily concentrated in Western Europe and along the Mediterranean coast, with seasonal peaks in winter. In high-latitude regions, weaker solar radiation limits the photochemical removal of NO2, causing concentrations to continue rising into the afternoon. These findings demonstrate that differences in polar-orbiting satellite overpass times can significantly affect the interpretation of daily NO2 variability, especially in regions with strong diurnal emissions or meteorological patterns. This study highlights the observational limitations of fixed-time satellites and offers an important reference for the future development of geostationary satellite missions, contributing to improved strategies for NO2 pollution monitoring and control. Full article
20 pages, 6960 KiB  
Article
Silicon-Based Solar Brick for Textile Ceramic Technology
by P. Casariego, V. Sarrablo, R. Barrientos and S. Santamaria-Fernandez
Ceramics 2025, 8(3), 106; https://doi.org/10.3390/ceramics8030106 - 15 Aug 2025
Abstract
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of [...] Read more.
Recent advances in prefabricated construction have enabled modular systems offering structural performance, rapid assembly, and design flexibility. Textile Ceramic Technology (TCT) integrates ceramic elements within a stainless-steel mesh, creating versatile architectural envelopes for façades, roofs, and pavements. This study investigates the integration of silicon photovoltaic (PV) modules into TCT to develop an industrialized Building-Integrated Photovoltaics (BIPV) system that maintains energy efficiency and visual coherence. Three full-scale solar brick prototypes are presented, detailing design objectives, experimental results, and conclusions. The first prototype demonstrated the feasibility of scaling small silicon PV units with good efficiency but limited aesthetic integration. The second embedded PV cells within ceramic bricks, improving aesthetics while maintaining electrical performance. Durability tests—including humidity, temperature cycling, wind, and hail impact—confirmed system stability, though structural reinforcement is needed for impact resistance. The third prototype outlines future work focusing on modularity and industrial scalability. Results confirm the technical viability of silicon PV integration in TCT, enabling active façades that generate renewable energy without compromising architectural freedom or aesthetics. This research advances industrialized, sustainable building envelopes that reduce environmental impact through distributed energy generation. Full article
Show Figures

Figure 1

28 pages, 4927 KiB  
Review
A Review on Perovskite/Silicon Tandem Solar Cells: Current Status and Future Challenges
by Jingyu Huang and Lin Mao
Energies 2025, 18(16), 4327; https://doi.org/10.3390/en18164327 - 14 Aug 2025
Abstract
Perovskite/Si tandem solar cells (PSTSCs) have emerged as a leading candidate for surpassing the Shockley–Queisser (SQ) efficiency limit inherent to single-junction silicon solar cells. Following their inaugural demonstration in 2015, perovskite/Si tandem solar cells have experienced remarkable technological progression, reaching a certified power [...] Read more.
Perovskite/Si tandem solar cells (PSTSCs) have emerged as a leading candidate for surpassing the Shockley–Queisser (SQ) efficiency limit inherent to single-junction silicon solar cells. Following their inaugural demonstration in 2015, perovskite/Si tandem solar cells have experienced remarkable technological progression, reaching a certified power conversion efficiency of 34.9% by 2025. To elucidate pathways for realizing the full potential of perovskite/Si tandem solar cells, this review commences with an examination of fundamental operational mechanisms in multi-junction photovoltaic architectures. Subsequent sections systematically analyze technological breakthroughs across three critical PSTSC components organized by an optical path sequence: (1) innovations in perovskite photoactive layers through component engineering, additive optimization, and interfacial modification strategies; (2) developments in charge transport and recombination management via advanced interconnecting layers; and (3) silicon subcell architectures. The review concludes with a critical analysis of persistent challenges in device stability, scalability, structural optimization and fabrication method, proposing strategic research directions to accelerate the transition from laboratory-scale achievements to commercially viable photovoltaic solutions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

39 pages, 854 KiB  
Article
A Hybrid MCDM Approach to Optimize Molten Salt Selection for Off-Grid CSP Systems
by Ghazi M. Magableh, Mahmoud Z. Mistarihi and Saba Abu Dalu
Energies 2025, 18(16), 4323; https://doi.org/10.3390/en18164323 - 14 Aug 2025
Viewed by 41
Abstract
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve [...] Read more.
Transitioning to sustainable energy systems demands the creation of innovative methods that deliver dependable and effective renewable energy technologies. CSP systems that integrate parabolic trough designs with thermal energy storage (TES) systems provide essential solutions to overcome energy intermittency challenges. Molten salts serve dual functions as heat transfer fluids (HTFs) and thermal energy storage (TES) media, making them critical to CSP system performance improvements. The study introduces a hybrid MCDM framework that combines the CRITIC method for objective weighting with the SWARA approach for expert-adjusted weighting and utilizes an enhanced Lexicographic Goal Programming to evaluate molten salt options for off-grid parabolic trough systems. The evaluation process considered melting point alongside thermal stability while also assessing cost-effectiveness, recyclability, and safety requirements. The use of Pareto front analysis helped identify non-dominated salts, which then underwent a tiered optimization process emphasizing safety, performance, and sustainability features. Results confirm that the ternary nitrate composition Ca(NO3)2:NaNO3:KNO3 offers the best overall performance across all tested policy scenarios, driven by its superior thermophysical properties. Solar Salt (NaNO3-KNO3) consistently ranks as a robust second choice, excelling in economic and sustainability metrics. The proposed approach provides a flexible, policy-sensitive framework for material selection tailored to enhance the efficiency and sustainability of off-grid CSP systems and support the renewable energy objectives. Full article
Show Figures

Figure 1

48 pages, 2984 KiB  
Review
Progress in Nanofluid Technology: From Conventional to Green Nanofluids for Biomedical, Heat Transfer, and Machining Applications
by Beatriz D. Cardoso, Andrews Souza, Glauco Nobrega, Inês S. Afonso, Lucas B. Neves, Carlos Faria, João Ribeiro and Rui A. Lima
Nanomaterials 2025, 15(16), 1242; https://doi.org/10.3390/nano15161242 - 13 Aug 2025
Viewed by 103
Abstract
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving [...] Read more.
Nanofluids (NFs), consisting of nanoparticles (NPs) suspended in base fluids, have attracted growing interest due to their superior physicochemical properties and multifunctional potential. In this review, conventional and green NF technology aspects, including synthesis routes, formulation, and applications, are discussed. Conventional NFs, involving NPs synthesized using physical and chemical approaches, have improved NP morphology control but are likely to cause environmental and safety concerns. In contrast, green NFs that are plant extract, microorganism, and biogenic waste-based represent a sustainable and biocompatible alternative. The effect of key parameters (e.g., NP size, shape, concentration, dispersion stability, and base fluid properties) on the performance of NFs is critically examined. The review also covers potential applications: in biomedical engineering (e.g., drug delivery, imaging, theranostics, and antimicrobial therapies), in heat transfer (e.g., solar collectors, cooling electronics, nuclear reactors), and precision machining (e.g., lubricants and coolants). Comparative insights regarding green versus conventionally prepared NFs are provided concerning their toxicity, environmental impact, scalability, and functional performance across various applications. Overall, this review highlights the new promise of both green and conventional NFs and provides key opportunities and challenges to guide future developments in this field. Full article
Show Figures

Figure 1

22 pages, 11435 KiB  
Article
Plasma-Assisted Synthesis of TiO2/ZnO Heterocomposite Microparticles: Phase Composition, Surface Chemistry, and Photocatalytic Performance
by Farid Orudzhev, Makhach Gadzhiev, Magomed Abdulkerimov, Arsen Muslimov, Valeriya Krasnova, Maksim Il’ichev, Yury Kulikov, Andrey Chistolinov, Ivan Volchkov, Alexander Tyuftyaev and Vladimir Kanevsky
Molecules 2025, 30(16), 3371; https://doi.org/10.3390/molecules30163371 - 13 Aug 2025
Viewed by 111
Abstract
The search for a simple, scalable, and eco-friendly method for synthesizing micro-sized photocatalysts is an urgent task. Plasma technologies are highly effective and have wide possibilities for targeted synthesis of novel materials. The mass-average temperature of plasma treatment is higher than the stability [...] Read more.
The search for a simple, scalable, and eco-friendly method for synthesizing micro-sized photocatalysts is an urgent task. Plasma technologies are highly effective and have wide possibilities for targeted synthesis of novel materials. The mass-average temperature of plasma treatment is higher than the stability temperature of anatase and brookite, the most photoactive polymorphs of titanium dioxide. In this work, by optimizing the plasma treatment conditions and selecting source materials, a method for synthesizing micro-sized photocatalyst based on heterocomposite TiO2/ZnO particles with high anatase content is proposed. The synthesis method involves treating a powder mixture of titanium and zinc by low-temperature argon plasma under atmospheric conditions. The relationship between the structural-phase composition, morphology, and photocatalytic properties of the microparticles was investigated. A model for the synthesis of composite microparticles containing anatase, rutile, and heterostructural contact with zinc oxide is proposed. The photocatalytic degradation of methylene blue and metronidazole was studied to evaluate both sensitized and true photocatalytic processes. The metronidazole degradation confirmed the intrinsic photocatalytic activity of the synthesized composites. Additionally, the features of photocatalysis under UV and solar irradiation were studied, and a photocatalysis mechanism is proposed. The synthesized micro-sized heterocomposite photocatalyst based on TiO2/ZnO contained anatase (36%), rutile (60), and brookite (4%) and showed a photocatalytic activity during the methylene blue degradation process under UV irradiation (high-pressure mercury lamp, 250 W): 99% in 30 min. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1892 KiB  
Article
Defect-Targeted Repair for Efficient and Stable Perovskite Solar Cells Using 2-Chlorocinnamic Acid
by Zhichun Yang, Mengyu Li, Jinyan Chen, Waqar Ahmad, Guofeng Zhang, Chengbing Qin, Liantuan Xiao and Suotang Jia
Nanomaterials 2025, 15(16), 1229; https://doi.org/10.3390/nano15161229 - 12 Aug 2025
Viewed by 247
Abstract
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose [...] Read more.
Metal halide perovskites have appeared as a promising semiconductor for high-efficiency and low-cost photovoltaic technologies. However, their performance and long-term stability are dramatically constrained by defects at the surface and grain boundaries of polycrystalline perovskite films formed during the processing. Herein, we propose a defect-targeted passivation strategy using 2-chlorocinnamic acid (2-Cl) to simultaneously enhance the efficiency and stability of perovskite solar cells (PSCs). The crystallization kinetics, film morphology, and optical and electronic properties of the used formamidinium–cesium lead halide (FA0.85Cs0.15Pb(I0.95Br0.05)3, FACs) absorber were modulated and systematically investigated by various characterizations. Mechanistically, the carbonyl group in 2-Cl coordinates with undercoordinated Pb2+ ions, while the chlorine atom forms Pb–Cl bonds, effectively passivating the surface and interfacial defects. The optimized FACs perovskite film was incorporated into inverted (p-i-n) PSCs with a typical architecture of ITO/NiOx/PTAA/Al2O3/FACs/PEAI/PCBM/BCP/Ag. The optimal device delivers a champion power conversion efficiency (PCE) of 22.58% with an open-circuit voltage of 1.14 V and a fill factor of 82.8%. Furthermore, the unencapsulated devices retain 90% of their initial efficiency after storage in ambient air for 30 days and 83% of their original PCE after stress under 1 sun illumination with maximum power point tracking at 50 °C in a N2 environment, demonstrating the practical potential of dual-site molecular passivation for durable perovskite photovoltaics. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

15 pages, 4196 KiB  
Article
Optimizing the Agitation Position in a Continuous Stirring Settler: A CFD-PBM Strategy for Enhanced Liquid–Liquid Separation
by Xuhuan Guo, Tingan Zhang and Wangzhong Mu
Processes 2025, 13(8), 2536; https://doi.org/10.3390/pr13082536 - 12 Aug 2025
Viewed by 184
Abstract
Mixer-settlers are pivotal in the solvent extraction industry, yet spatial control of agitation to intensity separation remains underexplored. This study proposes a novel strategy by localizing agitation strictly within the dispersion band. Through the developed computational fluid dynamics coupled population balance model (CFD-PBM) [...] Read more.
Mixer-settlers are pivotal in the solvent extraction industry, yet spatial control of agitation to intensity separation remains underexplored. This study proposes a novel strategy by localizing agitation strictly within the dispersion band. Through the developed computational fluid dynamics coupled population balance model (CFD-PBM) resolving droplet breakup/coalescence dynamics and laboratory experiments, it demonstrates that the agitator position critically governs dispersion band thickness and separation efficiency. It should be emphasized there was no significant difference between the experimental and the simulated. Optimal separation is achieved only when the agitation zone overlaps the dispersion band, balancing droplet fragmentation and coalescence while minimizing turbulence in settling regions. Conventional uniform agitation designs are suboptimal due to spatial sensitivity. The CFD-PBM framework establishes a physics-based tool for scalable mixer-settler design, enabling energy-efficient separation by decoupling mixing and settling energetics. This work provides an advanced solution for using the solvent extraction via targeted agitation optimization, emphasizing both scientific rigor and industrial applicability. Full article
Show Figures

Figure 1

16 pages, 6774 KiB  
Article
Optical Fiber Performance for High Solar Flux Measurements in Concentrating Solar Power Applications
by Manuel Jerez, Alejandro Carballar, Ricardo Conceição and Jose González-Aguilar
Sensors 2025, 25(16), 4973; https://doi.org/10.3390/s25164973 - 11 Aug 2025
Viewed by 149
Abstract
Extreme operating conditions in solar receivers of concentrated solar thermal power plants, such as high temperatures, intense irradiance, and thermal cycling, pose significant challenges for conventional sensors. Optical fibers offer a promising alternative for flux measurement in such environments, but their long-term performance [...] Read more.
Extreme operating conditions in solar receivers of concentrated solar thermal power plants, such as high temperatures, intense irradiance, and thermal cycling, pose significant challenges for conventional sensors. Optical fibers offer a promising alternative for flux measurement in such environments, but their long-term performance and degradation mechanisms require detailed investigation and characterization. This work presents a proof of concept for high solar flux measurement by using optical fibers as photon-capturing elements and showcases the behavior and damage that these optical fibers undergo when exposed to relevant conditions, including temperatures over 600 °C and flux levels exceeding 400 kW/m2. Three fiber configurations, including polyimide and gold-coated fibers, were tested at a high-flux solar simulator and analyzed via scanning electron microscopy to assess structural integrity and material degradation. Results reveal significant coating deterioration, fiber retraction, and thermal-induced stress effects, which impact measurement reliability. These findings provide essential insights for improving the durability and accuracy of optical fiber-based sensing technologies in concentrating solar energy. Full article
(This article belongs to the Special Issue Optical Fiber Sensors in Radiation Environments: 2nd Edition)
Show Figures

Figure 1

37 pages, 4602 KiB  
Review
Solar-Driven Atmospheric Water Harvesting Technologies Using Adsorption: Principles, Materials, Performance, and System Configurations
by Malek Mannai, Valeria Palomba, Andrea Frazzica and Elpida Piperopoulos
Energies 2025, 18(16), 4250; https://doi.org/10.3390/en18164250 - 9 Aug 2025
Viewed by 299
Abstract
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor [...] Read more.
The global scarcity of freshwater, driven by population growth and the unequal distribution of water resources, has intensified the need for alternative water supply technologies. Among the most promising solutions, adsorption-based atmospheric water harvesting (AWH) systems offer the ability to extract water vapor directly from ambient air, even under low-humidity conditions. This review presents a comprehensive overview of the thermodynamic principles and material characteristics governing these systems, with particular emphasis on adsorption isotherms and their role in predicting and optimizing system performance. A generalized theoretical framework is proposed to assess the energy efficiency of thermally driven AWH devices, based on key material parameters. Recent developments in sorbent materials, especially metal–organic frameworks (MOFs) and advanced zeolites, are examined for their high-water uptake, regeneration efficiency, and potential for operation under real climatic conditions. The Dubinin–Astakhov and modified Langmuir isotherm models are reviewed for their effectiveness in describing nonlinear sorption behaviors critical to performance modeling. In addition, component-level design strategies for adsorption-based AWH systems are discussed. The integration of solar energy is also discussed, highlighting recent prototypes and design strategies that have achieved water yields ranging from 0.1 to 2.5 L m−2/day and specific productivities up to 2.8 L kg−1 using MOF-801 at 20% RH. Despite notable progress, challenges remain, including limited productivity in non-optimized setups, thermal losses, long-term material stability, and scalability. This review concludes by identifying future directions for material development, system integration, and modeling approaches to advance the practical deployment of efficient and scalable AWH technologies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

32 pages, 2238 KiB  
Review
Decarbonization Strategies for Northern Quebec: Enhancing Building Efficiency and Integrating Renewable Energy in Off-Grid Indigenous Communities
by Hossein Arasteh, Siba Kalivogui, Abdelatif Merabtine, Wahid Maref, Kun Zhang, Sullivan Durand, Patrick Turcotte, Daniel Rousse, Adrian Ilinca, Didier Haillot and Ricardo Izquierdo
Energies 2025, 18(16), 4234; https://doi.org/10.3390/en18164234 - 8 Aug 2025
Viewed by 303
Abstract
This review explores the pressing need for decarbonization strategies in the off-grid Indigenous communities of Northern Quebec, particularly focusing on Nunavik, where reliance on diesel and fossil fuels for heating and electricity has led to disproportionately excessive greenhouse gas emissions. These emissions underscore [...] Read more.
This review explores the pressing need for decarbonization strategies in the off-grid Indigenous communities of Northern Quebec, particularly focusing on Nunavik, where reliance on diesel and fossil fuels for heating and electricity has led to disproportionately excessive greenhouse gas emissions. These emissions underscore the urgent need for sustainable energy alternatives. This study investigates the potential for improving building energy efficiency through advanced thermal insulation, airtight construction, and the elimination of thermal bridges. These measures have been tested in practice; for instance, a prototype house in Quaqtaq achieved over a 54% reduction in energy consumption compared to the standard model. Beyond efficiency improvements, this review assesses the feasibility of renewable energy sources such as wood pellets, solar photovoltaics, wind power, geothermal energy, and run-of-river hydropower in reducing fossil fuel dependence in these communities. For instance, the Innavik hydroelectric project in Inukjuak reduced diesel use by 80% and is expected to cut 700,000 t of CO2 over 40 years. Solar energy, despite seasonal limitations, can complement other systems, particularly during sunnier months, while wind energy projects such as the Raglan Mine turbines save 4.4 million liters of diesel annually and prevent nearly 12,000 t of CO2 emissions. Geothermal and run-of-river hydropower systems are identified as long-term and effective solutions. This review emphasizes the role of Indigenous knowledge in guiding the energy transition and ensuring that solutions are culturally appropriate for community needs. By identifying both technological and socio-economic barriers, this review offers a foundation for future research and policy development aimed at enabling a sustainable and equitable energy transition in off-grid Northern Quebec communities. Full article
Show Figures

Figure 1

19 pages, 3198 KiB  
Article
Thermodynamic Analysis of Oxygenation Methods for Stationary Water: Mathematical Modeling and Experimental Investigation
by Mihaela Constantin, Cătălina Dobre and Mugurel Oprea
Thermo 2025, 5(3), 28; https://doi.org/10.3390/thermo5030028 - 8 Aug 2025
Viewed by 234
Abstract
This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate [...] Read more.
This paper presents a detailed thermodynamic and mathematical modeling study of the oxygenation processes in stationary water bodies, focusing on improving oxygen transfer efficiency, an essential factor in sustaining aquatic ecosystem health. The study employed mathematical models implemented in MATLAB R2024a to simulate the influence of temperature, bubble size, and mass transfer parameters. Key parameters, such as dissolved oxygen concentration, volumetric mass transfer coefficient (akL), and water temperature, were evaluated under different operational scenarios. The oxygenation system was powered by solar energy and included rotating fine-bubble generators mounted on a floating platform. Mathematical modeling carried out in MATLAB validated the theoretical models, showing how environmental factors such as temperature and bubble size influence oxygen dissolution. Initial experimental data, including dissolved oxygen levels (C0 = 3.12 mg/dm3), saturation concentrations at various temperatures (Cs = 8.3 mg/dm3 at 24 °C; Cs = 7.3 mg/dm3 at 30 °C), and a mass transfer coefficient of akL = 0.09 s−1, were used to support the model accuracy. The results highlight the potential of digitally controlled energy-efficient aeration technologies for applications in lake restoration, aquaculture, and sustainable water management. This paper introduces a coupled approach to oxygen transfer and temperature evolution validated experimentally, which has rarely been detailed in the literature. The novelty of this study lies in the combined thermodynamic modeling and exergy–entropy analysis along with real-time tracking, showing the relevance of energy-optimized, digitally monitored oxygenation platforms powered by solar energy. Full article
Show Figures

Figure 1

Back to TopTop